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Abstract—Recent literature considers that Spiking Neural
Networks are now a serious alternative to Formal Neural Net-
works for embedded artificial intelligence. The changes in the
information coding and the elementary neural computation make
them more efficient than FNNs in terms of power consumption
and chip surface occupation. However, these results are often
based on simple neural network topologies with basic data-sets. In
this paper, we study the behavior of Spiking Convolutional Neural
Networks when applied to two different classification tasks. To do
so, we analyze the spiking activity on both MNIST and GTSRB
data-sets using different rate-based and temporal coding schemes.
Notably, the Spike Select method is confronted to First Spike
and Jittered Periodic methods in terms of prediction accuracy
and spiking activity. Finally, we conclude about spike generation
within spiking CNNs for embedded hardware classification.

Index Terms—Spike Generation, Temporal Coding, Rate Cod-
ing, Spiking Neural Networks, Convolutional Neural Networks,
Embedded Systems, Neuromorphic Computing

I. INTRODUCTION

Convolutional Neural Network (CNN) is the most used deep
learning architecture. It is inspired from the biological visual
perception mechanism of living beings. Indeed, Hubel and
Wiesel have found, in 1959, that animals have cells in their
visual cortex that detect the light present in their receptive field
[1]. Inspired by this finding, Kunihiko Fukushima proposed
in 1980 the neocognitron, which is considered as the CNN’s
predecessor[2]. A decade later, LeCun et al. [3] proposed the
revolutionary framework of CNN that is presented as a neural
network of several layers of different types, called ”LeNet-5”.
This Artificial Neural Network (ANN) is specifically used to
ensure the handwritten digits classification task.

More than a decade later, several models have been pro-
posed, they came with improvements and facilitation in train-
ing CNNs. Krizhevsky et al. proposed one of them, AlexNet
[4], it has similar structure to LeNet-5 but with more layers.
This model was very successful, it brought out many methods
coming from other works that improved classification perfor-
mances. Recent advances on CNNs can be found in the paper
proposed by Jiuxiang Gu et al. [5].

Meanwhile, CNNs have become more popular with applica-
tions in several domains such as image and video recognition,
image classification, medical image analysis, and natural lan-
guage processing. This success can be awarded to two factors.
First, computing capabilities of modern CPU/GPU based com-
puters that accelerated implementation and inference stages.
Second, the huge amount of available open source labeled data

for training CNNs, which increased the number of applications
and contributed to the improvement of CNN models.

The achievements of CNNs on image classification have
given them the leading role in machine learning algorithms
and Artificial Intelligence (AI) research. Indeed, more and
more applications such as smart devices, IoT or autonomous
vehicles require embedded and efficient implementation. How-
ever, it is difficult to integrate them in low power systems be-
cause their implementation on CPU/GPU is resource-intensive.
Therefore, the solution is designing dedicated systems fitting
the parallel and distributed computing aspects of neural al-
gorithms. Recent literature considers the third generation of
neural algorithms, i.e. Spiking Neural Networks (SNNs), as the
alternative to Formal Neural Networks (FNNs) for embedded
artificial intelligence. In this context, L. Khacef et. al [6] have
shown that SNNs are around 50% more efficient in terms of
power consumption and chip surface occupation compared to
FNNs for simple topologies. To implement their SNNs, they
have used an approach consisting in mapping FNNs to SNNs,
which is found in several works. In [7] work, a thorough
description of this method is presented, where they have
applied it to classify data coming from asynchronous sensors.
Similarly but with static images, P. U. Diehl et. al [8] adopted
the same approach and studied the spiking activity of SNNs
generated using rate coding. On the other hand, H. Mostafa [9]
proposed a supervised learning algorithm based on temporal
coding instead of rate-based coding. Also, S. R. Kheradpisheh
et. al in [10], used temporal coding and proposed a Spiking
Deep Neural Network (SDNN) that consists in an STDP-based
CNN combined with a Support Vector Machine classifier.
Recently, more exhaustive works have studied the integration
of deep SNNs in embedded systems [11], [12].

