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Abstract—The in-memory computing paradigm with emerging
memory devices has been recently shown to be a promising
way to accelerate deep learning. Resistive processing unit (RPU)
has been proposed to enable the vector-vector outer product
in a crossbar array using a stochastic train of identical pulses
to enable one-shot weight update, promising intense speed-up
in matrix multiplication operations, which form the bulk of
training neural networks. However, the performance of the
system suffers if the device does not satisfy the condition of
linear conductance change over around 1,000 conductance levels.
This is a challenge for nanoscale memories. Recently, Charge
Trap Flash (CTF) memory was shown to have a large number
of levels before saturation, but variable non-linearity. In this
paper, we explore the trade-off between the range of conductance
change and linearity. We show, through simulations, that at an
optimum choice of the range, our system performs nearly as
well as the models trained using exact floating point operations,
with less than 1% reduction in the performance. Our system
reaches an accuracy of 97.9% on MNIST dataset, 89.1% and
70.5% accuracy on CIFAR-10 and CIFAR-100 datasets (using
pre-extracted features). We also show its use in reinforcement
learning, where it is used for value function approximation in
Q-Learning, and learns to complete an episode the mountain car
control problem in around 146 steps. Benchmarked to state-of-
the-art, the CTF based RPU shows best in class performance to
enable software equivalent performance.

Index Terms—Deep Learning, Neuromorphic Hardware,
Crossbar Array, Flash

I. INTRODUCTION

Deep Learning [1] has become the core driving force of
artificial intelligence (AI). Applications such as image recog-
nition, playing games, self-driving cars, and AI assistants are
all made possible with the help of deep learning. At the core
of deep learning lies artificial neural networks (ANNs) [2].
ANNs are trained using large sets of data to approximate
a function that explains the given data. Training is done
using backpropagation [3], in which the weights of the neural
network are updated based on gradient descent update rule.

The majority of the operations in training ANNs are matrix
multiplications. Graphics processing units (GPUs) and Ten-
sor processing units (TPUs) are specialized digital hardware
designed to speed up this matrix multiplication. With faster
computation cores, the bottleneck is currently in memory
systems and data transfer [4]. Moreover, training ANNs for

a typical real-world application requires hundreds of years of
GPU time [5], leading to high energy costs.

In-memory computing [6] is an emerging paradigm, where
data transfer is minimized by storing data and performing com-
putation at the same place. Crossbar arrays with non-volatile
memory have been shown to use lower energy, while also
reaping the benefits of in-memory computation. Unfortunately,
most of the devices struggle with precision and hence, the
resulting performance of the system is not on par with their
digital counterparts.

Gokmen and Vlasov [7] proposed a hypothetical resistive
processing unit (RPU) that can be used to accelerate ANNs
while being more energy-efficient than GPUs and having a
negligible loss in accuracy. A crossbar architecture with a
stochastic weight update rule allowed matrix multiplication
in O(1) time. Linearity in weight update of the cross-point
device and a high number of conductance levels were shown
to be necessary to ensure good accuracy.

Various approaches with nanoscale emerging memories like
PCM [8] and RRAM [9] have shown insufficient linearity to
enable RPU as the sole memory. Recently, traditional charge
trap flash memory has shown promising linearity [10], [11].
However, their performance in the RPU framework has not
been explored.

In this paper, we present a charge trap flash device that
can act as a cross-point device in the RPU framework. We
experimentally show a high number of conductance levels and
approximately linear updates by choosing appropriate pulse
width and voltage for weight update. Through simulations,
we show that it indeed leads to a good accuracy when
tested on MNIST, CIFAR-10 and CIFAR-100 datasets. In
addition to supervised learning problems, we also successfully
train a reinforcement learning agent on the Mountain Car
environment.

II. RELATED WORK

Matrix-vector multiplication and vector-vector outer product
form the bulk of operations while training neural network.
RPU [7] speeds up this computation using stochastic multipli-
cation and hypothetical devices with linear weight updates.

Electronic synapses that have been proposed, such as nano-
scale memristive synapses, may not have the gradual learn-
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ing required for RPU. Phase-change memory (PCM) based
synapse has gradual positive conductance change, but abrupt
negative conductance change, which requires novel synapse
circuit design with enhanced controller complexity as well
as a dual precision approach. Successful methods supplement
weight storage in low precision but compact PCM with high
precision but area inefficient CMOS based memory to achieve
high performance [6], [12]–[14].

