
Deep Neural-Gas Clustering for Instance
Segmentation across Imaging Experiments

Philipp Grüning
Institute for Neuro- and Bioinformatics

University of Lübeck
Lübeck, Germany

0000-0003-2946-4020

Amir Madany Mamlouk
Institute for Neuro- and Bioinformatics

University of Lübeck
Lübeck, Germany

0000-0001-9709-1620

Abstract—CNNs are characterized in particular by the ability
to independently learn suitable features from a given data
set. However, the resulting latent space is optimized for the
given training data. Especially for tasks that require a high
generalization ability, like e.g. the segmentation of single cells in
a microscopic image across various experiments, these specific
solutions might not offer optimal results. In this work, we
improve generalization with an additional unsupervised training
step that operates in the latent space. First experiments with
the Kaggle cell segmentation competition data show a strong
improvement in the generalization of acquired knowledge when
using a soft- and hard-competitive Neural-Gas algorithm for deep
clustering with a standard CNN architecture.

Index Terms—semi-supervised learning, clustering, deep learn-
ing, instance segmentation

I. INTRODUCTION

When a human subject is asked to label the individual cells
on a microscopic image, this typically does not pose a very
difficult task, even for cell types and magnifications the subject
has never seen before. For machine learning, however, it is
crucial to have extensive training data that reflect the data
distribution as good as possible.

Established bioimage analysis tools (like e.g. CellPro-
filer [1] or Fiji [2]) often provide powerful and easy to use
solutions to segment single cell images, but they also end up
to be specialized onto the given cell types from the training
data. Due to the recent advances of deep learning in the field of
biomedical imaging [3], the question arised whether it might
be even possible to develop segmentation methods that can
reliably process completely unknown images, regardless of cell
types, staining, and magnification.

As a result, a number of competitions have recently emerged
that are aimed precisely at this problem: one example was the
MICCAI 2018 challenge [4] on multi-organ nucleus segmen-
tation (7 organs, 21 623 annotated individual nuclei), another
example was the Kaggle 2018 Data Science Bowl [5], a chal-
lenge to segment nuclei across different imaging experiments
(30 experiments, 37 333 annotated nuclei). The motivation
behind these initiatives is quite clear: Only without any human
interaction will future microscopes be able to analyse cell
tissues in a large scale at full machine speed.

A. Instance Segmentation

Instance segmentation can be seen as an extension to
semantic segmentation, which is the pixel-wise classification
of an image: instead of assigning a class to each pixel, we
want to assign a value that indicates to which instance the
pixel belongs. This segmentation task cannot be solved by
a simple classification framework: the number of instances
can vary for each input image and furthermore, there is no
fixed order which index is assigned to which instance. The
two most prevalent approaches to produce instance segmen-
tation masks with CNNs [6] are detection with subsequent
segmentation, as employed in the mask-RCNN [7]–[9], and
semantic segmentation with post-processing [10], [11]. Like
many other contributors, the winner of the Kaggle 2018 Data
Science Bowl used an u-net [12] structure paired with a
very deep classification network as backbone. Additionally,
elaborated post-processing algorithms and ensembles were
employed [13]. Therefore we decided to also use an u-net
architecture for the experiments proposed in this work.

B. Unsupervised and Semi-Supervised learning, and Cluster-
ing

Although CNNs provide excellent results on a variety of
computer vision tasks, the necessity for large training datasets
is a downside of the approach. This poses a problem espe-
cially in the field of biomedical image segmentation: expert
knowledge is often needed to produce reliable labels and most
images contain a multitude of objects with intricate shapes,
which in turn increases the time needed to accurately label
one image. Hence, many biomedical projects cannot provide
a desired number of labeled images. However, in many cases,
unlabeled images exist in abundance. Accordingly, unsuper-
vised or semi-supervised approaches that make use of this
data gain more and more importance [14].