Nevertheless, none of these works have studied all aspects
of implementing convolutional SNNs for realistic embedded
applications simultaneously. Indeed, these aspects concern the
neural coding (temporal and rate-based paradigms), the neural
model (FC-based SNNs and CNNs) and the hardware archi-
tectural design (parallel and multiplexed computing). In this
paper, we propose to extend these works for better covering
embedded applications through the use of spiking CNNs with
various neural coding schemes. A design space exploration
of hardware SNNs framework is proposed within new neural
coding techniques characterized by a low number of generated
spikes while maintaining the same neural model. Indeed,
for the design of SNNs in hardware, we follow the design

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



flow framework illustrated in figure 1, where we first build
a neural network using a learning framework (TensorFlow,
Torch, Caffe, CNTK or N2D2) to extract the SNN’s parameters
and topology.

Fig. 1: Design space exploration of hardware SNNs framework

Then, we select a coding method and an architectural model
to generate the SNN architecture on FPGA. Here, we intervene
in the neural coding part by adapting the methods proposed
in [11] to spiking CNNs. Moreover, we study the impact
of neural coding on the performance and the efficiency of
spiking CNNs in the perspective of their implementation onto
different neuromorphic hardware chips [13], [14], [11], [12].
Indeed, for validating this adaptation of the spike generation
methods, we use, in addition to MNIST data-set [15], the
German Traffic Sign Recognition Benchmark (GTSRB)[16].
The different explored coding methods are First Spike, Spike
Select and Jittered Periodic. This work is an extension of the
previous work [11] to the case of convolutional topologies
where we evaluate the impact of spike-select coding compared
to classical rate coding.

The remaining of the paper is composed of three sections.
First, in section II we present the CNN’s structure with brief
definition of the most used layers. In the same section, the
transcoding method and neural coding techniques are defined.
Second, in section III, results of coding techniques on CNNs
are shown, then we discuss them in section IV. Finally, we
present conclusions and some future works in section V.

II. MATERIAL AND METHODS

A. Spiking versus formal neural coding

In this work, we adopt the transcoding approach, consist-
ing in transforming neural networks from formal to spiking
domain. This approach has been already studied in [7][8][11]

but few studies have explored the impact of spike coding on
both accuracy and power consumption with spiking CNNs.

To do this mapping of CNNs, we first train the neural
model in formal domain then export the resulting parameters
to be used with the spiking CNN. Second, we test both
formal and spiking CNNs with the testing data-set. Finally, if
accuracy results are satisfying, then these networks are ready
for inference.

Note that there exist learning techniques directly applicable
in spiking domain, such as SpikeProp or STDP [17] [9]
[10] [18]. However, we focus on training in a supervised
manner and with feed-forward network topologies using back-
propagation learning algorithm. Indeed, this learning method
is more mature and is largely deployed [6][11][19][20][21].
It is currently a more serious competitor to the standard
CNN approaches than other, very promising but exploratory,
learning methods.

For the neuron model, among several models identified in
neuroscience literature and in a machine learning context, we
use spiking neurons that are most often based on a simple
(Leaky) Integrate and Fire (IF) model. This neuron model is
used in the transcoding method to substitute the Perceptron of
the originate CNN. The efficiency of IF neurons compared to
the Perceptrons is due to their computation rules. Equations
1 and 2 depict these computation rules, the first equation for
formal coding and the second one for spike coding.

ylj(t) = f(slj(t)), slj(t) =

Nl−1−1∑
i=0

wij ∗ yl−1
i (t) (1)

Where ylj(t) is the output of jth neuron of layer l, f() is a
non-linear activation function, slj(t) is the membrane potential
of jth neuron of layer l and wij the synaptic weight between
ith neuron of layer l − 1 and jth neuron of layer l.

γlj(t) =

{
1 if slj(t) ≥ θ
0 otherwise

,

plj(t) =

{
slj(t) if slj(t) ≤ θ
slj(t)− θ otherwise

,

slj(t) = plj(t− 1) +

Nl−1−1∑
i=0

(wij ∗ γl−1
i (t))

(2)

Where γlj(t) is the spiking output of jth neuron of layer l,
plj(t) is the membrane potential of jth neuron of layer l, and
θ is the activation threshold of jth neuron of layer l.

