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Abstract—Driver monitoring can play an essential part in
avoiding accidents by warning the driver and shifting the driver’s
attention to the traffic scenery in time during critical situations.
This may apply for the different levels of automated driving,
for take-over requests as well as for driving in manual mode. A
great proxy for this purpose has always been the driver’s gazing
direction. The aim of this work is to introduce a robust gaze
detection system. In this regard, we make several contributions
that are novel in the area of gaze detection systems. In particular,
we propose a deep learning approach to predict gaze regions,
which is based on informative features such as eye landmarks
and head pose angles of the driver. Moreover, we introduce
different post-processing techniques that improve the accuracy by
exploiting temporal information from videos and the availability
of other vehicle signals. Last but not least, we confirm our method
with a leave-one-driver-out cross-validation. Unlike previous
studies, we do not use gazes to predict maneuver changes,
but we consider the human-computer-interaction aspect and use
vehicle signals to improve the performance of the estimation.
The proposed system is able to achieve an accuracy of 92.3%
outperforming earlier landmark-based gaze estimators.

Index Terms—Driver Monitoring, Driver Gaze Estimation,
Driver State Recognition, Driver distraction, Autonomous
Driving, Naturalistic Driving Study

I. INTRODUCTION

Automated driving has a great potential for not only
preventing accidents, but also giving the driver the possibility
to choose whether to drive by oneself or by the vehicle. For
this purpose, driver monitoring is needed. As the National
Highway Traffic Safety Administration states, accident risk
correlates with the driver’s visual attention. 80% of all crashes
and 65% of all near-crashes included the driver looking away
from the street [1]. Therefore, driver monitoring incorporated
into current advanced driver assistant systems (ADAS) can
potentially warn the driver in critical situations by shifting the
driver’s visual focus towards the actual driving task. Hence,
foreseeing that the driver is not aware of an approaching
risk may allow new ADAS for even more possibilities. The
efficiency of such systems is also confirmed in a study by the
Boston Consulting Group which revealed that current ADAS
functions have the potential to avoid 30% of all crashes [2].

With recent developments in computer vision, research has
progressed in presenting driver gaze estimators. While much
research relied on using the head pose as a proxy for gazes,

a lot of studies used Convolutional Neural Networks (CNNs)
to directly map a gaze region to an inserted image. For this
purpose a lot of training, computational power and a broad
dataset are needed to learn all the important features from
an image. Also, when conducting further research on other
visual aspects such as talking or fatigue, new models have to
be trained again.

Another aspect regarding the power of the proposed system
lies in the number of participants in the study. Often only a
small number of persons appear in the training dataset and
data are collected within a short period of test time, e.g. one
hour drives. Hence, cross-driver-testing becomes important for
generalisability. But how much can we trust a system that
e.g. was trained on 6 people and worked well on 3 others?
Does another train-test split yield different results? These
questions are typically not answered by cross-driver-testing
but by cross-validation, a statistical tool for model validation
and generalisability.

In this work, we circumvent the aforementioned
disadvantages by making use of a feature-based approach. We
extract eye landmarks and head pose angles of the driver in
order to train a neural network that outputs the gaze region.
To analyze the effectiveness of our system we perform a
leave-one-driver-out cross-validation for every driver. Also,
we do not just evaluate our model on a set of images, but also
on videos of new drivers and take advantage of the underlying
temporal information as well as the available vehicle signals.
Data were taken from a naturalistic driving study and cover
over 20 drivers from 80 different video sequences.

The main contributions of this work are: (1) A driver
gaze detection system based on deep learning, using inputs
from head pose angles and landmarks, which performs better
than previous landmark-based detection systems and competes
with current CNN-based approaches, (2) a leave-one-driver-
out cross-validation of the system displaying its power for
generalisability, and (3) several post-processing techniques
that improve the accuracy of the system by taking temporal
dependency into account, as well as vehicle signals that
indicate where the driver is looking at. To the best of our
knowledge, previous studies have not successfully examined
their systems with cross-validation, nor have they examined
the power of vehicle signals to enhance the proposed system.
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TABLE I
OVERVIEW OF RELEVANT STUDIES AND METHODS