So called self-supervision [15]–[18] aims to generate models
with high quality general purpose features by training the
CNNs with auxiliary tasks, where labels can be easily com-
puted. A typical task is for example to maximize the mutual
information between images and their transformations [19]
or between different features layers [20]. Learning features
that model relations of image pairs well is a typical theme in
self-supervision [21]–[24]. In so called exemplar learning, a

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1: From semantic segmentation to instance segmen-
tation. Semantic segmentation output of the network: back-
ground (left), cell (middle left), cell border (middle right).
Using a post-processing method based on the watershed algo-
rithm, we can compute an instance segmentation mask (right).

training image is seen as a specific class. Other class members
are transformed versions of this image and a network needs to
learn features that are invariant to these transformations [25],
[26]. Another approach is the generation of pseudo-labels, for
example based on clustering in the feature space provided by a
neural network. Caron et al. [27] proposed a semi-supervised
learning framework including two steps: i) a CNN is trained
on a labeled training set; ii) k-means clustering (kMC) is
employed on the CNN’s feature representations of a set of
unlabeled images. The cluster indices are used as pseudo-
labels and subsequently, the CNN is trained fully supervised
with the image-label pairs. Those two alternating steps are
repeated several times. This method is called deep clustering
and we based our proposed framework on it. Many recent
works have identified unsupervised learning as a vital part for
modern network architectures [28]–[33].

Although kMC is the first choice for many people when
it comes to vector quantization, the algorithm comes with
a major drawback: the random initialization paired with the
hard competitive learning can lead to inhomogenious distri-
butions of the cluster centers, sometimes might even result in
empty ones [27]. Martinetz and Schulten [34] proposed a soft
competitive alternative called Neural-Gas (NG), where trivial
solutions are not possible. Fritzke [35] extended the ideas
of NG to the so called Growing Neural Gas (GNG), where
no initial number of cluster centers k needs to be defined.
Instead the algorithm automatically adds new cluster centers
if neccessary. In the following, we will use kMC, NG, and
GNG to perform a deep clustering in the latent space of our
CNN.

C. Contributions

We provide two contributions in this paper: first, we
show that semi-supervised learning using deep clustering
and pseudo-labels is viable, even in the context of instance
segmentation. Although we only retrain the encoder part
of an u-net, better generalization on unseen cell types and
modalities can be achieved. Second, we investigate the impact
of clustering quality, comparing kMC to NG and GNG. We
show that although NG led to more robust solutions, kMC’s
inhomogeneous clusterings might even be beneficial for this
specific task.

II. METHODS AND EXPERIMENTS

A. Deep Clustering

In the context of instance segmentation, our aim is to
enhance the generalization capability of a CNN for unlabeled
images that greatly differ from the original training data.
To this end, we train a model in two separate steps: the
segmentation training and the cluster training.
In the segmentation step, we train a model for semantic
segmentation, i.e. the pixel-wise classification of three classes:
background, cell, and cell-border. Via a post-processing step,
these segmentation masks can be transformed into instance
segmentation masks (see Figure 1 for an illustration).
In the clustering step, we use a different, unlabeled dataset. For
each image, we compute the latent space representation from
the previously trained CNN to create a set of feature vectors.
We reduce each feature vector’s dimension and then apply
clustering. The given cluster index for each image denotes its
pseudo-label and the encoder part of the CNN is trained to
predict this label given the image as input. Note that this step
only changes the encoder’s weights, while the decoder remains
unchanged. Interestingly, even if the decoder is not adapted to
the encoder, it can improve the instance segmentation results.

B. Data

For training and evaluation, we used the Kaggle Data
Science Bowl 2018 training set from the first run, which
is a subset of the Broad Bioimage Benchmark Collection
dataset BBBC03v1 [5]. The set contains a high variety of
735 microscopic images of cell nuclei, that vary in cell type,
image modality, resolution, and many more features. For
example, cells from different organisms such as mice and
flies are contained and different staining methods are used.
Accordingly, the high variance of the respective images makes
the dataset perfect for an analysis of generalization across
domains.

We manually separated the data into 7 subsets of different
types, that vary highly in their cardinality. An example image
of each set is given in Figure 3. With 592 images, one set
was very dominant, making up 80% of the total number
of images. We called this set CT1 and the other 6 sets
CT2 to CT7, respectively. We created a separate test set by
randomly choosing two images from each cell type, amounting
to 14 images for testing. This small number was due to
some particularly small cell type sets that consisted of only
seven or eight images. We used the training set of CT1 for
segmentation training and solely in this step, the network did
see actual ground truth labeling masks during training. For
cluster training, we used the entire set CT2 to CT7. Since
only pseudo-labels were employed, training with the test data
is a viable approach.