In a context of hardware implementation, it turns out that
the presence of multiplications and a non-linear function f() in
equation 1 are resource-intensive, whereas only additions and
comparison are present in equation 2 which are more adapted
to hardware integration.

In addition to their greater ease of integration onto neuro-
morphic hardware, spiking CNNs naturally take advantage of
event-driven computation. This paradigm assumes that only



events are processed, reducing the global chip activity to the
units triggered by the flow of events. But results obtained with
standard rate-coding schemes do not ensure that spike coding
generates less information than activity-based coding. Indeed,
rate-coding generally imposes additional latency in the pre-
sentation of samples that counterbalances spike coding. This is
why we are interested in the following in exploring other forms
of coding that are more sparsely distributed and therefore more
efficient for low-power embedded AI applications.

B. Convolutional Neural Networks

Convolutional Neural Networks are algorithms used for
various AI applications. They are multi-layer ANNs composed
of a various number of layers with different types. The most
commonly used to build a CNN are convolution, pooling and
fully-connected layers.

Convolution layer: The convolution layer is composed of
kernels or filters that are applied to an input image or Feature
Map (FM) to extract specific features. To do so, each kernel
has its unique weights that are defined after the learning pro-
cess and applied at different positions of the input image/FM.
The number of these positions correspond to the size of the
convolution layer’s output feature map that is computed using:
size = W ∗W , where W is defined in equation 3.

W = (N − F + 2 ∗ P )/S + 1 (3)

Where F is the receptive field width (filter width), P is the
padding, S is the stride and N is the input FM width. As shown
in figure 2, LeNet-5 CNN is used for classifying traffic signs
found in GTSRB data-set. Here, there are three convolution
layers, one connected to input and two others connected to the
first and second pooling layers. The first layer is composed of
6 convolution kernels with the size of 5x5 that slide over the
input image using a stride equals to 1. The output of this
convolution layer is 6x28x28, i.e. 6 FMs of 28x28 size, this
is obtained by applying the formula in equation 3.

Pooling layer: Pooling layers, also called sub-sampling
layers, are used to reduce the size of input FMs. Actually,
they are composed of average or maximum pooling kernels
that are applied to input FMs using similar sliding technique
to convolution layer. Therefore, to compute its output feature
map size we use the same formula found in 3. For example,
in the third layer from the left in figure 2, applying 6 pooling
kernels (of 2x2 size and with a stride of 2) on 6x28x28 FMs
results in feature maps of 6x14x14 size.

Fully-Connected layer: Fully-connected layers are gener-
ally located at last stages of a CNN network. They come to
process the output FM of the last CNN convolution or pooling
layer, they are considered as the network’s classifier. These
layers are composed of neurons connected to all previous layer
nodes.

C. Neural coding methods

Alongside the section, three different spike generation tech-
niques used to encode data into spiking events with spiking

CNNs are presented. The methods are: Jittered Periodic, First
Spike and Spike Select.

Note that, the same generation process is used with both
gray level and RGB formats of input data. When applied to
RGB images, the process is applied to the three channels of
the image independently.

1) Jittered Periodic: Jittered Periodic is a rate-based coding
method, it transforms analog input data to a spiking train.
For example, the transcoding of a gray scale image will
generate train spike with a rate proportional to its intensity
or brightness.

With Jittered periodic an input information (value) is con-
verted to spike domain as follows:

• First, defining some parameters that are used for the
conversion process: fmin & fmax the minimum and
maximum frequency parameters and sdev the relative
standard deviation.

• Second, using the formula defined in equation 4, the input
information referred as value is transformed to a period.