With resistive random-access memories (RRAMs), multiple
devices are required to obtain sufficiently gradual weight
change to enable software equivalent learning [15], [16].
Additionally, RRAM (HfO2/PCMO/NbO2) and PCM based
memory has additional process complexity / cost to be in-
tegrated into CMOS [17].

Floating-gate has been explored as an analog memory
for neural networks extensively [18]. However, horizontal
floating-gate flash memory has been replaced by vertical
charge trap flash memory with storage in silicon nitride traps
for advanced technology nodes [19].

In contrast with memristor, a silicon-oxide-nitride-oxide
(SONOS) based charge trap flash memory has significantly
gradual conductance change with conductance saturation after
100 pulses [10]. This may be compared to 20 pulses for PCM
[8], or 20 pulses for PCMO based RRAM [9]. Maximum
conductance change was between 5-20% of the range of
conductance and noise was around 5%-10% of the range of
conductance. A dual precision approach in which one flash
cell has a 1x factor and another has an 8x factor to define
the weight was required to obtain software level accuracy
on MNIST. The weight updates also required varying pulse
voltage and time, which would incur additional circuit costs.

Recently, a similar charge trap flash device has been pro-
grammed by quantum tunneling to show extremely gradual
programming of 1,000-10,000 levels, which gives a 10-100x
improvement over literature [10]. The maximum conductance
change per spike is controlled to <1% of the range while
the noise is 0.1% of the range. However, linearity is not
available in the entire range, which is essential for RPU
applications. An important question is whether, by reducing
the range of conductance, a smaller but more linear range
can be found, which would enable software equivalent RPU,
despite experimentally measured noise.

III. BACKGROUND

A. Artificial Neural Networks

Artificial Neural Networks work based on the principle
of multi-layered perceptron [20, Chapter 6]. Each layer of
neurons performs a weighted linear combination of its inputs,
applies a non-linear function, and passes the output to the next
layer. Mathematically, given an input vector x and a weight
matrix W , a fully connected layer i outputs

a(i) = φ(i)(W (i)x(i)), (1)

where φ(i) is some non-linear function called the activation.
This operation is repeated for all layers, giving the output
ŷ = f(x,W ).

In machine learning, neural networks are used to approxi-
mate the function between the input data and a target. Gradient
descent is used to minimize a loss function (L(ŷ,y)) between
the output of the neural network (ŷ) and the true target (y).
The gradients are calculated efficiently using backpropagation
[3].

Backpropagation uses chain rule to propagate the gradients
to the lower layers, given the gradients of the higher layers.
Let z(i) = W (i)x(i) and δ(i) = ∂L

∂z(i) . Then,

δ(i−1) = W (i)T δ(i) � φ(i−1)
′
(z(i−1)) (2)

∂L
∂W (i)

= δ(i)x(i)T (3)

where φ(i−1)
′

are the gradients of the activation functions and
� is the Hadamard (element-wise) product. Equations 1, 2,
and 3, along with the gradient descent update, form the core
of training a neural network.

B. Resistive Processing Unit

Resistive processing units (RPUs) [7] attempt to speed up
the computation of the matrix-vector multiplication (Equations
1, 2) and vector-vector outer product (Equation 3). For efficient
hardware implementation, devices are arranged in a crossbar
architecture with device conductance at each cross point
representing a weight.

First, Ohm’s law, combined with Kirchhoff’s current law,
is used to enable multiply-accumulate operation naturally in
hardware. During forward pass (Equation 1), passing voltage
proportional to x(i) to the rows makes the current at the
columns equal to the output of the layer W (i)x(i). Similarly,
during backward pass (Equation 2), passing voltage propor-
tional to δ(i) to the columns makes the current at the rows
equal to W (i)T δ(i), which is required for back-propagating
the gradient.

Second, weight update by a simple stochastic AND opera-
tion is performed directly on non-volatile memory elements.
The outer product (Equation 3) is calculated using stochastic
multiplication. Two pulse trains, with probability of high volt-
age proportional to x(i), δ(i) respectively, are generated and
passed through rows and columns respectively. The voltage
levels are set such that the resistive device updates its weight
by ∆w when the pulses coincide, and there is no change
when the pulses don’t coincide. Since the expected number
of coincidences is proportional to x(i)δ(i), the total weight
update is proportional to the gradient in expectation. Figure 1
shows an example of pulse trains and the resulting update.

The crossbar architecture and the stochastic weight update
makes RPU more energy and area efficient compared to high
precision digital multiplication blocks [7].

