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Abstract—Saliency maps have been used as one possibility to
interpret deep neural networks. This method estimates the rele-
vance of each pixel in the image classification, with higher values
representing pixels which contribute positively to classification.

The goal of this study is to understand how the complexity of
the network affects the interpretabilty of the saliency maps in
classification tasks. To achieve that, we investigate how changes
in the regularization affects the saliency maps produced, and
their fidelity to the overall classification process of the network.

The experimental setup consists in the calculation of the fidelity
of five saliency map methods that were compare, applying them
to models trained on the CIFAR-10 dataset, using different levels
of weight decay on some or all the layers.

Achieved results show that models with lower regularization
are statistically (significance of 5%) more interpretable than the
other models. Also, regularization applied only to the higher
convolutional layers or fully-connected layers produce saliency
maps with more fidelity.

Index Terms—Convolutional neural network, interpretability,
complexity, saliency map

I. INTRODUCTION

As neural networks grow in complexity [1] their capacity
to learn mappings from the input data to the classification
label increases. Explanations are provided to understand this
mapping and the predictions made by the network. Different
post-hoc explanations [2] have been proposed, from proto-
type explanations [3], to local approximations [4]. One of
the proposed explanations are called saliency maps, which
produce an estimation of each pixels’ relevance in the overall
prediction of the network for each input image. While small
relevance scores correspond to pixels which do not contribute
to the classification of the image, higher values correspond to
the pixels which contribute the most to the prediction. There
are many saliency maps methods [5]–[8] which give different
estimations of the relevance scores. In order to quantitatively
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evaluate if a given relevance score is suitable, we need to
assess if the method truly discriminates between relevant and
irrelevant pixels. Due to the non-existence of ground-truth
relevance scores, the quantitative evaluation of saliency maps
poses a demanding problem. Fidelity [9] is a concept which
determines how well a relevance score agrees with how the
model works. However, a direction that remains to be
explored is if it exists a relationship between the fidelity
of saliency maps and the complexity of the network.

With the increase of computational power and data available
to train deep neural networks we have seen a rapid increase
of network complexity resulting on a increase capacity to
describe the data. But, only increasing the capacity of the
networks results in the overfitting of the model to the training
data, resulting on a low test set performance. For this reason,
regularization approaches are used in order to decrease the
capacity of the network to fit the data and avoid overfitting.
Some of these methods, such as L2 regularization, reduce the
complexity of the network, limiting the values of the network
parameters. However, it is not yet understood what is the
impact that certain changes of the network parameters has
on the different saliency map methods and consequently
in its interpretation.

In order to address the two open research problems previ-
ously identified, the goal of this work consists on finding the
relationship between the complexity of the network and the
quality of its explanations.

In order to achieve that, we will try to answer the following
questions:

• How does the regularization of the deep neural network
affect the quality of saliency maps?

• Does the layer regularized affect the interpretability of
the network? And if it does, how should one choose
to regularize the network in order to obtain greater
interpretability?

In this work, we measured the interpretability of different
convolutional neural networks (CNNs) trained on CIFAR-10
dataset [10] with different L2 regularization values (0, 0.0001,
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0.001, 0.005, 0.01, 0.05). We compared the quality of saliency
maps produced by five different saliency map methods. The
methods chosen were gradient [5], DeConvNet [6], Guided
Backpropagation [5], Deep Taylor Decomposition [8] and
Layer-wise Relevance Propagation [7] and are described in
the following section. In order to answer the second research
question we also applied regularization on different layers and
measure its impact on interpretability.

Results of the experiments show that regularization does
affect the quality of saliency maps, as models trained with
lower regularization show higher interpretability than models
trained with high regularization. Also, based on results from
experiments performed with different regularization values
based on layers, it was possible to conclude that regularization
applied only to the higher convolutional layers or fully-
connected layers produce saliency maps with more fidelity.

To the best of the authors’ knowledge there isn’t any study
which investigates the relationship between the complexity and
the interpretability of a neural network.

The paper is organised as follows: first, Section II introduces
important concepts such as capacity and complexity, as well
as related work on saliency maps methods and metrics. Then,
Section III describes the experiments, including the data,
models and metrics used. Section IV presents and discusses
the experimental results. Finally, Section V summarizes con-
clusions of the paper as well as promising research directions.