• Afterwards, the time step is calculated using equation 5.
• Finally, the time step is integrated to the previous emitted

spike’s time to get the next spike emission according to
equation 6.

period = 1/(fmax + (1− | value |) ∗ (fmin − fmax)) (4)

∆t = fUdist(fNdist(period, sdev)) (5)

t = tprevious + ∆t (6)

Note that fNdist() and fUdist() are the Random Normal
Distribution and Uniform Distribution functions.

This process is repeated until the classification process
is finished. Indeed, for the class selection, we are using
the Terminate Delta procedure that consists in enacting the
classification process when the difference between the most
and second most spiking neurons is equal to delta spikes.

2) First Spike: First Spike method, compatible with the IF-
neuron as in rate-coding, is used to represent input information
using at most one spike. Therefore, it is an intermediate
version between temporal and rate codings since it uses only
one spike per pixel and IF-neuron within the SNN.

In fact, the generation process is similar to Jittered periodic
method which is presented in section II-C1. However, it differs
by the fact that only the first generated spike per pixel is kept
and therefore the generation process is applied at most once for
each input pixel. Doing so, the number of spikes propagated
in the network should be drastically reduced but will induce
accuracy losses.

3) Spike Select: The steps to follow for spike generation
with Spike Select are similar to Jittered Periodic method.
However, within this method the SNN’s spiking activity over
the network is regulated to optimize the hardware architecture
utilization. Statistical results illustrated in figure 7 show that



Fig. 2: LeNet-5 CNN network architecture used for classifying traffic signs found in GTSRB benchmark – generated from the
N2D2 framework [22]

Rate coding Spike Select

Fig. 3: Filtering spikes with Spike Select method. Rate coding
neurons threshold is equal to 1 and that of spike select neurons
is equal to 3.

most of this spiking activity is located at output of the first
convolution layer. Therefore, this is the layer which is the most
solicited for computing.

In the purpose of reducing outgoing spikes of this convolu-
tion layer, we propose with Spike Select method to set a filter
within this layer. In fact, reducing outgoing spikes from this
stage makes deeper layers receiving less events.

Actually, a simple manner to integrate this filter is feasible
by just raising the IF-neurons membrane threshold which is set
by default to unity. Doing so, we are able to reduce neurons
output spikes. For example, in figure 3 a filter is applied to
some neurons by increasing their potential threshold from 1
to 3, which caused a reduction of output spikes from 10 to 2.

Moreover, the terminate delta is also reduced since fewer
spikes are propagated in deeper layers of the SNN and
therefore only few spikes are necessary for classification.

It has been already shown in [11] that by using Spike Select
the amount of spikes propagating in the SNN is drastically
reduced. However, this study did not covered CNNs and was
based on SNNs with only FC layers. This work extends the
study to the case of spiking CNNs and evaluates the impact

of using spike select compared to classical rate-coding.

III. RESULTS

In this section, we experimented the different coding meth-
ods (Spike Select, Jittered Periodic and First Spike) on spik-
ing CNNs. To do so, first, we used two training data-sets,
the handwritten digits MNIST data-set and the traffic signs
GTSRB data-set.

On one hand, MNIST data-set is made of 70 000 gray-level
images, 60 000 for learning and validation, 10 000 images for
testing [15].

On the other hand, GTSRB database has 43 classes spread
on 51840 colored (RGB) image samples (figure 4), 50% of
them is used for training 25% for validation and the remaining
25% is used for testing. The images have different sizes
ranging from 15x15 to 250x250, therefore re-scaling the input
within the CNN is mandatory[16].

Fig. 4: Examples of the German Traffic Sign Recognition
Benchmark – GTSRB [16]

We defined different CNN topologies for both data-sets.
First, four models were compared for using with MNIST data-
set that are Conv29, ConvPool, LeNet and ConvFc. Where
Conv29 is a CNN with a 1D input with a size of 29x29x1 fol-
lowed by 2 convolution layers, 2 pooling layers and 2 Fc lay-
ers raising to the topology: ”29x29x1-32c4s1-32p2s2-48c5s1-
48p3s3-200-10”; ConvFc is a CNN composed of only con-
volution and fully-connected layers (28x28x1-16c4s2-24c4s2-
150-10) and ConvPool is composed of only convolution and
pooling layers (28x28x1-12c5s1-12p2s1-64c5s1-64p2s1-10).