Authors Type* Input Classifiers Dataset
(Drivers) RoIs Best Result Remarks

Choi et al. (2016)
[3] A Face modified AlexNet 35,900

(4) 8 95.0% no cross-driver testing

Fridman et al. (2016)
[4] F Facial Landmarks

Geometrical Approach
Random Forest
SVM

1,351,864
(40) 6 94.6% only confident estimates

(7.1% of all images)

Naqvi et al. (2018)
[5] A Face, both eyes VGGface

Score fusion
6,518
(20) 16 96.3% neighbouring regions included

to count into accuracy

Vora et al. (2018)
[6] A

Face
Face and context
Upper half of face
Whole image

AlexNet
VGG16
SqueezeNet
ResNet

47,515
(11) 7 95.2 %

included class eyes closed
cross-driver-testing
no cross-validation

*where A = Appearance-based model. F = Feature-based model.

The paper is organized as follows. Section 2 summarizes the
results from studies related to this work. Section 3 describes
the dataset that is used, and Section 4 introduces the gaze
detection system with all its elements. Section 5 gives an
overview of the results and Section 6 discusses the detection
system. Section 7 concludes the paper with a summary and an
outlook on future research.

II. RELATED WORK

In the past a high number of studies was conducted to
develop accurate gaze classification systems from images
and videos. Experiments were either conducted in driving
simulators [7], [8] or in a real-world environment [9]. Eye-
tracking glasses were used as well [10].
However, in order to develop a robust and reliable system,
data from naturalistic driving studies are needed. Over the past
few years two different vision-based approaches have evolved
for gaze classification, which are shortly discussed here: there
are appearance-based and feature-based approaches. A more
detailed overview is given in [11].
Appearance-based models make use of image intensities and
usually feed an image directly into classifier, which is a
Convolutional Neural Network (CNN). Its output is then
gaze region. Popular classifiers are VGG16 or ResNet. Even
though they also work with lower resolutions, appearance-
based models require a lot of training data with a larger
number of subjects. The trained system can then only be
applied on faces from the same camera angle. Also, one cannot
fully control from what the classifier is learning exactly.
In feature-based approaches certain features are derived in a
pre-processing step, either through appearance-based models
such as facial landmarks or through geometrical approaches
where geometrical properties of the eyes are exploited. These
features are then summarized into a feature vector and fed into
a classifier (e.g. Support Vector Machines).
The most promising studies and results were mostly derived
from appearance-based approaches. An overview is given in
Table I.

A. Relevant Studies

The first appearance-based gaze classification system was
introduced by Choi et al. in 2016 [3]. They used a modified
AlexNet and achieved an accuracy of 95 %. The highest error
rate was found in the classes inner mirror with front. When
looking into the inner mirror without moving the head the
classifier fails as the small eyes of the drivers make it difficult
to distinguish properly between these two classes. The camera
was attached to the front windshield in front of the driver.

In 2018, Vora et al. [6] compared different CNNs and
different kinds of input images to these CNNs. They used
ResNet, VGG16, AlexNet and SqueezNet architectures with
the pre-trained weights from ImageNet [12]. As inputs they
either used the upper part of the face, the whole face, the
whole face with more background information and the whole
image containing the driver face. The study covered 47,515
test images from 11 drivers driving 30 to 60 minutes. The
best result for all CNN architectures was achieved using the
upper half of the face. The camera was attached behind the
rearview mirror.

Naqvi et al. [5] considered a total number of 17 regions
of interest (RoIs) instead of the usual 6 to 9 different
RoIs. The authors used three VGG16-face CNNs, which they
simultaneously applied to both eyes and to the whole face.
They used a score-level fusion from all these three CNNs in
order to predict the right RoI. Their gaze classifier achieved an
accuracy of 96.3%. However, they summarized neighbouring
regions together for that. A model-based approach was
introduced as well, but its accuracy was slightly lower. The
camera was mounted near the speedometer in front of the
driver.