IV. FLASH SYNAPSE

A. Experimental Device

We use a CTF capacitor (Figure 2), which is fabricated as
described by Sandhya et al. [21]. The device is fabricated on
an n-Si substrate with 4 nm thermal SiO2 as a tunnel oxide, 6



Fig. 1. Analog multiplication using Stochastic pulse trains in RPU: Analog
numbers are represented by a stochastic pulse train of identical pulses where
the probability of high voltage in trains An and Bn is proportional to x(i),
δ(i) respectively. Updates occur at the coincidences, i.e., AND(An, Bn),
which have a probability proportional to x(i)δ(i). Polarity is reversed for
negative updates.

nm LPCVD Si3N4 as charge trap layer (CTL), 12 nm MOCVD
Al2O3 as blocking oxide, and n+ polysilicon on 12” substrate
by Applied Materials cluster tool. Aluminum is used as a back
contact. A self-aligned B implant and anneal is done to provide
a source for minority carriers for fast programming as shown
in Figure 2a.

B. Working as Synapse

The program/erase operation is based on FN tunneling.
When a positive pulse is applied to the gate, electrons from the
channel tunnel through the 4 nm tunnel oxide to be trapped in
the CTL, i.e., programming (Figure 2b). To erase, a negative
pulse is applied to the gate. Electrons are ejected from the
CTL by tunneling through the tunnel oxide (Figure 2c).

Programming and erasing results in a threshold voltage shift
(∆vT ). The threshold voltage (vT ) is translated to drain current
(id), which indicates the synaptic conductance (g) as follows:

id = β1(vGS − vT )vDS (4)
id = g · vDS (5)

∆g ∝ −β2 ·∆vT (6)

where β1 and β2 are proportionality constants [22]. Erasing
(∆vT < 0) results in potentiation (∆g > 0), while program-
ming (∆vT > 0) results in depression (∆g < 0). Henceforth,
we use vT and g interchangeably since they are simply the
scaled version of each other. An approximately linear and
gradual change of conductance with the pulse number can be
designed by pulse-width modulation [11].

C. Experimental Data

1) Curve Fitting Device Updates: We experimentally cal-
culate the pulse amplitude and pulse width that gives an
approximately linear weight change. Figure 3a shows the
experimental data of vT vs pulse number for LTD (using a
pulse of +12.5V and 0.85ms width) and LTP (using a pulse of

Fig. 2. (a) Charge Trap Flash (CTF) schematic. Energy band diagram showing
charge transport by quantum tunneling to charge/discharge silicon nitride
atomic defects during: (b) Programming and (c) Erasing
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Fig. 3. (a) Experimental data (dots) and its curve fitting (lines) using the
equation vT (n) = x1(n)x2 + x3. (b) Mean ∆vT vs vT shows that vT
shift is non-uniform. (c) Repeated measurements (6 times) of (a) is used to
estimate the noise as a fraction of mean ∆vT vs vT . The experimental σ/µ
is 30-40% for LTP and ∼10% for LTD.

-12.5V and 15ms width). The scatter points are the observed
data and the solid lines are the corresponding curve fits.

The curves were fit using the equation vT (n) = x1(n)x2 +
x3 to minimize the mean squared error, with x1, x2, x3 being
the curve fit variables. The equation for ∆vT was then found
by setting ∆vT (n) = vT (n+ 1)− vT (n) to get

∆vT (vT ) = x1x2

(
vT − x3
x1

) x2−1
x2

(7)

We define ∆+
0 (g) as the positive change in vT when vT = g

(using LTD data) and ∆−0 (g) as the negative change in vT
when vT = g (using LTP data). Figure 3b shows the variation
of ∆vT with vT . The results of the curve fit gave x1, x2, x3 =
9.55× 10−4, 7.19× 10−1,−3.22× 10−1 respectively for LTD
and x1, x2, x3 = −2.38 × 10−3, 5.80 × 10−1,−1.12 × 10−1

for LTP respectively, which implies that

∆+
0 (g) = 4.50(g + 0.32)−0.39 × 10−5 (8)

∆−0 (g) = −1.74(−g − 0.11)−0.72 × 10−5 (9)



2) Characterization of Device Noise: To find the noise
in the updates, LTP and LTD experiments were repeated
six times on the same device to characterize the variation
within a device. For each experiment, a curve was fit and
the corresponding ∆vT was found. Then, for each vT , the
standard deviation (σ) of the evaluation of all six ∆vT was
found. Figure 3c shows the standard deviation as a percentage
of mean vs vT for LTD and LTP. This standard deviation
is a measure of variation over time within a flash device -
interpreted as noise. To simplify the simulations, σ was set to
a high constant for all vT in our experiments.