On another hand, 4 topologies with two gray-level (indexed
by ”-1D”) and two RGB (indexed by ”-3D”) are built for



TABLE I: Classification accuracy results of different SNNs
on MNIST data set. Note that, all the networks are in spiking
domain.

Network Accuracy (%)
In [8]: 784-2*(1200)-10 98.60
In [9]: 784-800-10 97,55
In [6]: 784-300-10 95.37
In [23]: 784-300-10 95.40
In our previous work [11]: 784-300-10 97.74
In our previous work [11]: 784-2*(300)-10 98.00
In our previous work [11]: 784-3*(300)-10 98.24
In this paper: Conv29 99.21

GTSRB data-set. LeNet-1D and Conv-1D the gray level net-
works with ”32x32x1-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-
84-43” and ”29x29x1-32c4s1-32p2s2-48c5s1-48p3s3-200-43”
topologies. LeNet-3D and Conv-3D are the colored input net-
works with ”32x32x3-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-
84-43” and ”32x32x3-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-
84-43” topologies.

Finally, we tested these networks using the coding methods
presented in section II and recorded their results in terms
of accuracy and spiking activity. Note that in this work, we
are studying neural coding impact on the energy-efficiency of
Spiking CNN architectures, and that is why we are principally
focusing on reducing the spikes propagating in the network
while keeping approximately the same accuracy. Therefore, the
metrics used to discriminate the coding methods are accuracy
and spiking data propagation.

A. Accuracy results

The defined CNNs were tested on corresponding databases
(MNIST & GTSRB) using the neural coding methods pre-
sented earlier. Here, we present prediction accuracies obtained
from these experiments.

Note that networks are first trained and validated in formal
domain and then transformed to spiking domain. Moreover,
these results represent averages of several runs.

TABLE II: Different classification accuracy results on GTSRB
data-set

Network Accuracy (%)
Human [16] 97.98
LeNet-5 in [24] – formal 92.68
Random forests [25] – formal 96.14
Architecture 32 [24] – formal 97.79
This work: Conv-3D – spiking 97,83

In tables I and II, accuracy results obtained in this paper
are compared to different networks that we found in literature
for MNIST and GTSRB data-sets. On one hand, with MNIST
data-set, we obtained slightly higher accuracy compared to
others. On the other hand, with GTSRB data-set, we get lower
results compared to human[16] and Architecture 32 network
[24] but higher than the other networks.

Tables III and IV represent respectively accuracy results
of CNNs using 3 different coding methods on MNIST and
GTSRB data-sets.

TABLE III: Accuracy results of 4 different CNN models on
MNIST data using 4 different coding techniques

Coding method CNN model
Conv29 ConvPool LeNet ConvFc

Jittered Period 99,16 99,21 99,15 99,09
Spike Select 99,21 97,07 99,13 98,68
First Spike 87,21 96,56 90,87 96,16

Formal domain 99,16 99,18 99,18 99,09

TABLE IV: Accuracy results of 4 different CNN models on
GTSRB data using 4 different coding techniques

Coding method CNN model
Conv-1D Conv-3D LeNet-1D LeNet-3D

Jittered Period 96,68 97,75 95,76 96,19
Spike Select 96,56 97,83 95,72 96,18
First Spike 21,57 45,49 25,46 68,61

Formal domain 96,8 97,86 95,84 96,25

On one hand, we remark that the First Spike method
performs lower results on MNIST data-set with more than
9% accuracy loss with Conv29 and LeNet CNNs. Moreover,
a huge loss is recorded when confronted to GTSRB data-set
with scores varying from 21.57% to 68.61%. This method
shows competitive spiking activity compared to others, but
its important losses in accuracy makes it not viable for
classification applications. Moreover, histograms on figure 5
illustrate this difference more clearly, especially for GTSRB
data-set.