Fridman et al. [4] compared a head pose estimator to
a gaze classifier. They also extracted information from the
pupil and the iris geometrically and fed those features into
a random forest classifier. They reported both, a general
model and a leave-one-driver-out cross-validation. For the
cross-validation they achieved an accuracy of 65.0%. After
taking only confident estimations into account they reached an
accuracy of 94.6% which corresponds to 2.1 frames instead
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Fig. 1. Example images from the dataset with the same driver in different
vehicles. The two left images show the same gaze region, but from different
head poses. Images c), d) and e) show that for the same driver different initial
head poses are making calibration necessary.

of 30 frames per second. Their camera was attached to the
dashboard of the vehicle in a little off-axis position.

Other feature-based approaches have been used earlier, but
the quality of the extracted features was rather poor as both
head poses and pupils were roughly estimated from a few
landmarks [13]. Before, it was also common to derive gaze
region from the head pose [8], [14] [15]. However, results
have shown that especially when the driver was only looking
from the corners of the eyes instead of turning the head,
classification accuracy was decreasing, i.e. for the center stack
region and the inner mirror region the accuracies were lower.
Only the authors in [4] directly address this complexity in their
work. Example images are given in Fig. 1 a-c).
Cross-driver testing has been applied just recently. Drivers
in the training set must not appear in the testing set, which
occurred in [3]. Both the authors in [6] and [5] also applied
the method from [3] onto their datasets with less success.
The authors from [5] and [6] used both cross-driver testing.
However, only the authors in [4] also applied a leave-one-
driver-out cross-validation to their dataset fully unveiling that
their results do not stem from a random choice of drivers in
the training and test set.

III. DATASET
The dataset considered in this work was collected within

a naturalistic driving study. Subjects were driving in sensor-
equipped vehicles for several months with current ADAS. By
doing so, naturalistic driving is guaranteed.
An RGB-camera was attached to the A-pillar recording the
driver in an off-axis position. Fig. 1 shows example images
from the dataset. There are two datasets, one for training the
classifier and another one for validating the post-processing
techniques. In total, there were 75 video snippets from 20
subjects (5 female, 15 males) in the training dataset and 5
more video snippets with 5 other subjects (3 female, 2 male)
in the second dataset. All subjects were aged between 18 and
60 years. Driver videos were of size 980 × 540 with 15 frames
per second. The videos displayed snippets from cruises on the
highway and on the country road with the car always moving.
The drivers did not wear any glasses.

A. Annotation
Annotation was performed by two annotators. The first

annotator labelled the videos while the second annotator
controlled the labelled images per class and checked for
outliers.

Fig. 2. The approximate regions of interest considered in the present study:
front, left mirror, left shoulder, right mirror, right shoulder, center console
and speedometer.

TABLE II
OVERVIEW OF CLASS DISTRIBUTION IN THE TRAINING DATA SET

front lm im cc sp rm ls rs

Set 1 2,296 967 713 332 228 356 98 72
in % 45.4 19.1 14.0 6.5 4.5 7.0 1.9 1.4

weight 1 1 2 3 2 2 2 2

Set 2 5,870 253 138 2,758 796 120 66 5
in % 58.69 2.52 1.37 27.57 7.96 11.9 0.65 0.005

B. Regions of Interest

Similarly to previous studies, we consider the following
eight gazes regions that we also refer to as gazes, RoIs or
classes: front, left mirror (lm), left shoulder (ls), right mirror
(rm), right shoulder (rs), center console (cc) and speedometer
(sp). The RoIs are depicted in Fig. 2. While [6] and [4]
summarized the gazes to the outside as left and right we stick
to the above classes. After training they can be aggregated.
The distribution of all classes is shown in Table II under Set
1 (for training) and Set 2 (for validation). In total, there are
15,068 images. Since the driver spends most time looking into
the front direction [15], attention was payed to not label all
gazes from the front class.

IV. METHOD

In order to evaluate videos, we train a classifier and later
use vehicle signals and the underlying temporal information
to improve the accuracy of the system.
The pipeline for the classifier is presented in Fig. 3. It consists
of the following parts: a) face detection, b) estimation of
head pose angles, c) estimation of facial and eye landmarks,
d) calculation of confidence values and e) the network
architecture. Afterwards, different post-processing techniques
are applied. At first, a face detector is used for all images. We
use the Single Shot MultiBox Detector introduced by [16] in
2016. All other steps are explained in the following parts.