C. Training Details

To enable mini batch training, we randomly cropped the
input images to the size 256 × 256 (smaller images are
zero padded first). Subsequently, we used the following data
augmentation techniques with a probability of 50%: random

Fig. 2: Latent space visualization. T-SNE embedding of the 32 dimensional latent space. The computed clusters follow our
intuitive division of the data based on image modality and cell type. However, further separation differences in cell size and
image intensity are visible.

color channel swaps, color inversion, random scaling with a
factor between .5 and 2 (25% probability), rotation of the
image by a multiple of 90◦, flipping along the vertical and/or
horizontal axis.
We used an u-net-like structure with a resnet-50 encoder [36].
We defined the latent space to be the output of the last resnet
block. For a 256× 256× 3 input image, a 8× 8× 2048 input
tensor is produced.
For segmentation, we trained the CNN for 50 epochs, using
the lamb optimizer [37], [38] with a learning rate of 0.001
beta parameters β0 = 0.9 and β1 = 0.999, and a batch-size
of 8. We used cross entropy as our loss function.
For the proposed clustering extension, we drew 5000 images
from the unlabeled dataset, with the described data augmen-
tation regime. We applied global average pooling to the latent
space output of the network. For each image, the 8×8×2048
output tensor is reduced to a 2048 dimensional feature vector
and the resulting data matrix of shape 5000×2048 is reduced
to 5000 × 32 by employing principal component analysis
(PCA). On this dataset, we used our different clustering
algorithms and the resulting cluster indices were used as labels
for the images.
In summary, we created a classification dataset containing

5000 images with k classes. The network architecture has been
extended with a global average pooling layer and a linear layer
that computes a k-dimensional output for a 2048 dimensional
input. We trained the model for 20 epochs and from each
256 × 256 image we randomly cropped a 128 × 128 image
patch. Apart from that, we used the same data augmentation
functions as described above. We used a learning rate of
0.01, optimized with stochastic gradient descent (SGD) with a
momentum of 0.5. Every 10 epochs, we reduced the learning
rate by 0.1.
The input of the post processing algorithm is a softmax tensor
of shape h×w×3, with each pixel denoting the likelihood of
belonging to one of the three classes background, cell, or cell-
border. The instance labels were generated via a watershed
segmentation. Starting points were pixels where the likelihood
of being a cell and not a cell-border was greater than 80%.
Additionally, background starting points were pixels with a
value below 20%. The height map is a binarized version of
the cell output map with a threshold of 30%. All instances
computed by the watershed algorithm that had an average cell
likelihood below 60% were set to background.

Fig. 3: Dataset partitioning. We manually separated the Kag-
gle Data Science Bowl 2018 training set into seven individual
subsets that differ in staining methods, cell type, cell nuclei,
and image modality. We use cell type 1 (CT1) as training data
for segmentation.

Fig. 4: Deep Clustering with Segmentation. Our architecture
contains a typical encoder-decoder structure known from the
u-net. At the end of the encoder (resnet-50 backbone), we
transform a 256 × 256 input image to a 2048 dimensional
feature vector. We reduce the dimension to 32 via PCA. We
create pseudo-labels using clustering.

D. Clustering algorithms

We compare three different methods of clustering on the
described latent space vectors: neural gas (NG), pattern-by-
pattern k-means (kMC), and growing neural gas (GNG) [39].
The centroids for kMC and NG are adapted in a pattern-by-
pattern fashion. In an epoch, a centroid adaptation is computed
for each datapoint. Given a datapoint ~x, the neural gas update
rule for a centroid ~wi is defined as:

∆~wi = ε(t)h(~x− ~wi), (1)

~wi = ~wi + ∆~wi. (2)

The update is weighted by h ∈ [0, 1], which depends on the
rank r(~wi, ~x). E.g. for the nearest centroid to ~x, r(~wi, ~x) = 0,
for the second nearest r(~wi, ~x) = 1 etc. h is computed as
follows:

h(~wi, ~x, t) = exp(−r(~wi, ~x)/R(t)). (3)

R is reduced depending on the current epoch t:

R(t) = R0 · (
Rfin

R0
)

t
T , (4)

with T being the total number of training epochs, with R0

and Rfin defining the start and end value. ε is a learning rate
parameter that is reduced similarly with respect to t:

ε(t) = ε0 · (
εfin
ε0

)
t
T . (5)

As hyperparameters, we use ε0 = 0.1, εfin = 0.0001, R0 = 2·
k, Rfin = 0.001, T = 200 for NG. For kMC, we change R0 =
Rfin = 0.001. Note that, for each centroid with r(~wi, ~x) > 0,
the corresponding weight h is zero. Hence for kMC, only
the nearest centroid is updated (hard competitive). Opposed
to that, NG can update several centroids (soft competitive).
However, with increasing t, the weights for centroids that are
not the nearest neighbor are reduced.
Different from NG, GNG has no parameters that change over
time. Furthermore, there is no need to determine the number
of cluster centers a-priori. Similar to NG, GNG is updated for
every datapoint ~x. Edges between pairs of cluster centers ~wi

and ~wj indicate a neighborhood relationship between centers.
The edges form or disappear in the course of training. For each
input ~x the nearest neighbor ~ws1 is determined. It is updated
similar to Equation 1, with h = 1 and ε(t) = εb. All neighbors
to ~ws1 are updated with h = 1 and ε(t) = εn. For each ~wi

an error variable is kept that is increased every time ~wi is a
nearest neighbor to ~x:

error(i) = ‖(~wi − ~x)‖2 . (6)

If the number of steps is a multiple of λ, the unit ~wq with
the highest error value is determined. A new unit is created
halfway between ~wq and its neighbor with the highest error
value ~wf :

~wr = 0.5(~wf + ~wq). (7)

For GNG, we use the hyperparameters εn = 0.1 for the
learning rate of the nearest neighbor, εb = 0.001 is the learning

rate for centroids that are connected to the nearest neighbor
via an edge. The maximum edge age is 50, every time after
λ = 100 iterations a new centroid is added, the split error
decay rate is 0.5, the error decay rate 0.995, and the minimal
distance for updates is 0.2.
We trained one neural network in the segmentation step.
Extracted a clustering dataset as described in Section
II-C. For different numbers of cluster centers k ∈
{5, 50, 100, 500, 1000}, we created pseudo labels using kMC
and NG. We computed the GNG clustering starting with
k = 5. Here, the number of centroids increased to values
around k = 500. For each k and each clustering method, we
did 48 test runs altering the random seeds. This effectively
changed the initial starting positions of each centroid and the
order of datapoints in each epoch. We evaluated each run on
the presented test datasets (see Section II-B). The known test
set, contained images with a cell type that was also used for the
segmentation data (CT1). The unknown test set contained only
cell types that were not present in the segmentation dataset
(CT2-7). We computed the adapted mean average precision
(MAP, as presented in the Kaggle challenge [40]) of a ground
truth instance segmentation and a prediction from our network.

III. RESULTS

In order to obtain a reference value, first we trained a net-
work, which approaches the segmentation problem by means
of a classical u-net [12]. For details on architecture and training
please refer to Sections II-A and II-C. This approach can
already solve the problem very well. Thus, most successful
participants of the Kaggle Challenge have used very similiar
architectures. However, since we wanted to focus on changes
caused by modifications in latent space, we have restricted
ourselves on a basic network without any exhaustive post-
processing steps.

We wanted to learn more about the complexity and structure
of the latent space. Thus, we transformed the 32D feature
space into a 2D projection using T-SNE [41] and looked
for the input images to see how they were oriented in this
space. Figure 2 shows a visualization of some images and their
localization in latent space. Similar images actually seem to
collapse into clusters and very unusual images are also clearly
separated from the others.

Next, we systematically clustered the data in latent space
using the three methods presented in Section II-D (k-means
(kMC), Neural Gas (NG), and Growing Neural Gas (GNG)),
retrained the encoder, and evaluated how the quality of in-
stance segmentation had changed. Table I displays the MAP
we obtained for the traditional approach without any clustering
in the latent space (we will refer in the follwing to this value
as the baseline). The MAP did not change significantly after
clustering. As expected, the segmentation was quite difficult,
especially with unknown images. Without CT1 (known im-
ages), the MAP was significantly lower than the MAP for the
set CT1 only.