II. BACKGROUND KNOWLEDGE

The capacity of a model can be seen as its ability to fit a
wide variety of functions [11] and it has an impact in whether
it underfits or overfits the data. When a model underfits the
data, it is unable to reduce the training set error, while when
it overfits the data, it is able to reduce the training set error
but not the test set error. By increasing the model’s capacity,
the model is able also to memorizing properties of the training
data that do not serve to the test data.

The capacity of the deep neural network can be controlled
by varying their depth and breadth [1]. The complexity of the
network, which can be measured in different ways from its
depth to the number of connections, is related to the capacity
of the network to learn from the data. The question now
becomes, what is the relationship between the complexity of
the network and the quality of its explanations.

The problem which was here presented involve three aspects
which will be described in this section, that includes the
regularization of the network, the saliency map methods and
the interpretability metrics.

A. Regularization

Regularization is a modification to a learning algorithm
intended to reduce its generalization error [11]. Many reg-
ularization approaches limit the capacity of models, and its
complexity, by adding a parameter norm penalty.

a) L2 Regularization: commonly known as weight de-
cay, it’s a regularization strategy that drives the weights closer
to zero, by adding a regularization term to the objective
function:

Ω(θ) =
1

2
‖w‖22 (1)

Components of the weight vector corresponding to direc-
tions that do not contribute to reducing the objective func-
tion are decayed away through the use of the regularization
throughout training [11].

b) Early Stopping: When training models with sufficient
capacity to overfit the task, it is common to see that after
constant decrease in the training error and validation error,
the validation error often starts to rise. Early stopping works
by keeping a copy of the model parameters every time the
validation error improves, in order to return the setting when
the validation error was the lowest.

B. Saliency Map Methods

In our formal description, an input corresponds to an image
and is represented by a tensor x ∈ Rd. A model describes a
function f : Rd −→ Rc, which maps the d-dimensional images
to a prediction vector where c corresponds to the number of
classes of the classification problem.

Below, the explanation methods which produce saliency
maps and which were used in this work, will be briefly
described.

a) Gradient: The gradient quantifies how much a change
in each feature would a change the predictions f(x) in a small
neighborhood around the input [5].

Grad(x) =
∂f(x)

∂x
(2)

b) DeConvNet: The DeConvNet associates the archi-
tecture of the model, with a corresponding architecture that
reverses the computations and produces an image as the
output [6]. To do this, each layer is associated with a cor-
responding layer that reverses the computation.

c) Guided Backpropagation: a combination of the pre-
vious two methods, guided backpropagation prevents the
backward flow of negative gradients, corresponding to the
neurons which decrease the activation of the units we are
inspecting [5]. Negative gradient are set to zero while back-
propagating.

d) Deep Taylor Decomposition: DTD is obtained by
propagating the model output through the network using
redistribution rules, until the input features are reached [8].
The propagation rules are derived from a Taylor decomposition
performed at each unit of the network.

e) Layer-wise Relevance Propagation: similar to DTD,
LRP is obtained by propagating the model output though the
network using redistribution rules [7]. LRP find its mathemat-
ical foundations in Deep Taylor Decomposition [8]. The re-
distribution rules proportional decompose the relevance score
of upper layers to obtain lower layer relevance scores, based
on the forward mappings between layers.



C. Interpretability Metrics

Although a large number of saliency map methods have
been proposed, relatively few metrics to evaluate their fidelity
have been proposed. Fidelity is a concept that should capture
how well the relevance given to each pixel represents the pro-
cess of the model. We will now describe two interpretability
metrics that can be considered a proxy for fidelity and evaluate
the quality of the saliency maps.

Confidence drop tracks the decrease of confidence in the
model’s classification when removing a percentage of the most
relevant pixels given by a saliency map. If the saliency maps
present a high fidelity to the model, the confidence should
drop faster than when the fidelity is low.

Drop(k) = f(x(0))− f(x(k)) (3)

In Equation 3 we can see that the confidence drop corre-
sponds to the difference in confidence when perturbating the
k higher relevant pixels.

Another interpretability metric is called Area Over the
Perturbation Curve (AOPC) [9]. The AOPC tracks the decrease
of confidence in the model’s classification when iteratively
removing the most relevant pixels given by a saliency map.

The AOPC equation is described in the following equation:

AOPC =
1

L+ 1
〈

L∑
k=1

f(x(0))− f(x(k))〉 (4)

In Equation 4, L is the number of pixel perturbation steps,
f(x) is the output value of the classifier for input image x
(i.e. the confidence assigned to the class), x(0) is the original
image and x(k) is the image after k perturbations.