A. Head Pose Angles and Calibration

Euler angles are used to describe the rotations of the head
in a 3-dimensional coordinate system. In the head coordinate
system as depicted in Fig. 4 (left), the rotation around the x-
axis is called pitch (i.e. from up to down), around the y-axis
yaw (i.e. from left to right), and around the z-axis roll (i.e.
from left to right shoulder). We use the method described in
[17] in which for a cropped face angles are returned as output.
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Fig. 4. Left: The head pose angles are displayed. Right: For an RGB-
image (top) the eye landmarks are computed. After rotation and normalisation
(bottom), the black landmarks are the same for all instances and left out in
the input feature vector.

As one notices in Fig. 1 c), d) and e), all drivers are looking
to the front direction. However, the position of the driver
towards the camera is slightly different. This difference can
even become larger for different drivers and different seating
positions. Therefore, a calibration is needed first. The most
occurring head pose angles from all head pose angles in a
video is computed, as this typically belongs to the every
driver’s initial pose. For our classifier, we only use the yaw
and pitch values. From the initial angles αyaw, αpitch, we
compute the calibration shift αcalib

yaw , αcalib
pitch per angle by finding

the angles that allocate most of the mass in the interval of
[15◦±10◦] and subtract them from all the other angles. By
dividing by 90◦, the newly obtained angles α̃yaw, α̃pitch are in
[−1,1]. Larger values may occur, however, the face detector
usually fails in finding a face for such extreme positions.

B. Facial and Eye Landmarks

Both facial and eye landmarks are used. The facial landmark
method from [18] is a CNN-based classifier that outputs 68
coordinates for a given face. In total, there are 7 coordinates
per eye. As this number is too small, we use these landmarks
to detect a bounding box for the eye regions and feed this box
again into a new detection system [19]. This detector outputs
8 landmarks for the eyelid, 8 landmarks on the iris edge, one
landmark for the iris center and another one for the eyeball
center. We use all of them except for the eyeball center as input
features for the classifier. During pre-processing, landmarks
are centered at the inner eye corner, both x and y-coordinates
of the landmarks are normalized by the eye width and rotated
such that both eye corners are aligned horizontally to the x-
axis. Then, the landmarks from the corners of the eye are

removed as they are the same for all input. The landmarks
before and after rotation are shown in Fig. 4. In total we use
15 landmarks, i.e. 30 coordinates per eye as an input to the
classifier.

C. Confidence Metric and Neural Network

Due to the off-axis position in the setup, parts of the driver’s
face become occluded while turning to the right side. However,
the landmarks for the occluded eye are still computed. In order
to circumvent training with these wrong values, we introduce
a confidence metric into the model, which depends on the yaw
angle αyaw. The confidences νle f t and νright for the left and
the right eye are defined as follows:

νle f t =

{
max(0,1− s1α2

yaw) if αyaw ≥ 0
max(0,1− s2α2

yaw) if αyaw < 0
, (1)

νright =

{
max(0,1− s1α2

yaw) if αyaw < 0
max(0,1− s2α2

yaw) if αyaw ≥ 0
. (2)

For our calculations we choose s1 = 0.2 and s1 = 0.8.
All inputs, i.e. the eye landmarks, the head pose angles

and the confidence metrics, are fed into the neural network
architecture. The left eye, the right eye and the head pose
angles are processed separately in two fully-connected layers
with a Sigmoid activation function. Then the intermediate
outputs of both eyes are multiplied with the corresponding yaw
confidence parameters νle f t and νright . All processed features
from eyes and head pose are stacked into one vector and fed
into two more fully-connected layers followed by the softmax
activation function that produces a vector with probabilities
for each class. In Fig. 5 the described architecture is shown.