Nevertheless, there were significant differences when look-
ing at the final segmentation. Figure 5 displays the results of

name CT1 without CT1 all

baseline 0.41 0.21 0.23
kMC (5) 0.40 ± 0.03 0.19 ± 0.01 0.22 ± 0.01
NG (5) 0.40 ± 0.02 0.19 ± 0.01 0.22 ± 0.01
kMC (50) 0.41 ± 0.03 0.21 ± 0.01 0.23 ± 0.01
NG (50) 0.42 ± 0.02 0.21 ± 0.01 0.24 ± 0.01
kMC (100) 0.42 ± 0.03 0.22 ± 0.01 0.24 ± 0.01
NG (100) 0.43 ± 0.02 0.22 ± 0.01 0.25 ± 0.01
kMC (500) 0.42 ± 0.02 0.23 ± 0.01 0.26 ± 0.01
NG (500) 0.41 ± 0.02 0.23 ± 0.01 0.25 ± 0.01
kMC (1000) 0.41 ± 0.03 0.23 ± 0.01 0.26 ± 0.01
NG (1000) 0.41 ± 0.02 0.23 ± 0.01 0.25 ± 0.01
GNG (5) 0.42 ± 0.03 0.23 ± 0.01 0.25 ± 0.01

TABLE I: Mean average precision (MAP) on the test data set
of models with different strategies for pseudo-labelling.

the instance segmentation for three different cell images. The
first column shows the original images, the second column the
corresponding ground truth. The third column gives the results
with CNN without clustering, the fourth column provides the
results with clustering (here kMC).

Next, we wanted to investigate the variance of the individual
solutions and the influence of the quality on the free parameter
k. For this purpose, we calculated the MAP and compared it
to the baseline, both for CT1 and CT2-7. The results for CT1
are shown in Figure 6. Although the mean MAP always stayed
close to the baseline, there were some configurations that got
both better and worse. This applied to all three procedures. A
completely different picture emerged for the development of
the MAP for the unknown CT2-7 image series, however: as
can be seen in Figure 7, the MAP after clustering in latent
space gradually improved with increasing k. From k = 500
on, almost all runs provided an improvement to the baseline.

Finally, we wanted to examine the two methods kMC and
NG for the different runs in terms of the consistency of the
results. For this purpose we considered the the standard devi-
ation of normalized entropy: the larger the standard deviation,
the more diverse the solution spaces of the cluster method. In
Figure 8, we can clearly see that the solutions for NG were
more similar among each other for all k than for kMC.

IV. DISCUSSION

We have extended an established framework for segmenting
cells with the aim of further improving the generalization ca-
pability of the architecture. For this purpose, we clustered the
learned features of the latent space using unsupervised learning
processes. Using the cluster indices as classification pseudo-
labels, we retrained the encoder part of our segmentation CNN
and then evaluated how the performance changes for different
parameterizations.

The basic idea behind this has been that the learned features
might be optimal for describing the training data, but espe-
cially for strongly deviating data, there may also be alternative
features that are even better suited for generalization.

Following this idea, we expected to see a deterioration in
segmentation performance in the first scenario rather than
without vector quantization (VQ). However, it has been shown

Fig. 5: Result comparison. Input image (left), corresponding ground truth label (middle left), network output before cluster
training (middle right), network output after cluster training. Although only the network’s encoder is trained on classification
with pseudo-labels, the overall segmentation quality can be improved in many cases.

Fig. 6: Test error on the known cell types. For k = 5, the
effect of the clustering randomly fluctuates around the ground
truth (black dashed line). The NG solutions for k = 50 and
k = 100 as well as the GNG solution show a slight trend
towards improvement, although we would not have expected
this for this scenario.

Fig. 7: Test error on the unknown cell types. The cluster
solutions with k = 5 usually provide poor generalization
performance for the unknown cell types. For k ≥ 500, all
approaches led to a systematic improvement in the general-
ization capability of the network.

Fig. 8: Standard deviation of the normalized entropy. Com-
parison of the entropy variance based for the different cluster
approaches. For all configurations, NG shows much more
stable solutions (smaller variance) than kMC. The variance for
NG no longer decreases for k = 1000 compared to k = 500.

that, surprisingly, there can even be an improvement. For some
configurations (k = 50), we observed a trend towards a better
solution than before.

