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Abstract—In Ambient Assisted Living (AAL) systems, one
of the main objectives is to provide intelligent services to
enhance the quality of people’s lives in terms of safety, well-
being, and autonomy. One of the challenges in designing these
systems is abnormal human behavior detection, which is critically
important to prevent users, especially elderlies, from dangerous
situations. Abnormality detection has been widely explored in
various fields; however, challenges remain in developing effective
approaches that take into account the limitations of data-driven
and knowledge-driven approaches in detecting abnormal human
behaviors in AAL systems. In this paper, a hybrid context-
aware framework combining a machine-learning model and
probabilistic reasoning is proposed to detect abnormal human
behavior. An LSTM model is firstly used to classify input
data into a set of labels describing human activities. Different
human activity contexts, including the duration, frequency, time
of the day, locations, used objects, and sequences of the fre-
quent activities, are then extracted to analyze human behaviors.
The obtained human activities and behaviors are mapped to
the proposed ontology called Human AcTivity (HAT) ontology,
which conceptualizes human behavior contexts. Afterward, the
abnormal human behaviors are detected using Markov Logic
Network (MLN), which combines logic and probability. The
concepts and relationships defined in HAT ontology are exploited
in defining the FOL rules used in MLN. The proposed framework
is evaluated on the Orange4Home dataset and HAR dataset using
smartphones. The obtained results demonstrate the ability of
the proposed framework to detect abnormal human daily living
behavior with high accuracy.

I. INTRODUCTION

In Ambient Assisted Living (AAL) systems, one of the
main objectives is to improve the quality of people’s lives
in terms of safety, well-being, and autonomy using intelligent
services [1], [2], [3]. Several challenges are raised in providing
assistance services in these systems. One of them is abnormal
human behavior detection, which is critically important to
prevent users, especially elderlies, from dangerous situations.
One of the challenges to detect abnormal human behavior
in assistive systems [4], [1] is to propose a comprehensive
definition of human behavior considering different contexts of
human activities and behaviors. Dey [5] defined context as
“any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves”.
The proposed human behavior definition should be standard
and also machine-understandable.

In the state-of-the-art, researchers usually do not distinguish
between human activity and human behavior [6]. However,

in a few studies, these two terms are defined differently.
Human behavior is defined as frequent activities that the
user performs in different circumstances [7]. This definition
is not comprehensive since it does not consider human be-
havior contexts such as locations, objects, duration, time of
the day, and etc. In this study, a comprehensive definition
of human behavior is proposed; human behavior is defined
as a structure with six components: (i) frequent activities
in specific locations, such as napping in the bedroom, (ii)
frequent activities with specific objects, such as napping
with the pillow, (iii) frequent activities in particular times
of the day, such as napping in the afternoon, (iv) frequent
activities within particular ranges of duration, such as napping
takes between dmin to dmax minutes, where dmin and dmax

represent the minimum and maximum duration of napping
activity, respectively, (v) recurrent activities with particular
frequencies per day, such as frequency of napping per day
is between fmin and fmax, where fmin and fmax represent
the minimum and maximum frequency of napping, respectively,
and (vi) frequent sequences of activities, such as the activity
sequence reading a book-napping. Abnormal human behavior
is defined as an unexpected human behavior since it differs
from typical or usual behaviors [8]. Based on the human
behavior definition proposed in this study, abnormal human
behavior can be categorized into six types of abnormalities:
(i) recurrent unexpected activities in specific locations, (ii)
recurrent unexpected activities with specific objects, (iii) re-
current unexpected activities in particular times of the day,
(iv) recurrent unexpected activities within particular ranges
of duration, (v) recurrent unexpected activities with particular
frequencies per day, and (vi) recurrent unexpected sequences
of activities.