As the classes are heavily imbalanced, we choose a
weighted cross-entropy loss function L with the weights wi
for the class i ∈ {1, ...,8} as follows:

L (W) =−wi logyi(x,W)

where yi(x,W) is the i-th output of the softmax-layer, W
specifies the weights of the neural network [20]. The weights
wi which yielded the best results are displayed in Table II.

D. Post-processing Method

In order to test the classifier not just on images but videos,
two post-processing tools are introduced, which make use of
the temporal information and the vehicle signals. For a video
consisting of m frames, we obtain an (8×m)-matrix from the
output probabilities of the classifier.

Signal Filter: As vehicle signals are also available, we are
interested in using these in order to improve the accuracies of
the system. Signals related to the left or right side might be
related to the blinkers. Signals correlated with the gaze center
console are signals from the center stack region.
We assume that the driver is looking into that direction a few
moments before and a few moments after. Let us assume signal
s correlates with a gaze region. Let signal s ∈ {0,0.5,1} be
discrete. Then we define a kernel of size k that is a linearly
spaced symmetric vector, and its samples are evenly drawn
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Fig. 5. The classifier used in the detection system is a fully connected neural
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and the head pose angles. The output from the eye networks is multiplied
with the corresponding confidence metric. The number of neurons per layer
is given in parentheses.

from the interval [0.1, . . . ,1]. We multiply this kernel with
the signals available in [s1, . . . ,sk] and obtain another vector
with values in [0,1]. This vector can then be applied on the
probabilities of the corresponding time window.

Moving Average Filter: For the Moving Average (MA)
filter, we consider a window of size 2n+1. For a given frame,
we take a look at the n frames before and after that frame.
The algorithm then finds the most represented class within this
window and labels the frame in the middle with this class. If
it comes to a situation that two or more classes have the same
amount of labels inside the sliding window, the algorithm uses
probabilities to break a tie. It sums up probabilities inside the
window for each most represented class. Then, the class with
the largest sum of probabilities is assigned to the frame in the
middle of the window. Other filter models such as the Hidden-
Markov-Model or the Viterbi method were considered as well,
but the best results were achieved with the aforementioned
filters.

V. RESULTS

A. Cross-Validation

As mentioned before, cross-driver testing is a crucial part in
computer vision tasks, especially in appearance-based models.
Drivers must not appear in the test set when they appeared
during training. In a feature-based approach like in this
work, cross-driver testing may not be needed as normalized
arrays are extracted from images. However, we believe that
choosing a random train-test-split might cause for instable
results. Therefore, a leave-one-driver-out cross-validation of
the system is carried out to assure its performance.

The dataset (Set 1) and the corresponding weights from
Table II are used. The weights remain the same during cross-
validation. The SGD optimizer is used with a learning rate
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Fig. 6. Left: Confusion matrix of all test results during leave one-driver-
out cross-validation. The accuracy is 87.1%. Right: Results are shown for
aggregated classes. The accuracy increases to 91.4 %.

of 0.001 and a weight decay of 0.0005. After 210 epochs the
learning rate was changed to 0.0001 for fine-tuning, and the
model with best accuracy was chosen1.

During training an average accuracy of 94.0% was achieved
with 92.4% at the lowest and 96.4% at the highest. For the
test sets the overall accuracy of all sets together is 87.1% and
91.4% for the aggregated classes, i.e. the classes left shoulder
and left mirror were aggregated to left (resp. for the right
side) and the classes front and speedometer were aggregated to
front. The confusion matrix is given in Fig. 6. The aggregated
accuracy per driver was varying between 75.6% and 100%. For
6 drivers the aggregation resulted in a performance increase
of 5% points. The results are displayed in Fig. 7 (left). The
weighted precision and weighted recall values are shown in
Fig. 7 (right). Precision varies most for the class right while
the other classes are more concentrated around their average
with almost no outliers. When looking at the recall rates, all
classes but the class front exhibit outliers below 20%. Most
variance is found for the class inner mirror. The other classes
display more concentrated recall rates at a higher average
recall rate above 89%. The highest recall rate with the lowest
variance was achieved for the front class. For both recall and
precision, the weighted and unweighted average values are
centered around 88%.