III. EXPERIMENTS

A. Dataset and Models

Experiments were performed on the CIFAR-10 dataset [10]
as it is a well-known image classification dataset with suitable
complexity. A description of the dataset is present in Table I.

TABLE I
DESCRIPTION OF THE DATASET USED IN THE STUDY

name samples classes width height channels
CIFAR10 60000 10 32 32 3

In this experiments, a standard convolutional neural network
(CNN) containing three convolutional blocks and two fully-
connected layers, was used. Each convolutional block is com-
posed by two convolutional layers followed by a max-pooling
layer. The classification is done using a softmax layer after the
fully-connected layers. A figure representing the architecture
of the network is presented in Figure 1.

The training set and test set were combined and 10-fold
cross-validation was used to train and evaluate the model.
During the training of the model, different levels of L2 weigh
decay were used (0, 0.0001, 0.001, 0.005, 0.01, 0.05) as well
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Fig. 1. Architecture of the neural network.

early stopping to prevent overfitting, stopping training after
10 epochs of no improvement in the loss function. In order to
understand the changes in interpretability that were caused by
changing the complexity in different layers of the network, we
separated regularization in different group of layers. B1, B2
and B3 corresponds to regularization on the first, second or
third convolutional block respectably; D1 and D2 correspond
to regularization on the first or second fully-connected layer.
Finally, B corresponds to regularization on all convolutional
blocks, D corresponds to regularization on all fully-connected
layers and A corresponds to regularization on all layers of the
network. In order to evaluate the interpretability of a model,
we take the test samples and the trained classifier, and apply
the saliency map method to the samples, resulting in saliency
maps which are used to calculate the interpretability metric.
These concepts are visually illustrate in Figure 2.

B. Saliency Map Methods

In this experiments, five different saliency map methods
were compared. The criteria for choosing these methods was
based on their proven applicability in the literature as well
as its properties. The methods chosen were gradient [5],
DeConvNet [6], Guided Backpropagation [5], Deep Taylor
Decomposition [8] and Layer-wise Relevance Propagation [7].
Some methods only estimate positive relevance while other
methods estimate positive and negative relevance. For exam-
ple, Guided Backpropagation and Deep Taylor Decomposition,
produce only positive relevance. The implementation of the
explanation methods was done using the iNNvestigate Toolbox
v1.0.8 [12].

C. Saliency Metrics

We use two different perturbations, one by deleting the
most relevant pixels given the relevance score provided by
the saliency map, and the other by deleting a random pixel. In
random perturbation method, the value is a gray-scale value
sampled from a uniform distribution in the case of gray-scale
images, and RGB value in the case of colored images. This
approach attempts to destroy the information contained in the
pixel.

To measure the confidence drop caused by the perturbation,
we have segmented different percentages of most relevant
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Fig. 2. Architecture of experimental setup.

pixels. We have chosen to group the pixels in the 5%, 10%,
20%, 30%, 40%, 50% and 75% most relevant pixels.

In order to calculate the AOPC metric we used perturbation
steps corresponding to 10% of the dataset.

IV. RESULTS

In this study, two experiments were conducted. In the
first, regularization was applied in all layers of the network
(convolutional and fully-connected). In the second experiment
we separated regularization by different groups of layers:
regularization on only one layer or block of layers (B1, B2,
B3, D1, D2) and regularization applied to multiple blocks of
layers (B, D, A).

A. How does the regularization of the deep neural network
affect the quality of saliency maps?

The first experiment measures the interpretability of models
regularized in all layers with different L2 weight decay values.

The Table II is composed by the saliency map methods (first
column), and the weight decay values (first row). The values of
the table represent the mean AOPC value for the 10 folds. The
highest interpretability values for each method are highlighted
in bold.

The results in Table II show that the methods that display
highest values of interpretability and that produce saliency
maps with more fidelity to the model’s decision are the LRP
and Gradient methods.

The results in Table II show a substantial difference between
interpretability and saliency map methods. In general, the
quality of such methods is higher when the network is trained
with smaller regularization values, although the exact value is
not consistent between methods.

In order to assess the statistical significance of the inter-
pretability metric AOPC when the regularization values in
all layers is changed, the Friedman’s test was applied with
a significance level of 5%. We considered the different weight
decays as well as the different saliency map methods. It was
determined that the regularization does have an statistical sig-
nificance on the interpretability metric. Statistical significance
were detected between the lower regularization values (0,
0.0001, and sometimes 0.001) and the higher regularization
values (0.01 and 0.05) consistently in all methods.