In this paper, a hybrid context-aware framework is pro-
posed to detect abnormal human daily living behavior. This
approach aims to overcome the limitations of data-driven and
knowledge-driven approaches while exploiting their advan-
tages. It combines probabilistic reasoning and a machine-
learning model to consider different human behavior contexts,
handle a huge amount of data, and manage uncertain infor-
mation. This framework consists of four main modules: (i)
human activity recognition, (ii) human behavior analysis, (iii)
mapping to an ontology, and (iv) abnormal human behavior de-
tection. In the first module, a machine-learning model of Long
Short-Term Memory (LSTM) type is used to classify input
data into a set of labels describing ongoing human activity. In
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the second module, the obtained labels are analyzed in terms of
locations, used objects, times of the day, duration, frequencies,
and activity sequences to provide the six complements used in
the proposed human behavior definition. In the third module,
the proposed Human AcTivity (HAT) ontology, inspired by the
ConceptNet semantic network [9], is used to conceptualize
human activities, human behaviors, and their contexts. The
obtained human behaviors are mapped to the proposed HAT
ontology to conceptualize shared concepts of human activities
and human behaviors. Human activity predictions and also
data obtained from sensors are generally uncertain; mapping
uncertainty over ontology will not yield good performance in
the context of activity or behavior recognition [10]. There-
fore in the last module, a Markov Logic Network (MLN),
combining logic and probability to handle data uncertainty by
assigning weights to FOL rules, is used to detect abnormal
human daily living behaviors. The use of MLN is motivated
by the fact that it allows integrating probabilistic reasoning
and inductive logic programming in a unified framework. The
proposed framework is evaluated on the Orange4Home dataset
[11] and HAR dataset using smartphones [12].

This paper is organized as follows: section II is dedicated
to related works. The details of the proposed framework are
presented in section III. The experimental results are provided
and discussed in section IV. Finally, section V provides a
summary of the proposed framework and research perspectives
to enhance the proposed framework.

II. RELATED WORKS

In several studies, researchers do not make any difference
between human behavior and human activity; i.e., these two
terms are usually used interchangeably [13], [14], [15], [16],
[6]. However, in some studies, these two terms are considered
as two different abstraction levels of human activity; human
behavior is considered as a superior abstraction level of human
activity [17], [7], [18]. In these studies, human behavior is
usually considered as frequent activities performed in differ-
ent situations. In [17], low-rank matrix decomposition and
time-warping techniques are integrated in order to analyze
human activities. Then, the routines and deviations of activities
are distributed into different clusters using Dynamic Time
Warping (DTW). The well-known Silhouette index is used
to find the optimal number of clusters [19]. To find the
final memberships of clusters for each day, a cross-product
is performed between clusters of activity routines and clusters
of routine deviations. In [7], an approach is proposed to extract
the human routines from human behavior logs automatically.
A Markov Decision Processes (MDP) framework is applied to
capture human routines, and the MaxCausalEnt algorithm is
then used to predict human behavior.

One of the most challenging research topics in the field of
human behavior analysis is abnormal human behavior detec-
tion. The latter has received attention from researchers working
in several application domains, including ambient assisted
living [18] and healthcare [8]. The objective of abnormal
human behavior detection is to detect human behaviors that