B. Results with Post-processing

In order to test the post-processing techniques, we consider
continuously annotated images. The dataset (Set 2) from Table
II is used. All vehicle signals related to the center stack region
are considered.

We chose the kernel size k = 31 around a signal, which
corresponds to one second before and after a signal alters2.
The Signal filter is applied on all available signals in the
center stack region. The results are shown in Table III under
signals. The overall accuracy increases from 86.5% to 90.5%.
The accuracy for center console even increases from 74.9%
to 90%. We then apply the MA filter with different values
for n additionally to the results from the signal filter. Table
III shows that the best results are achieved with n = 2, while

1We only report the best results. The Adam-optimizer, other weight
configurations and hyperparameters were also used.

2Other values were examined as well with worse results.
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TABLE III
COMPARISON OF RESULTS WITH FILTER METHODS

front lm inm cc sp rm ls rs A.*

MA; n = 5 91.4 90.1 84.8 91.4 85.4 87.5 93.9 100 90.8
MA; n = 2 93.0 94.9 87.0 92.0 88.3 90.8 93.9 100 92.3

Signals; k = 31 91.7 93.2 81.8 90.0 85.95 80.8 83.3 80.0 90.5
Baseline 92.0 92.3 82.6 74.9 86.8 80.8 83.3 80.0 86.5

*A. = weighted accuracy.

n = 5 does not yield a considerable improvement. The overall
accuracy for n = 2 is then 92.3%.

C. Comparison with Other Classifiers

1) Comparison 1: We compare our system with the
classification system from Vora et al. (2018) [6], which unlike
our system is an appearance-based model linking images to
regions directly. The authors originally trained on 47,515
frames from 11 different drivers in higher resolution. In their
setup the camera was installed below the rearview mirror
resulting in another camera angle. We make use of several
videos of their dataset that were published online in a lower
resolution. In total, there are 6 videos available with 4 different
drivers and 8,130 frames that we labelled according to our
best judgement. The classifier needed to be trained again
from scratch as the confidence metrics needed to be adjusted
for the new camera position. Three drivers appeared in the
training set and two drivers appeared in the test set, with one
driver appearing in both sets due to the limited availability
of data. No post-processing techniques were applied. The
results are displayed in Table IV with the results that they
presented in their study. It can be shown that the feature-based
classifier performs better for the classes left, center console
and speedometer, while the values for the other classes are
similarly high compared to the appearance-based values. Also,
when comparing to the results from the previous sections,
the performance for the classes right, inner mirror increases
considerably.

2) Comparison 2: Next, we compare the results from the
proposed gaze estimation system to the results that Fridman
et al. [4], [14] achieved. The camera in their approach was
also attached between the rearview mirror and the center stack
region. Similarly to the proposed approach, they made use

of a leave-one-driver-out cross-validation with a feature-based
approach using all 68 facial landmarks. The information from
the eyes was retrieved through a geometrical approach. They
only included confident predictions, i.e. the ratio of the highest
probability to the second highest probability needed to exceed
a threshold of 10. In this way, they achieved an accuracy of
91.4% on 7.1% of all images. Before they reported an accuracy
of 65.0%. Applying the same threshold to our dataset leads
to an overall accuracy of 95.6% on 85.6% of all images. The
proposed systems then performs better for the classes left and
front. Results are given in Table IV.

VI. DISCUSSION

The results from cross-validation support the hypothesis that
splitting drivers randomly in a test and train set for cross-driver
testing can result in considerably different values as seen in
the range of the achieved accuracy per driver and in the range
of the quantiles for the per-class precision rates (Fig. 7).

The confusion matrices from Fig. 6 show that the system has
difficulties to properly separate the classes inner mirror and
center console from the region front which may indicate that
classes distant to the camera position at the A-pillar are harder
to distinguish for the system. This is also reflected in lower
precision values for right, center console and inner mirror and
lower values with a higher variance in recall for inner mirror.
The comparisons with [4] and [6] have also confirmed that a
considerable proportion of performance can be attributed to the
camera position. The new camera position below the rearview
mirror produces better results for the proposed method and
classes are separated better.
Compared to Fridman et al. [4] who used a similar approach
and reported results from the leave-one-driver-out cross-
validation, the proposed system is achieving a higher accuracy
by over 30%-points. While they can only identify a small
share of images (7.1%) as confident predictions the proposed
approach is able to confidently classify 85.6% of all images
at a higher accuracy, which indicates that their geometrical
approach for eye information retrieval is not as precise as the
eye landmarks.
However, the comparisons of the performance values with the
two other methods are only valid to a limited extent due to
the changes in the underlying datasets.