The same statistical significance tests were also conducted
with the experiments using random perturbation which found
no statistical difference between neither of the regularization
values in all saliency methods.

B. How does the layer regularized affect the interpretability
of the network?

Another question we had was to learn what layers regu-
larization is more appropriate in order to produce the saliency
maps with better fidelity to the model. To answer this question
we run an experiment training CNN’s with regularization only
on specific layers and we extracted the saliency maps in order
to measure their fidelity using the AOPC metric.

Fig. 3. Accuracy of the different models based on layer and weight decay of
regularization.

In Figure 3 its possible to see the accuracy of the different
models based on the layer which was regularized with the
specified weight decay values. The models which were regu-
larized in all layers have lower performance than the other
models, especially with higher regularization values. From
Figure 3 we can see that there is a performance benefit to
use regularization on only some layers, and not in all of them.



TABLE II
RESULTS COMPARING INTERPRETABILITY (AOPC) OF SALIENCY MAP METHODS ON MODELS WITH DIFFERENT REGULARIZATION VALUES.

L2 weight decay
Method 0 0.0001 0.001 0.005 0.01 0.05

DeConvNet 0.314 0.293 0.253 0.232 0.134 9.3E-12
Deep Taylor 0.218 0.230 0.229 0.201 0.114 9.3E-12

Gradient 0.419 0.413 0.417 0.356 0.226 9.3E-12
Guided Backprop 0.269 0.281 0.263 0.224 0.132 9.3E-12

LRP 0.423 0.421 0.427 0.362 0.231 9.3E-12

TABLE III
RESULTS USING THE DECONVNET METHOD. THE FIRST COLUMN CORRESPONDS TO THE LAYER REGULARIZED, AND THE FIRST ROW THE L2 WEIGHT

DECAY. THE VALUES REPRESENT THE MEAN AOPC, AND THE HIGHEST VALUES FOR EACH REGULARIZATION VALUE ARE HIGHLIGHTED IN BOLD.

L2 weight decay
Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.3142 0.3082 0.3004 0.2810 0.2772 0.2292
B2 0.3142 0.3368 0.3065 0.2882 0.2651 0.2328
B3 0.3142 0.3107 0.3135 0.3037 0.2710 0.3228
B 0.3142 0.2878 0.2651 0.2451 0.2603 0.1600

D1 0.3142 0.3253 0.3265 0.3298 0.3425 0.3666
D2 0.3142 0.3247 0.3238 0.3197 0.3249 0.3155
D 0.3142 0.3262 0.3344 0.3298 0.3395 0.3503
A 0.3142 0.2934 0.2526 0.2316 0.1343 0.0000

TABLE IV
RESULTS USING THE DEEP TAYLOR METHOD. THE FIRST COLUMN CORRESPONDS TO THE LAYER REGULARIZED, AND THE FIRST ROW THE L2 WEIGHT

DECAY. THE VALUES REPRESENT THE MEAN AOPC, AND THE HIGHEST VALUES FOR EACH REGULARIZATION VALUE ARE HIGHLIGHTED IN BOLD.

L2 weight decay
Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.2183 0.2216 0.2252 0.2274 0.2211 0.2188
B2 0.2183 0.2283 0.2232 0.2226 0.2224 0.1988
B3 0.2183 0.2368 0.2310 0.2323 0.2245 0.2416
B 0.2183 0.2269 0.2312 0.2326 0.2236 0.1453

D1 0.2183 0.2279 0.2465 0.2427 0.2499 0.2526
D2 0.2183 0.2267 0.2302 0.2405 0.2235 0.2354
D 0.2183 0.2250 0.2348 0.2452 0.2473 0.2516
A 0.2183 0.2301 0.2292 0.2014 0.1138 0.0000

TABLE V
RESULTS USING THE GRADIENT METHOD. THE FIRST COLUMN CORRESPONDS TO THE LAYER REGULARIZED, AND THE FIRST ROW THE L2 WEIGHT
DECAY. THE VALUES REPRESENT THE MEAN AOPC, AND THE HIGHEST VALUES FOR EACH REGULARIZATION VALUE ARE HIGHLIGHTED IN BOLD.