Interestingly, we could hardly see any difference between
k-means clustering (kMC) and Neural-Gas (NG). Because
NG behaves very robust and reproducible due to the initial
large softness (large neighborhood radius) and ends hard-
competitive in the late learning phases, the solution space of
the NG is a real subset of the k-means solutions.

Nevertheless, the variance did not differ significantly for all
k. This seems to indicate that the cluster centers are in stable
configurations and the internal degrees of freedom influence
the results. This also indicates that there might be only a few
”real” clusters (< k) in the training data. Within a single data
cluster, the codebook vectors are converging to a reproducible
configuration, but at the same time, they can rotate freely
within the given distribution. In such a scenario, this would
apply equally to both VQ methods, kMC and NG.

For the second data scenario, however, we expected that
there would be an improvement on the unknown cell images.
Indeed, for all tested VQ approaches (kMC, NG, and GNG)
our proposed method led to an increase of the MAP, thus
increasing the generalization capability of the network. This
result shows that clustering in latent space basically has
exactly the intended effect: the network has achieved better
generalization properties. Again, it was interesting to see that
some of the kMC runs actually even outperform NG (see
Figure 7). These differences can only be due to the fact that
there are small outliers at the kMC that can no longer be placed
in an optimal position. Such outliers could land - unknowingly
- at those positions where later a large number of test images
can land. Thus, a not-so-optimal configuration on the training
data for kMC might lead to a better representation on unknown
data that vary strongly from the given samples.

This assumption is also supported by the development of the
entropy distribution respectively its variance (see Figure 8).
Here, as expected, the NG is developing more robustly and
with less variance than kMC for all the configurations exam-
ined.

In summary, it can be said that clustering in the latent
space definitely has the potential to improve the generalization
capability of a deep network. However, our experiments do
not result in any clear recommendations regarding the three
methods examined. It is a well-known fact that NG delivers a
nearly optimal solution regarding the mean squared error on
the training data [42]. But it seems that generalization might
benefit from imperfect solutions. Therefore, an ensemble of
kMC solutions should be examined in future work whether the
latent space can possibly be better approximated by such an
approach. Due to its design, GNG ends with a large parameter
k and is therefore only comparable to a limited extent with
the other approaches.

We showed that deep clustering might be a viable approach
in the field of instance segmentation. Our proposed method al-
ready improved the generalization abilities on various biomed-
ical images, even though so far the decoder remained untrained
to the adapted features.

REFERENCES

[1] C. McQuin, A. Goodman, V. Chernyshev, L. Kamentsky, B. A. Cimini,
K. W. Karhohs et al., “Cellprofiler 3.0: Next-generation image process-
ing for biology,” PLoS biology, vol. 16, no. 7, 2018.

[2] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair,
T. Pietzsch et al., “Fiji: an open-source platform for biological-image
analysis,” Nature methods, vol. 9, no. 7, pp. 676–682, 2012.

[3] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen,
“Deep learning for cellular image analysis,” Nature methods, pp. 1–14,
2019.

[4] N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis
et al., “A multi-organ nucleus segmentation challenge,” IEEE transac-
tions on medical imaging, 2019.

[5] J. C. Caicedo, A. Goodman, K. W. Karhohs, B. A. Cimini, J. Ackerman,
M. Haghighi et al., “Nucleus segmentation across imaging experiments:
the 2018 data science bowl,” Nature methods, vol. 16, no. 12, pp. 1247–
1253, 2019.

[6] A. O. Vuola, S. U. Akram, and J. Kannala, “Mask-rcnn and u-net
ensembled for nuclei segmentation,” in 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 208–
212.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[8] H.-F. Tsai, J. Gajda, T. F. Sloan, A. Rares, and A. Q. Shen, “Usiigaci:
Instance-aware cell tracking in stain-free phase contrast microscopy
enabled by machine learning,” SoftwareX, vol. 9, pp. 230–237, 2019.

[9] J. W. Johnson, “Adapting mask-rcnn for automatic nucleus segmenta-
tion,” arXiv preprint arXiv:1805.00500, 2018.

[10] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y. W. Tsang, J. T.
Kwak et al., “Hover-net: Simultaneous segmentation and classification
of nuclei in multi-tissue histology images,” Medical Image Analysis,
vol. 58, p. 101563, 2019.