The post-processing techniques have confirmed the
hypothesis that vehicle signals can help to indicate where
the driver is looking. For the case of the center console an
improvement was achieved for a time window of 2 seconds.
General temporal dependence was shown for gazes within a
window of 5 frames corresponding to 0.33 seconds. Choosing
a higher window size for the MA filter resulted in worse results
as only the few frames before and after a frame are important
frames to consider.

When looking at drivers with worse performance values,
some remarkable observations can be made as well: either
there are only a few instances in a class while testing or
the participant has too small eyes. As the pipeline of the
introduced system relies on different parts, errors in the



TABLE IV
COMPARISON TO OTHER CLASSIFIERS

right inm left front cc sp A.**

Method from [6]* 100 99.9 94.0 97.7 90.4 89.2 95.2
Proposed method 97.3 97.2 100 84.7 93.6 93.5 94.3

Method from [4]* 94.6 94.7 97.6 69.5 95.5 - 91.4
Proposed method 88.3 94.1 98.8 96.8 88.3 - 95.1
*Results as reported in [4] and [6].
**A. = unweighted accuracy.

prediction along the pipeline may occur. The head pose
estimation works reliably with a reported average mean
squared error of 6.5◦ per angle [17], whereas for very small
eyes some eye landmarks are estimated falsely, eventually
leading to a misclassification.

Regarding the imbalanced dataset the usage of the weighted
cross-entropy has showed some effect: the high recall value
with its low variance for the class front can be attributed to
the low weights assigned in the system. An image is only
assigned to this class if the system is certain about it. This
is also the reason why the recall rate is varying more for the
other classes, e.g. inner mirror.
In general the open question remains on how to accurately
assess the performance of an estimator with imbalanced class
sizes. Here, we reported the accuracy and the weighted
precision and recall values as the most commonly used
performance metrics. Yet, other performance measures could
be considered as well, and might be even more suitable.

VII. CONCLUSION

Driver gaze classification systems have the power to assist
the driver during all the different automation levels towards
fully automated driving. Especially when presenting new
systems, cross-validation for generalisability is needed to
be applied in order to expose full transparency. We have
introduced a feature-based and cross-validated gaze detection
system that is able to compete with current state-of-the-
art appearance-based systems. We have also shown that
vehicle signals and other post-processing methods improve the
performance of such systems and indicate where the driver is
looking to balancing out false predictions. Accuracies increase
from 86.5% to 92.3%. The advantages of a feature-based
system are quite obvious: the extracted features can be used for
further research e.g. for fatigue detection. Also, we have shown
that far less data were needed to build a robust system. We
have not investigated further on the roots of some error rates.
A possible reason may lie in the frames belonging to transition
regions. One approach solving this might be the consideration
of set-value instead of single value predictions.

ACKNOWLEDGMENT

The authors like to thank Nico Epple and Valentin Protschky
for helpful remarks and comments on the content of this paper.

REFERENCES

[1] S. Klauer, T. A. Dingus, V. L. Neale, J. Sudweeks, and D. Ramsey, “The
Impact of Driver Inattention On Near Crash/Crash Risk: An Analysis
Using the 100-Car Naturalistic Driving Study Data,” Tech. Rep. April,
U.S. Department of Transportation, 2006.

[2] X. Mosquet, M. Andersen, and A. Arora, “A Roadmap to Safer Driving,”
Auto Tech Review, vol. 5, no. 7, pp. 20–25, 2015.

[3] I. H. Choi, S. K. Hong, and Y. G. Kim, “Real-time categorization
of driver’s gaze zone using the deep learning techniques,” 2016
International Conference on Big Data and Smart Computing, BigComp
2016, pp. 143–148, 2016.