D. CTF in RPU array

1) Simulating Device Updates: The conductances of a CTF
device are always positive, but the weights can be negative.
Thus, two devices are required to represent both positive and
negative weights. Mathematically, the weight

w = k(g1 − g2) (10)

The scaling constant k is used to control the range of device
conductance. In hardware, 2 CTF devices are arranged as
shown in Figure 4a. Applying voltages to the gates of the
devices generates currents at the drain and source respectively.
These currents are added to implement Equation 10.

∆w is not constant since ∆g is a function of the current
device conductances, and whether the update is positive or
negative. The update is also noisy. Accommodating all these
modifications, the positive and negative updates are given by

∆+g = ∆+
0 (g) +N (11)

∆−g = ∆−0 (g) +N (12)

where N ∼ N (0, σ) is the noise.
2) Controlling Linearity and Noise: Since the range of w

only depends on the dataset and the step size, k controls the
range of vT used, and hence, the noise, linearity, and the
number of levels available. For example, Gokmen and Vlasov
[7] showed that the required range of w was (−0.3, 0.3),
when training on MNIST dataset. Based on Equation 10,
a conductance range of 0.3

k on each device is sufficient to

Fig. 4. CTF in RPU array: Combination of two CTF used for representing g1

(blue) and g2 (grey). (a) The voltage applied at the gates generates currents at
the source and drain respectively which are subtracted to produce weights ca-
pable of assuming positive and negative values. (b) Weight Update: Stochastic
pulse trains An and Bn are applied to Gate and S/D shorted configuration
respectively to produce an AND(An,Bn) operation based voltage summation
at the CTF device. (c) Crossbar architecture with bit line (BL) and word line
(WL). (d) Each unit cell in the crossbar is the combination of two CTF.

0 20 40 60 80 100
k

0.30

0.10

0.01

g 
ra

ng
e 

re
qu

ire
d

Range
Linearity

0.6

0.7

0.8

0.9

1.0

Lin
ea

rit
y 

(
v T

,m
in

/
v T

,m
ax

)

(a)

0 20 40 60 80 100
k

0.10

0.06

0.03

M
ax

 
/

Noise
Levels

100

1000

Nu
m

be
r o

f l
ev

el
s a

va
ila

bl
e

(b)

Fig. 5. Effect of k on various device properties: (a) the required range of
g and linearity, (b) maximum standard deviation as a fraction of mean ∆vT
and the number of levels available. As k increases, the required range of g
is reduced. With appropriate centering, the range can be restricted to regions
of high linearity and low noise. However, a smaller range also reduces the
number of levels in the range.

(a) Positive cycle. (b) Negative cycle.

Fig. 6. Two possible updates cycles where polarities of Xn and Dn can be
set independently. Since ∆w ∝ ∆g1−∆g2, the updates resulting from these
cycles are of the required polarity and magnitude. Any combination of these
cycles (for example, alternating between them every iteration) is also valid.

represent this range. Hence, a higher k implies a lower
required range of g, which can be observed in Figure 5a.

Constraining g to a lower range improves linearity (Figure
5a). It also allows us to stay in the region with low noise,
leading to lower maximum standard deviation as a fraction
of mean ∆vT (Figure 5b). But as a trade-off, the number of
levels available before it goes out of the range of g is reduced
(Figure 5b). In Section V, we show the effect of this trade-off
on the performance of the system. In addition to the range,
the center-point of the conductance range is optimized by trial
and error to improve linearity.

3) Circuit Design Considerations: Performing an addition
or subtraction of pulse trains is easier from a hardware
perspective than an AND operation [7]. To perform a positive
update, two positive polarity pulse trains can be added such
that a positive voltage pulse results at the coincidences. The
polarities can be reversed to perform a negative update. Since
x(i) and δ(i) are applied to the two ends of the crossbar,
the polarity of the pulse trains must depend independently on
the corresponding x(i) or δ(i) and not the product x(i)δ(i).
The input x(i) can be assumed to be positive since inputs
are generally normalized between 0 and 1 and the common
non-linear activations functions used in a neural network like
sigmoid or ReLU only output positive values.

Two possible update cycles with these constraints and the
corresponding pulse polarities are shown in Figure 6. We
always use the positive cycle in our experiments.

Weight update in hardware for CTF devices is done by



applying the voltage at the gate with respect to Source-Drain
connected to the ground (Figure 4b).