[11] R. Hollandi, A. Szkalisity, T. Toth, E. Tasnadi, C. Molnar, B. Mathe
et al., “A deep learning framework for nucleus segmentation using image
style transfer,” bioRxiv, p. 580605, 2019.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[13] S. Seferbekov. (2018) Kaggle data science bowl 2018 1st place
solution. [Online]. Available: https://www.kaggle.com/c/data-science-
bowl-2018/discussion/54741

[14] L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, “Suggestive
annotation: A deep active learning framework for biomedical image
segmentation,” in International conference on medical image computing
and computer-assisted intervention. Springer, 2017, pp. 399–407.

[15] O. J. Hénaff, A. Razavi, C. Doersch, S. Eslami, and A. v. d. Oord,
“Data-efficient image recognition with contrastive predictive coding,”
arXiv preprint arXiv:1905.09272, 2019.

[16] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A.
Raffel, “Mixmatch: A holistic approach to semi-supervised learning,” in
Advances in Neural Information Processing Systems, 2019, pp. 5050–
5060.

[17] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learn-
ing,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 2051–2060.

[18] M. Noroozi and P. Favaro, “Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,” in European Conference on Computer
Vision. Springer, 2016, pp. 69–84.

[19] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering
for unsupervised image classification and segmentation,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
9865–9874.

[20] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler et al., “Learning deep representations by mutual information
estimation and maximization,” arXiv preprint arXiv:1808.06670, 2018.

[21] V. R. de Sa, “Learning classification with unlabeled data,” in Advances
in neural information processing systems, 1994, pp. 112–119.

[22] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1422–1430.

[23] L. Zhang, G.-J. Qi, L. Wang, and J. Luo, “Aet vs. aed: Unsupervised
representation learning by auto-encoding transformations rather than
data,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2547–2555.

[24] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5879–5887.

[25] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Dis-
criminative unsupervised feature learning with convolutional neural
networks,” in Advances in neural information processing systems, 2014,
pp. 766–774.

[26] M. A. Bautista, A. Sanakoyeu, E. Tikhoncheva, and B. Ommer,
“Cliquecnn: Deep unsupervised exemplar learning,” in Advances in
Neural Information Processing Systems, 2016, pp. 3846–3854.

[27] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin, “Unsupervised pre-
training of image features on non-curated data,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 2959–
2968.

[28] O. Siméoni, M. Budnik, Y. Avrithis, and G. Gravier, “Rethinking deep
active learning: Using unlabeled data at model training,” arXiv preprint
arXiv:1911.08177, 2019.

[29] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
5147–5156.

[30] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning,
2016, pp. 478–487.

[31] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Label propagation for
deep semi-supervised learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 5070–5079.

[32] X. Cao, B.-C. Chen, and S.-N. Lim, “Unsupervised deep metric learning
via auxiliary rotation loss,” arXiv preprint arXiv:1911.07072, 2019.

[33] M. Larsson, E. Stenborg, C. Toft, L. Hammarstrand, T. Sattler, and
F. Kahl, “Fine-grained segmentation networks: Self-supervised segmen-
tation for improved long-term visual localization,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 31–41.

[34] T. Martinetz and K. Schulten, “A Neural-Gas Network Learns Topolo-
gies,” Artificial Neural Networks, vol. I, pp. 397–402, 1991.

[35] B. Fritzke, “A growing neural gas network learns topologies,” in Ad-
vances in neural information processing systems, 1995, pp. 625–632.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[37] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli et al., “Large
batch optimization for deep learning: Training bert in 76 minutes,” in
International Conference on Learning Representations, 2019.

[38] B. Mann. (2020) pytorch-lamb. [Online]. Available:
https://github.com/cybertronai/pytorch-lamb

[39] Y. Shevchuk, “Neupy: neural networks in python,” 2019.
[40] K. Booz Allen Hamilton. (2018) Kaggle data science bowl

2018. [Online]. Available: https://www.kaggle.com/c/data-science-bowl-
2018/overview/evaluation

[41] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[42] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, “’neural-gas’
network for vector quantization and its application to time-series predic-
tion,” IEEE transactions on neural networks, vol. 4, no. 4, pp. 558–569,
1993.