[4] L. Fridman, J. Lee, B. Reimer, and T. Victor, “’Owl’ and ’Lizard’:
Patterns of head pose and eye pose in driver gaze classification,” IET
Computer Vision, vol. 10, no. 4, pp. 308–313, 2016.

[5] R. A. Naqvi, M. Arsalan, G. Batchuluun, H. S. Yoon, and K. R. Park,
“Deep learning-based gaze detection system for automobile drivers using
a NIR camera sensor,” Sensors (Switzerland), vol. 18, no. 2, 2018.

[6] S. Vora, A. Rangesh, and M. M. Trivedi, “Driver Gaze Zone Estimation
Using Convolutional Neural Networks: A General Framework and
Ablative Analysis,” IEEE Transactions on Intelligent Vehicles, vol. 3,
no. 2, pp. 254–265, 2018.

[7] D. D. Salvucci and A. Liu, “The time course of a lane change: Driver
control and eye-movement behavior,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 5, no. 2, pp. 123–132, 2002.

[8] A. Doshi and M. M. Trivedi, “Head and eye gaze dynamics during visual
attention shifts in complex environments,” Journal of Vision, vol. 12,
no. 2, pp. 1–16, 2012.

[9] O. Lappi, P. Rinkkala, and J. Pekkanen, “Systematic observation of
an expert driver’s gaze strategy-An on-road case study,” Frontiers in
Psychology, vol. 8, no. APR, pp. 1–15, 2017.

[10] T. Taylor, A. K. Pradhan, G. Divekar, M. Romoser, J. Muttart, R. Gomez,
A. Pollatsek, and D. L. Fisher, “The view from the road: The contribution
of on-road glance-monitoring technologies to understanding driver
behavior,” Accident Analysis and Prevention, vol. 58, pp. 175–186, 2013.

[11] A. Kar and P. Corcoran, “A Review and Analysis of Eye-Gaze
Estimation Systems , Algorithms and Performance Evaluation Methods
in Consumer Platforms,” IEEE Access, pp. 16495–16519, 2017.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, and L. Fei-Fei, “No Title,” in
2009 IEEE Conference on Computer Vision and Patter n Recognition,
pp. 248–255, 2009.

[13] A. Tawari, K. H. Chen, and M. M. Trivedi, “Where is the driver
looking: Analysis of head, eye and iris for robust gaze zone estimation,”
2014 17th IEEE International Conference on Intelligent Transportation
Systems, ITSC 2014, pp. 988–994, 2014.

[14] L. Fridman, P. Langhans, J. Lee, and B. Reimer, “Driver Gaze Region
Estimation without Use of Eye Movement,” IEEE Intelligent Systems,
vol. 31, no. 3, pp. 49–56, 2016.

[15] J. Lee, M. Muñoz, L. Fridman, and T. Victor, “Investigating the
correspondence between driver head position and glance location,” PeerJ
Computer Science, vol. 4, p. e146, 2019.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37, 2016.

[17] N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estimation
without keypoints,” IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, vol. 2018-June, pp. 2155–
2164, 2018.

[18] A. Bulat and G. Tzimiropoulos, “How Far are We from Solving the
2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D
Facial Landmarks),” Proceedings of the IEEE International Conference
on Computer Vision, vol. 2017-Octob, pp. 1021–1030, 2017.

[19] S. Park, X. Zhang, A. Bulling, and O. Hilliges, “Learning to find eye
region landmarks for remote gaze estimation in unconstrained settings,”
in Proceedings of the 2018 ACM Symposium on Eye Tracking Research
& Applications - ETRA ’18, (New York, New York, USA), pp. 1–10,
ACM Press, 2018.

[20] S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Mandal,
B. Hoffmeister, and S. Vitaladevuni, “Multi-task learning and weighted
cross-entropy for DNN-based keyword spotting,” Proceedings of
the Annual Conference of the International Speech Communication
Association, INTERSPEECH, vol. 08-12-Sept, no. September 2016,
pp. 760–764, 2016.