As proposed by Gokmen and Vlasov [7], non-linear acti-
vation functions and their gradient can be implemented using
an external circuitry. For the special case of ReLU activation,
this external circuitry can be simplified. ReLU simply passes
forward the positive inputs and blocks the negative inputs.
The gradient is hence, 1 for positive inputs and 0 for negative
inputs.

Figure 4c shows the crossbar architecture with 4 word lines
(WL) for applying voltages and 2 bit lines (BL) to read the
currents. Figure 4d shows a single unit cell in the crossbar with
2 CTF devices. Algorithm 1 describes the steps for calculating
the weight update while simulating a CTF device.

Algorithm 1: Update calculation in CTF device sim-
ulation.

Input: Gradients (δ(i)); Inputs (x(i)); Length of pulse
trains (PL); Input scaling constant (C); Weight
update functions ∆+

0 , ∆−0 ; Device
conductances G(i)

1 and G(i)
2 ; Noise (σ).

Output: Updated values of the device conductances of
the layer G(i)

1 , G(i)
2 .

1 for each cross-point do
2 Let g1, g2 be the device conductances
3 Find x(i), δ(i) corresponding to the cross point
4 Sample X1, · · · , XPL ∼ Bernoulli(|Cx(i)|)
5 Sample D1, · · · , DPL ∼ Bernoulli(|Cδ(i)|)
6 Set the polarity of all Dn equal to the sign of δ(i)

7 for each coincidence in Xn ∧Dn do
8 Sample noise N ∼ N (0, σ)
9 if δ(i) < 0 then

10 ∆+g1 ← ∆+
0 (g1) +N

11 g1 ← g1 + ∆+g1
12 else
13 ∆+g2 ← ∆+

0 (g2) +N
14 g2 ← g2 + ∆+g2
15 end
16 end
17 end

V. EXPERIMENTS AND RESULTS

To test the performance of a neural network with flash
synapse as the cross point device, we performed three experi-
ments. We trained neural networks for supervised classification
of digits in the MNIST dataset [23], images in the CIFAR
dataset [24], and for reinforcement learning in the Mountain
Car environment [25]. All neural network operations were
performed by simulating CTF devices as described in section
IV-D. As a baseline in all the experiments, we performed the
neural network training using exact floating point operations.

Table I shows the list of hyperparameters used in the
experiments. A combination of manual tuning and grid search
was used to find these hyperparameters. Hyperparameters

TABLE I
HYPERPARAMETERS.

Hyperparameter Value

Update step size (α)
MNIST: 0.01
CIFAR: 0.1

Mountain Car: 0.00625

Initial weights (w0) Kaiming uniform [26]

Weight scaling factor (k) 600α

Initial device conductance (g1,0, g2,0) −0.2± w0
2k

Pulse train length PL 10

Input scaling factor C
√

α
PL·∆+g(c)·k

related to the CTF device and RPU were kept constant for
all the experiments.

A. MNIST

MNIST dataset consists of 60,000 training and 10,000 test
images of 10 handwritten digits, each of size 28x28 pixels.

A fully connected neural network with 2 hidden layers
consisting of 256 and 128 neurons respectively, was used for
classification. The neural network was trained for 10 epochs.
Two sets of experiments were performed, with noise standard
deviation (σ) being 10% of the mean in one and 100% of the
mean in the other.

Figure 7a shows the learning curves with 10% noise and
100% noise respectively, compared with that of the baseline.
The curves are averaged over the 10 runs and one standard
error is shaded. The final accuracies with the flash device are
98.07± 0.05% and 97.91± 0.06% with 10% noise and 100%
noise respectively. The final accuracy of the baseline is 98.05±
0.07%.

1) Effect of Weight Scaling Factor (k) on Performance:
As described in Section IV-D, changing k leads to a trade-off
between linearity, noise, and the number of pulses available. To
study its effect on the performance, we adjust k and measure
the test and train accuracies.

Figure 7b shows the variation of train and test accuracies
for different values of k at a noise level of 10%. The highest
train accuracy of 99.84% was obtained for k = 6, with the
corresponding test accuracy being 98.15%.

Higher values of k used a lower range of device conduc-
tances, which reduced the precision of the system since ∆+

0 (g)
and ∆−0 (g) are unchanged. Lower values of k used a larger
range of device conductances. Since the conductance change
became more non-linear on either extreme, the performance
declined.

2) Noise Analysis: To study the effect of noise on the
performance, we run the MNIST experiments with noise level
varying from 0% to 500% and find the test accuracy after 3
epochs.