L2 weight decay
Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.4192 0.4212 0.4249 0.4167 0.4145 0.4153
B2 0.4192 0.4242 0.4244 0.4101 0.4153 0.3898
B3 0.4192 0.4301 0.4252 0.4295 0.4230 0.4279
B 0.4192 0.4279 0.4272 0.4149 0.3963 0.2309

D1 0.4192 0.4227 0.4252 0.4287 0.4226 0.4358
D2 0.4192 0.4181 0.4291 0.4303 0.4273 0.4341
D 0.4192 0.4211 0.4248 0.4289 0.4266 0.4201
A 0.4192 0.4127 0.4174 0.3564 0.2260 0.0000

In Tables III- VII is visible that, for each saliency map
method, the interpretability metric based on the L2 weight
decay used to regularize the specific layer of the model.

Regarding the results presented, we can see that inter-
pretability appears to be higher with lower regularization
values. Additionally, interpretability appears to be higher when
regularization happens in higher convolutional layers or in
fully-connected layers.

The methods that display highest values of interpretability
and that produce saliency maps with more fidelity to the

model’s decision are the LRP and Gradient methods.
Following further analysis to these results, we can plot the

number of times that regularization in a specific layer has
produced the best interpretability values for each method. This
plot is presented in Figure 4, and as we can see, it once
again shows that regularization is more effective in higher
convolutional layers or in fully-connected layers.



TABLE VI
RESULTS USING THE GUIDED BACKPROP METHOD. THE FIRST COLUMN CORRESPONDS TO THE LAYER REGULARIZED, AND THE FIRST ROW THE L2

WEIGHT DECAY. THE VALUES REPRESENT THE MEAN AOPC, AND THE HIGHEST VALUES FOR EACH REGULARIZATION VALUE ARE HIGHLIGHTED IN
BOLD.

L2 weight decay
Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.2690 0.2722 0.2720 0.2698 0.2563 0.2454
B2 0.2690 0.2884 0.2696 0.2700 0.2561 0.2312
B3 0.2690 0.2860 0.2844 0.2825 0.2615 0.2881
B 0.2690 0.2777 0.2723 0.2611 0.2678 0.1629

D1 0.2690 0.2867 0.2852 0.2912 0.2903 0.2993
D2 0.2690 0.2792 0.2716 0.2922 0.2878 0.2755
D 0.2690 0.2788 0.2919 0.2867 0.2951 0.3022
A 0.2690 0.2813 0.2630 0.2243 0.1324 0.0000

TABLE VII
RESULTS USING THE LRP METHOD. THE FIRST COLUMN CORRESPONDS TO THE LAYER REGULARIZED, AND THE FIRST ROW THE L2 WEIGHT DECAY.

THE VALUES REPRESENT THE MEAN AOPC, AND THE HIGHEST VALUES FOR EACH REGULARIZATION VALUE ARE HIGHLIGHTED IN BOLD.

L2 weight decay
Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.4226 0.4274 0.4304 0.4202 0.4203 0.4196
B2 0.4226 0.4295 0.4289 0.4154 0.4184 0.3947
B3 0.4226 0.4340 0.4284 0.4344 0.4256 0.4302
B 0.4226 0.4309 0.4312 0.4206 0.4055 0.2336

D1 0.4226 0.4282 0.4278 0.4351 0.4288 0.4439
D2 0.4226 0.4227 0.4333 0.4337 0.4351 0.4387
D 0.4226 0.4273 0.4301 0.4334 0.4317 0.4281
A 0.4226 0.4211 0.4265 0.3622 0.2313 0.0000

Fig. 4. Plot showing the number of times the regularization in a layer
produced the best interpretability value for each method.

V. CONCLUSIONS

In this work we studied the relationship between regu-
larization and interpretability in a CNN context. From the
results obtained with the experimental data, the following main
conclusions may be derived:

• The quality of saliency maps is higher when the network
is trained with smaller regularization values;

• LRP and Gradient produce saliency maps with higher
fidelity to the model’s decision;

• Overall, in order to obtain higher interpretability, regu-

larization should be applied on later convolutional layers
or in fully-connected layers;

• Models in which all layers were regularized display lower
interpretability than models in which only the fully-
connected layers were regularized.

To the best of the authors’ knowledge this was the first study
in this context.

In the future, new experiments will be conducted to test
other mechanisms of regularization such as dropout, as well
as extend our work to other datasets. We will also compare
the saliency maps produced by the different methods in order
to understand different in their distributions.
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