are unexpected since they are different from usual behaviors
[8]; i.e., it “refers to the problem of finding patterns in data that
do not conform to expected behavior” [20]. The most proposed
approaches in this domain are vision-based [21], [22] that
show several limitations such as visual occlusions and privacy
loss. These limitations were the motivation of this study to
focus on sensor-based abnormal human behavior detection.
One of the conventional approaches to recognize human
behavior and detect abnormal human behavior is machine-
learning techniques, such as Hidden Markov Model (HMM)
[23] and Support Vector Machine (SVM) [24], [8]. These
approaches do not consider the context of human behaviors;
hence, they may miss some behaviors that are frequent only
under certain conditions. Also, some additional information
about a behavior may be missed when the context of human
behavior is not considered. However, few studies focus on the
human behavior contexts. In [18], the notion of contextualized
behavior is introduced where a context can be a specific day
(e.g., Tuesday), a specific time (e.g., at 9:00 am) or a specific
activity (e.g., sleeping) or the combination of any of them. An
algorithm is proposed to find these patterns in a data stream.
The algorithm consists of two main steps: segmentation of
the stream and the extraction of frequent sequences. This
approach cannot handle uncertain information. In order to
handle uncertainty besides taking into account the context, in
[25], Fine-grained Abnormal BEhavior Recognition (FABER)
hybrid approach is proposed to recognize abnormalities in
human activities. The authors exploit a semantic integration
layer to recognize simple actions or events. Then, MLN
reasoner is employed to recognize the activity boundaries,
starting and ending points of activities. A knowledge-based
inference engine is then used to detect abnormalities based
on the recognized activity boundaries. The abnormalities are
defined based on only the starting and ending points of
activities. In other words, this study does not enough consider
human activity and behavior contexts.

In this paper, a hybrid context-aware framework is pro-
posed to detect abnormal human behavior. The main human
behavior contexts considered in the proposed framework are
the locations, objects, times of the day, duration, frequencies,
and sequences of frequent activities. To the best of our
knowledge, the proposed framework is the first hybrid one that
considers different human behavior contexts while handles the
uncertainty of human daily living behaviors to detect abnormal
human behaviors.

III. THE PROPOSED FRAMEWORK

The architecture of the proposed framework is shown in
Fig. 1. It consists of four main modules: (i) human activity
recognition, (ii) human behavior analysis, (iii) mapping to
an ontology, and (iv) abnormal human behavior detection. In
the first module, an LSTM model is used for the activity,
location, and object recognition. This model is able to solve
sequential information modeling in the short term and also
the long term, which is essential in human behavior analysis.
In the second module, the recognized activities, locations, and
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Fig. 1. Architecture of the proposed framework.

objects are analyzed to provide the different contexts of human
behaviors. In the third module, the obtained human activities
and behaviors are mapped to the proposed HAT ontology
to provide shared conceptualized information. In the fourth
module, an abnormal human behavior is detected using MLN,
which enables probabilistic inferences. This module uses FOL
rules about abnormal human behaviors defined by an expert.
The HAT ontology is exploited in defining the FOL rules
such as providing shared concepts of human behaviors and
their contexts as predicates used in FOL rules and discovering
automatically inconsistency among knowledge. Then, a weight
corresponding to the truth degree of rule is added to each
defined FOL rule. Weights are efficiently learned from data
by optimizing iteratively a pseudo-likelihood measure.

A. Human activity recognition

In the human activity recognition module, input data are
classified into a set of labels describing the ongoing activity.
In this study, labels are activity, location, and object used in
the activity. Therefore, the input data are represented as pairs
composed of the data Xi and labels Yi:

D = {(Xi, Yi) | 1 ≤ i ≤ N} (1)

where Xi represents the ith sample data. Yi represents the
vector of labels assigned to the ith sample data. N represents
the maximum number of sample data. Each Xi includes d
attributes while each Yi includes three labels:

Xi = {x1i , x2i , ..., xdi } (2)

Yi = {y1i , y2i , y3i } (3)

where y1i , y2i , and y3i represent respectively the activity,
location, and object labels assigned to the ith sample data.
Each label has a specific number of classes; for example, the

number of classes for the activity label is 17 while it is 8 for
the location label. These labels can be formalized as follows:

y1i ∈ {c11, c12, ..., c1q}
y2i ∈ {c21, c22, ..., c2w}
y3i ∈ {c31, c32, ..., c3z}

(4)

where q, w, and z represent the number of classes for activity,
location, and object labels. To classify input data into these
three labels, the human activity recognition module uses
three models: activity recognition, location recognition, and
object recognition. These models are trained independently
to allow the proposed framework to be used even without
the information of location or object. These models can be
formalized as functions fA, fL, and fO such as:

ŷ1i = fA(Xi)

ŷ2i = fL(Xi)

ŷ3i = fO(Xi)

(5)

where ŷ1i , ŷ2i , and ŷ3i represent the predicted labels for hu-
man activity, location, and object, respectively. fA, fL, and
fO are prediction functions of activity, location, and object
models, respectively. In this study, an LSTM model, a type
of Recurrent Neural Networks (RNN) that includes special
units beside standard units, is used. Each LSTM unit includes
a memory cell that can keep information for a long period.
Three gates called forget gate, input gate, and output gate
are used to control information in this memory cell. This
model is appropriate to model human daily living activities
that are characterized by time-series data. The used LSTM
model consists of 4 layers: (i) LSTM layer with 100 neurons,
(ii) LSTM layer with 50 neurons, (iii) Droupout layer with
fraction rate 0.5, and (iv) Dense layer with the number of
neurons equals with the number of classes. The dropout layer
is used to avoid the overfitting problem by randomly and
temporarily deleting neurons in the hidden layer of the network
at each update of the training phase. In this model, the used



optimization function is Adam while the lost function model
is categorical-crossentropy.

B. Human behavior analysis

In the human behavior analysis module, six components
used in the proposed human behavior definition are extracted
using an algorithm formalized as a function g:

Li, Ai, Oi, Di, Fi, Si = g(ŷ1i , ŷ
2
i , ŷ

3
i ) (6)

where Li represents the list of frequent activities in specific
locations; Ai represents the list of frequent activities in specific
times of the day. Oi represents the list of frequent activities
performed using specific objects. Di represents the list of fre-
quent activities within specific duration. Fi represents the list
of recurrent activities with specific frequencies. Si represents
the list of frequent sequence of activities. In this algorithm,
eight lists of hash maps are generated for each activity; these
lists are associated with locations, objects, times of the day,
minimum duration, maximum duration, minimum frequency,
maximum frequency, and previous activity.

C. Mapping to an ontology

The HAT ontology provides a formal specification of a
shared conceptualization to describe human activities, human
behaviors, and their contexts. This ontology is inspired by
the ConceptNet semantic network, which is a knowledge
graph that makes links between words and phrases in natural
language using labeled edges [9]; e.g., the word earth is linked
with the phrase grow people using the is used for labeled edge.
Figure 2 shows an overview of the HAT ontology modeled
using the Semantic Web Ontology Language (OWL) [26]. It
consists of two upper-level concepts: Event and Object. Six
other concepts, namely: Activity, Location, Time, Physical Ob-
ject, Duration, and Frequency, are derived from the mentioned
two upper-level concepts. Six different relationships, namely:
has place, has frequency, has duration, has time, is used
for, and is a, are defined to connect the concepts defined in
HAT ontology. Table I represents the formalized relationships
between the main concepts in the HAT ontology. The concepts
and relationships among these concepts defined in the HAT
ontology are exploited in defining FOL rules and predicates
used in MLN.
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Object

FrequencyLocation
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is a is a

is a is a
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has place has durationhas frequency has time

is used for

Fig. 2. Overview of the HAT ontology.

TABLE I
FORMALIZED RELATIONSHIPS BETWEEN THE MAIN CONCEPTS IN THE

HAT ONTOLOGY.

Object(x) ∨Event(x) → Thing(x) .
Location(x) ∨Activity(x) → Event(x) .
Activity(a) → ∃o Object(o) ∧ isusedfor(o, a) .
Activity(a) → ∃l Location(l) ∧ hasplace(a, l) .
Activity(a) → ∃t time(t) ∧ hastime(a, t) .
Activity(a) → ∃d duration(d) ∧ hasduration(a, d) .
Activity(a) → ∃f frequency(f) ∧ hasfrequency(a, f) .