Figure 7c shows the accuracy as a function of noise, aver-
aged over 4 runs. The accuracy is 97.5±0.07% without noise,
97.3± 0.14% with 100% noise, and drops to 93.4± 0.18% at
500% noise.
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Fig. 7. MNIST experiments: (a) Test accuracy as a function of the number of
epochs on MNIST dataset (averaged over 10 runs, one standard error shaded).
The difference in accuracy between floating point baseline and flash synapse
RPU is negligible with 10% noise and around 0.1% with 100% noise. (b)
Train and test accuracy as a function of k on the MNIST dataset. Accuracies
are low for very low and very high values of k, with k = 6 being the best
value. (c) Test accuracy as a function of update noise on MNIST dataset after
3 epochs (averaged over 4 runs, one standard error shaded). The accuracy
drops by less than 0.3% with 100% noise and by around 4% with 500%
noise.

The drop in accuracy with higher noise is expected since the
actual updates can be very different from the updates required
for gradient descent. But, as shown in section IV-C, 100%
noise is well above those found experimentally in the flash
device. Hence, it acts as a lower bound on the obtainable
accuracy.

B. CIFAR

CIFAR dataset consists of 50,000 training and 10,000 test
images of real world objects. Each image is colored and 32x32
pixels in size. CIFAR-10 consists of 10 classes of images,
while CIFAR-100 consists of 100 classes of images.

Since convolutional neural networks (CNNs) are generally
used for classification on these datasets, we follow the method-
ology used by Ambrogio et al. [14] to compare our device with
the baseline. A pre-trained CNN, specifically, ResNet-50 [27]
pre-trained on the ImageNet [28] dataset, is used for feature
extraction. The CIFAR images were resized, normalized and
passed through the pre-trained network. The activations of the
last hidden layer were considered as features.

Once the features were extracted, a neural network with no
hidden layers was trained to classify the images based on the
features. The neural network was trained for 10 epochs.

Figure 8a shows the learning curves with 10% noise and
100% noise respectively, for CIFAR-10 dataset. The final
accuracies with the flash device are 89.21 ± 0.09% and
89.07±0.09% respectively. The final accuracy of the baseline
is 89.6± 0.07%.
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Fig. 8. CIFAR and Mountain Car experiments: (a) Test accuracy as a function
of the number of epochs on CIFAR-10 dataset (averaged over 10 runs, one
standard error shaded). The difference in accuracy between floating point
baseline and flash synapse RPU is around 0.4% with 10% noise and around
0.5% with 100% noise. (b) Test accuracy as a function of the number of
epochs on CIFAR-100 dataset (averaged over 10 runs, one standard error
shaded). The difference in accuracy between floating point baseline and flash
synapse RPU is around 0.1% with 10% noise and around 0.3% with 100%
noise. (c) Reward per episode as a function of the number of episodes on the
Mountain Car environment (averaged over 100 runs, the standard error is less
than the line width). The difference in reward between floating point baseline
and flash synapse RPU is around 4% with 10% noise and around 3% with
100% noise.

Figure 8b shows the same for the CIFAR-100 dataset. The
final accuracies with the flash device are 70.67 ± 0.07% and
70.48 ± 0.07% with 10% and 100% noise respectively. The
final accuracy of the baseline is 70.8± 0.06%.

C. Mountain Car

Mountain Car is a control problem in which the agent should
drive a car to the top of the mountain. The agent observes
its current horizontal position and its velocity. It can move
forward, move backward or do nothing. Since the agent can’t
accelerate enough to reach the peak by just moving forward,
it needs to move back and forth to build enough momentum
before being able to reach the peak [25]. The agent gets a
reward of -1 at every time step until it reaches the goal, and
hence, it needs to reach the goal as quickly as possible.

We used tile coding [30, pg. 217] to extract features from
the observations and used a neural network with no hidden
layers on top of it to predict the state-action values (Q-
values) for each action. Mathematically, q̂(s, a;W ) provided
an approximation of Q(s, a), for each state s and action a.
The weights were updated using Q-learning [31] update:

W ←W + α(R+ γmax
a′

q̂(S′, a′;W )−

q̂(S,A;W ))∇W q̂(S,A;W )
(13)



TABLE II
COMPARISON OF OUR WORK WITH THE PREVIOUS WORKS ON MNIST DATASET.