On the other hand, Jittered Periodic and Spike Select meth-
ods are more accurate and present equivalent records compared
to formal CNNS. Therefore, in the following we compare
these methods in terms of spiking activity and prediction
performance.

B. Spike Select versus Jittered Periodic

Indeed, Spike Select and Jittered Periodic are more promis-
ing for classification regarding their performances. Here, we
analyze and compare the spiking activity using these methods
with CNN networks. In fact, in a context of embedded
applications, the energy consumption of an SNN hardware
implementation is directly proportional to the number of spikes
it generates [26]. Therefore, this spiking activity is represented
as the average number of spikes propagated over the SNN for
one image.

In figure 6, the total number of spikes generated per image
propagated on different CNNs with MNIST and GTSRB data-
sets is illustrated. These results show that Spike Select is more
efficient, it generates less spikes than Jittered Periodic for all
CNN topologies and data-sets. Moreover, on GTSRB data-set,
it is generating around 50% or more less spikes while keeping
similar recognition rates, as mentioned in tables IV and V.

IV. DISCUSSION

A. Efficiency of spike coding

In this paper, we have explored neural coding within spiking
convolutional neural networks in a context of embedded clas-
sification. The objective of this study was to extend a design
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Fig. 5: Spiking CNNs accuracy performance on MNIST and
GTSRB data-sets using different coding methods

TABLE V: Spike Select versus Jittered Periodic: spikes dis-
tribution over spiking gray-level and RGB LeNet CNN layers
using GTSRB data-set

Layer LeNet-2D LeNet-3D
JitPeriod SpikeSel JitPeriod SpikeSel

Input 3295 3110 7692 6698
Conv1 12581 3028 15048 3553
Pool1 4160 1046 4956 1207
Conv2 4585 1463 4799 1542
Pool2 2209 723 2346 762
Conv3 115 37 91 29

Fc1 77 23 67 20
Output 44 8 28 5
Total 27066 9438 35027 13816

space framework of hardware spiking neurons, presented in
figure 1. In fact, this framework allows the implementation
of SNNs in neuromorphic hardware while having the ability
of adapting the chip to the application constraints. To do so,
users have possibility to choose the neural coding technique,
the ANN topology and the hardware architectural model.

Nevertheless, this framework initially covered SNNs com-
posed of only fully-connected layers, which are not sufficient
to conceive applications needing other layer types, like con-
volution and pooling. Therefore, we have adapted some spike
generation techniques to be used with spiking CNNs and ana-
lyzed their behavior. In this context, we focused on two factors:
the prediction accuracy and the spiking activity. Moreover,
different experiments are made using various CNN topologies
on two different classification tasks to verify integrability of
spiking CNNs on neuromorphic hardware.

15153

8367

5359

1097

12281

1397 1698
380

MNIST

0

5000

10000

15000

20000

Conv29 ConvPool LeNet ConvFc

Jittered Periodic Spike Select

102089
98036

35027
27066

39526
34975

18075
11563

GTSRB

0

25000

50000

75000

100000

125000

Conv-3D Conv-1D LeNet-3D LeNet-1D

Jittered Periodic Spike Select

Fig. 6: Total number of spikes propagated in different network
layers using Spike Select and Jittered Periodic methods

We have seen that First Spike method is not adequate for
spiking CNNs because it presents important accuracy losses
compared to CNNs in formal domain. Therefore, we have se-
lected Spike Select and Jittered Periodic as potential solutions
for spike generation in convolutional SNNs. In this way, we
have compared their accuracy records and spiking activities on
two data-sets (MNIST and GTSRB) using different topologies.
In terms of recognition rate, both methods perform results
equivalent to formal CNNs scores. Whereas, in terms of
spiking activity, with Spike Select method we are able to
regulate the spiking distribution over the network to correlate
with results found in [11] work. Moreover, the amount of
spikes propagating over network’s layers is drastically reduced
using this method, refer to figure 6. Therefore, these findings
make Spike Select a promising solution for embedded AI-
application when dealing with spiking CNNs. In addition,
combining this coding scheme with the hybrid architecture,
as described in the next section, would offer a better latency-
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resources trade-off, including spiking CNNs to the proposed
framework.

B. Hardware perspectives

Before concluding about these methods, let us analyze the
spikes distribution on LeNet-5 network using both methods,
this is illustrated on figure 7 and table V. Actually, these results
confirm that Spike Select is more promising than Jittered
Periodic, where fewer propagated spikes.

Moreover, the regulation of spiking distribution over
SCNN’s layers resulted from Spike Select, which is similar
to the one in [11], makes spiking CNNs compatible with the
hybrid architecture proposed in the same work (labelled as
Generic IP in Figure 1), and hence get benefit of its structure.

The hybrid architecture is composed of a spike generator,
a neural core, several NPUs and a terminate delta module,
refer to figure 8. Its different modules communicate in an
event-based fashion using three signals, event to conduct the

Fig. 8: Complete Hybrid Architecture schematic diagram

spiking event, empty to indicate the presence of spikes and
read event to indicate that an event is being retrieved for
processing. Within this architecture, an input pixel is processed
by the spike gen cell that generates spiking events using one
of the coding methods presented in this paper. Afterwards,
the first convolution layer neurons process these events in a
parallel fashion using the neural core module. Then, in the
remaining layers, each one is implemented by the mean of
a Neural Processing Unit, communicate their events in the
same event-based fashion. Indeed, these NPUs are processing
data sequentially, where an FC layer having N neurons is
spending N cycles to process a single event. Finally, the last
NPU is connected to a terminate delta module that verifies the
enacting of the classification procedure. In fact, this is a hybrid
architecture because it includes a fully-parallel part presented
by the neural core module in the first stage and multiplexed
ones in the following layers through the usage of NPUs.

As shown in figure 7, most spikes are processed by ”Conv1”
layer and therefore it is the most solicited one. Therefore,
having a fully parallel implementation of this layer would
accelerate the processing in the network. In addition, since few
spikes are propagated in the other layers, then multiplexing
computing would not affect significantly the processing time.

Due to the event-based nature of neuromorphic architec-
tures, it is difficult to estimate the latency of spiking CNNs.
Nevertheless, despite the fact that several spikes are executed
in parallel in those architectures, knowing the total number
of spikes processed by a spiking CNN give a partial latency
estimation. In this context, the total number of spikes gen-
erated by the 3D and 2D LeNet networks when processing
GTSRB testing dataset is indicated in table V. We notice that,
compared to Jittered Periodic generated spikes, only 34.87%
on LeNet-1D and 39.44% on LeNet-3D of these spikes are
generated using Spike Select. Therefore, we expect a reduction
of the computation time and thus energy consumption using
this method with convolutional SNNs.

V. CONCLUSION

There are different rungs of neuromorphic chip design:
neural model, high level modeling and RTL design. In this
work, we studied neural coding in spiking CNNs to integrate
them to our SNN’s implementation framework.



In this context, we compared performances of three different
coding techniques in terms of recognition rate and spiking
activity. In terms of spiking activity, it turns up that Spike
Select is more efficient, where, it drastically reduces the net-
work’s activity. Moreover, by the use of this method we notice
a regulation of the spiking data distribution, where most spikes
are generated by in the input layer and few of them propagate
in the remaining ones. Indeed, this spiking distribution would
benefit from our hybrid architecture with fully-parallel input
layer and multiplexed deeper layers. Therefore, in the light of
these findings one can say that, the ”Spike Select & Hybrid
Architecture” combination would be an effective solution for
embedded AI applications.

The perspectives of the current work can be expressed in
two steps. First, it is essential to implement spiking CNNs in
hardware using a hybrid architectural structure and confront it
with the state-of-the-art neuromorphic hardware architectures.
Doing so, we would be able to conclude about spiking
neural networks and their use for embedded AI-applications.
Second, in order to take full advantage of the event-driven
property of SNNs, the Spiking CNN has to be adapted, in
both algorithmic model and hardware structure, to process
efficiently asynchronous input sensors. Indeed, systems with
Event-Based Sensors (EBS) input source are more efficient in
terms of number of input spiking events, because EBS sensors
are emitting only information about the changes between two
consecutive scenes (frames) which directly impacts processing
time and thus energy consumption.