Authors Precision Programming Devices per
Weight

MNIST
Accuracy

Applications
Demonstrated

Ambrogio et al. [14]

Dual Precision: High
precision, volatile DRAM

+ Low precision
non-volatile PCM

Analog pulse V and time 2 PCM +
DRAM 97.95%

Supervised Learning -
MNIST, CIFAR-10,

CIFAR-100

Nandakumar et al. [29]

Dual Precision: High
precision, volatile CMOS +
Low precision, non-volatile

PCM

Analog pulse V and time 2 PCM +
SRAM 97.40% Supervised Learning -

MNIST

Agarwal et al. [10] Single precision Analog pulse V and time 2 SONOS
flash 97.6% Supervised Learning - File

Types, MNIST

Agarwal et al. [10]
Dual Precision: High &
Low precision CTF by

relative weight
Analog pulse V and time 4 SONOS

flash 98% Supervised Learning - File
Types, MNIST

Nandakumar et al. [8] Single Precision Stochastic Identical Pulse
Train 2 PCM 83% Supervised Learning -

MNIST

Babu et al. [9] Single Precision Stochastic Identical Pulse
Train 2 PCMO 88.1% Supervised Learning -

MNIST

This work Single Precision Stochastic Identical Pulse
Train 2 CTF 97.9%

Supervised Learning -
MNIST, CIFAR-10,

CIFAR-100;
Reinforcement Learning -

Mountain Car

where S is the current state, A is the action chosen, R is the
reward obtained, S′ is the next state, α is the step size, and
γ is the discount factor. The gradient calculation and weight
update in Equation 13 was performed by simulating the flash
device.

Action selection was done using epsilon-greedy strategy
with ε = 0.1. Hash-based tile coding software by Sutton [32]
was used for feature extraction, with 8 equally sized tiles per
dimension and 16 tilings.

The agent was trained for 500 episodes, with each episode
being terminated either on reaching the goal or after 1000
steps. The experiment was repeated 100 times and the total
reward obtained from each episode was recorded.

Figure 8c shows the total reward per episode as a function
of the number of episodes with 10% noise and 100% noise
respectively. The floating point baseline obtains a reward of
−143 ± 1.6 (which implies that it takes around 143 steps to
complete an episode). With the flash device, the reward is
−147± 1.8 with 10% noise and −146± 2 with 100% noise.

VI. DISCUSSIONS

We show that the CTF device works as a replacement
for floating point update in various applications. In all the
experiments, the performance of our device was close to that
of the floating point baseline. It was also fairly robust to the
experimentally measured noise of 10-40% in updates which is
crucial for analog computing.

Classification on MNIST dataset showed that a multi-
layer neural network can be trained using the CTF device.
Classification on CIFAR-100 dataset showed that even in the

regime of a large number of classes and relatively low data,
the performance is on par with the floating point updates.
Training an agent on Mountain Car environment showed that
our method is not just restricted to the supervised learning
setting, but can also be used in other settings that use neural
networks.

Table II shows that comparison of various current ap-
proaches. Among various approaches for in-memory com-
puting, precision enhancement of low precision but compact
nanoscale memory like Phase Change Memory (PCM) with
high precision but area inefficient CMOS memory enables high
performance on MNIST dataset [14], [29]. Further, single pre-
cision approaches with RPU based stochastic identical pulse
based weight update show degraded performance of 83% for
PCM [8] and of 88% for PCMO based RRAM [9] on MNIST
dataset. Agarwal et al. [10] have shown a single precision
approach based on SONOS based Flash memory with analog
pulse control with voltage and time to record a performance
of 97.6% on MNIST. This technology is based on NOR flash
memory like programming scheme using high current/power
technique of channel hot electrons (CHE). Enhancing precision
by a dual precision technique with more flash devices per
weight and control circuit to enable a periodic carry improves
MNIST performance to 98%.

In comparison, our flash memory is programmed with the
low current/power/energy FN tunneling technique. Stochastic
pulse train based RPU is demonstrated, eschewing the need
for variable pulses with analog voltage levels and pulse time
controls. The low rate of conductance change, high linearity
produces a peak performance of 97.9% - which is robust to



experimentally measured noise levels. Further, our method
produces excellent performance on various ANN applica-
tions like classification on CIFAR-10, CIFAR-100 datasets,
and reinforcement learning on Mountain Car environment -
demonstrating excellent generalization.

VII. CONCLUSIONS

In this paper, we proposed a charge trap flash device in
an RPU architecture to accelerate deep neural networks while
maintaining software-level accuracy. The resistive processing
unit speeds up vector-matrix and vector-vector multiplication
operations, which are ubiquitously used in the backpropagation
algorithm to train deep neural networks. We engineered the
magnitude and the width of the pulse used to update the
weights using the flash device. The updates were shown to
be linear, gradual and symmetric, which is necessary for good
performance.