Therefore, if the neuromorphic architecture supports both
convolutional SNNs and event-based input sensors it could be
a one of the best solutions for embedded AI-applications.

REFERENCES

[1] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones
in the cat’s striate cortex,” The Journal of Physiology, vol. 148, no. 3,
pp. 574–591, 1959.

[2] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, pp. 193–202, 1980.

[3] Y. LeCun et al., “Handwritten digit recognition with a back-propagation
network,” in Advances in Neural Information Processing Systems 2
(D. S. Touretzky, ed.), pp. 396–404, Morgan-Kaufmann, 1990.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
pp. 84–90, May 2017.

[5] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, and G. Wang, “Recent advances in convolutional neural
networks,” CoRR, vol. abs/1512.07108, 2015.

[6] L. Khacef, N. Abderrahmane, and B. Miramond, “Confronting machine-
learning with neuroscience for neuromorphic architectures design,” in
International Joint Conference on Neural Networks (IJCNN), July 2018.

[7] J. A. Perez-Carrasco, Bo Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, Shouchun Chen, and B. Linares-Barranco, “Mapping from
Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate
Rate Coding and Coincidence Processing–Application to Feedforward
ConvNets,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 35, no. 11, pp. 2706–2719, 2013.

[8] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in ieee, pp. 1–8, IEEE, 2015.

[9] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 7, pp. 3227–3235, 2018.

[10] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56–67, 2018.

[11] N. Abderrahmane, E. Lemaire, and B. Miramond, “Design space explo-
ration of hardware spiking neurons for embedded artificial intelligence,”
Neural Networks, vol. 121, pp. 366 – 386, 2020.

[12] L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and
J. Harkin, “Challenges for large-scale implementations of spiking neural
networks on fpgas,” Neurocomputing, vol. 71, no. 1, pp. 13 – 29, 2007.
Dedicated Hardware Architectures for Intelligent Systems Advances on
Neural Networks for Speech and Audio Processing.

[13] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, pp. 652–665, May 2014.

[14] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

[16] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, vol. 32, pp. 323 – 332, 2012.

[17] J. C. Thiele, O. Bichler, and A. Dupret, “Event-based, timescale invariant
unsupervised online deep learning with stdp,” Frontiers in Computa-
tional Neuroscience, vol. 12, p. 46, 2018.

[18] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and
T. Masquelier, “Combining STDP and reward-modulated STDP in deep
convolutional spiking neural networks for digit recognition,” 2018.

[19] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[20] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural Networks,
vol. 111, pp. 47 – 63, 2019.

[21] N. Abderrahmane and B. Miramond, “Information coding and hardware
architecture of spiking neural networks,” in Euromicro Conference on
Digital System Design (DSD), 2019.

[22] O. Bichler, D. Briand, V. Gacoin, and B. Bertelone, Neural Network
Design and Deployment, 2017. https://github.com/CEA-LIST/N2D2.

[23] Z. Du, D. D. B. Rubin, Y. Chen, L. Hel, T. Chen, L. Zhang, C. Wu, and
O. Temam, “Neuromorphic accelerators: A comparison between neuro-
science and machine-learning approaches,” in 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2015.

[24] W.-J. Yang, C.-C. Luo, P.-C. Chung, and J.-F. Yang, “Simplified neural
networks with smart detection for road traffic sign recognition,” in
Advances in Information and Communication (K. Arai and R. Bhatia,
eds.), (Cham), pp. 237–249, Springer International Publishing, 2020.

[25] F. Zaklouta, B. Stanciulescu, and O. Hamdoun, “Traffic sign classifi-
cation using k-d trees and random forests,” in The 2011 International
Joint Conference on Neural Networks, pp. 2151–2155, July 2011.

[26] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural
Networks for Energy-Efficient Object Recognition,” International Jour-
nal of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.