We then simulated the device to train neural networks on
MNIST, CIFAR-10 and CIFAR-100 datasets. In each case, the
accuracy of the system was close to the floating point baseline,
showing excellent generalization. The system was also robust
to noise in weight updates, with less than 1% drop in accuracy
when the simulated noise was 10x the experimentally observed
value. We also demonstrated the generality of the method
by applying it to a reinforcement learning method on the
Mountain Car environment. The performance of our system
matched the software baseline in this experiment too. Such
implementation is benchmarked against the state of the art
demonstrations to show best-in-class performance - indicating
a promising hardware option for in-memory computing.
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et al., “DeepStack: Expert-level artificial intelligence in heads-up no-
limit poker,” Science, vol. 356, no. 6337, pp. 508–513, 2017.

[6] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma
et al., “Mixed-precision in-memory computing,” Nature Electronics,
vol. 1, no. 4, p. 246, 2018.

[7] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training
with resistive cross-point devices: Design considerations,” Frontiers in
Neuroscience, vol. 10, p. 333, 2016.

[8] S. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian,
and E. Eleftheriou, “A phase-change memory model for neuromorphic
computing,” Journal of Applied Physics, vol. 124, no. 15, 2018.

[9] A. V. Babu, S. Lashkare, U. Ganguly, and B. Rajendran, “Stochastic
learning in deep neural networks based on nanoscale PCMO device
characteristics,” Neurocomputing, vol. 321, pp. 227–236, 2018.

[10] S. Agarwal, D. Garland, J. Niroula, R. B. Jacobs-Gedrim, A. Hsia,
M. S. Van Heukelom et al., “Using floating-gate memory to train ideal
accuracy neural networks,” IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, vol. 5, no. 1, pp. 52–57, 2019.

[11] S. Shrivastava, T. Chavan, and U. Ganguly, “Ultra-low energy charge
trap flash based synapse enabled by parasitic leakage mitigation,” arXiv
preprint arXiv:1902.09417, 2019.

[12] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa et al.,
“Phase change memory as synapse for ultra-dense neuromorphic sys-
tems: Application to complex visual pattern extraction,” in International
Electron Devices Meeting. IEEE, 2011, pp. 4–4.

[13] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and
C. Gamrat, “Visual pattern extraction using energy-efficient “2-PCM
synapse” neuromorphic architecture,” IEEE Transactions on Electron
Devices, vol. 59, no. 8, pp. 2206–2214, 2012.

[14] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo
et al., “Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, no. 7708, p. 60, 2018.

[15] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell, T. Tuma
et al., “Neuromorphic computing with multi-memristive synapses,”
Nature Communications, vol. 9, no. 1, p. 2514, 2018.

[16] A. Shukla, S. Prasad, S. Lashkare, and U. Ganguly, “A case for
multiple and parallel RRAMs as synaptic model for training SNNs,”
in International Joint Conference on Neural Networks (IJCNN). IEEE,
2018, pp. 1–8.

[17] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[18] O. Fujita and Y. Amemiya, “A floating-gate analog memory device for
neural networks,” IEEE transactions on electron devices, vol. 40, no. 11,
pp. 2029–2035, 1993.

[19] D. Kang, W. Jeong, C. Kim, D. Kim, Y. Cho, K. Kang et al., “256 Gb 3
b/Cell V-nand flash memory with 48 stacked WL layers,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 210–217, 2017.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[21] C. Sandhya, U. Ganguly, N. Chattar, C. Olsen, S. M. Seutter, L. Date
et al., “Effect of SiN on performance and reliability of charge trap flash
(CTF) under Fowler–Nordheim tunneling program/erase operation,”
IEEE Electron Device Letters, vol. 30, no. 2, pp. 171–173, 2008.

[22] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices.
Cambridge University Press, 2013.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

[25] A. W. Moore, “Efficient memory-based learning for robot control,” 1990.
[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026–1034.

[27] ——, “Deep residual learning for image recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[28] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “ImageNet: A
large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[29] S. R. Nandakumar, M. L. Gallo, I. Boybat, B. Rajendran, A. Sebastian,
and E. Eleftheriou, “Mixed-precision architecture based on computa-
tional memory for training deep neural networks,” in IEEE International
Symposium on Circuits and Systems, ISCAS, 2018, pp. 1–5.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[31] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[32] R. S. Sutton, “Tile coding software – reference manual,”
http://incompleteideas.net/tiles/tiles3.html, 2017, accessed: 2019-07-13.