D. Abnormal human behavior detection

In the proposed framework, MLN is used to detect abnormal
human behavior detection module. MLN is constructed by
learning weighted FOL rules that enable probabilistic rea-
soning within a knowledge representation framework. It is a
probabilistic logic that applies the foundations of a Markov
network to FOL to allow probabilistic inferences. From the
perspective of probability, MLN provides a compact language
to define extensive Markov networks with the ability to
integrate a wide range of knowledge into Markov networks.
From the perspective of FOL, MLN allows handling uncertain,
imperfect, and even contradictory knowledge.

MLN is defined as weighted FOL rules, where weights
are real values representing the truth degree of the rules. In
MLN, based on the weight assignment [27], the FOL rules are
classified into two categories: soft rules and hard rules. MLN
is formalized as follows:

Definition 1: MLN L is a set of pairs (Fj , wj), where
Fj is a FOL rule, and wj is a real number. A Markov
network MLC where C represents a finite set of constants
C = {c1, c2, ..., c|C|} is defined as follows [27]:

1) Each possible grounding of each predicate appearing in
L has one binary node. If the ground atom is true, the
value of the node is 1; otherwise, it is 0.

2) Each possible grounding of rule Fj in L has one feature.
If the ground rule is true, the value of this feature is
1; otherwise, it is 0. The weight of the feature is wj ,
associated with Fj in L.

where the groundings of a rule are formed simply by replacing
its variables with constants in all possible ways [28]. There
is an edge between two nodes of MLC if and only if the
ground predicates corresponding to them appear together at
least in one grounding of rules in L. MLN can be considered
as a template for constructing Markov networks. It generates
different Markov networks with different sizes using given
different sets of constants. Each Markov network composed
of an undirected graph G and a set of potential functions φj .
Each variable is represented as a node in the graph. Each clique
in the graph has a potential function, which is a non-negative
real-valued function of the state of the corresponding clique
[27]. All generated Markov networks have specific regularities
in structure and parameters given by the MLN. A set of ground
atoms makes a possible world in MLN. All MLN possible
worlds are true with a probability according to the number



of rules they satisfy and the weights of these rules. An MLN
can represent hard constraints by assigning an infinite weight
to some rules; if a possible world violates these rules, the
probability of that possible world will be zero. The probability
distribution over a set of possible worlds Z = {Z1, Z2, ..., Zr}
is calculated as follows [27]:

P (Z = z) =
1

M

∏
j

φj(z{j})nj(z) (7)

where M is normalization factor. nj(z) represents the number
of true grounding of Fj in the possible world z. The state,
also called truth values, of the ground atoms appearing in Fj

is represented using z{j}. It is worth mentioning that MLN
is represented as the products of potential functions in Eq. 7
however it could be represented as log-linear models, which
each potential function replaced by an exponentiated weighted
sum of features of the state, i.e., φj(z{j}) = ewj , as follows:

P (Z = z) =
1

M
exp(Σjwjnj(z)) (8)

In domains with a combination of hard and soft constraints
such as human activity recognition and abnormal human
behavior detection, MLN can be used as the most appropriate
approach; some rules with certainty are considered as hard
constraints, and others are considered as soft constraints. The
learning task of the MLN can be categorized into two subtasks:
(i) structure learning and (ii) weight learning. The structure can
be provided by rules written by human experts while weight
learning is an optimization problem that requires learning
data. In this paper, an expert defines the FOL rules based
on HAT ontology, and weights are learned from data by
optimizing iteratively a pseudo-likelihood measure. The total
number of defined rules to detect abnormal human behaviors
is 433. Table II reports the main predicates used in these FOL
rules. If one of the predicates represented abnormal human
behaviors is inferred from reasoning on weighted FOL rules
used in MLN, the framework detects an abnormal behavior.
Since the different types of abnormal human behaviors are
represented using different predicates, the type of abnormal
human behavior is detected when an abnormality is identified.

TABLE II
LIST OF THE MAIN PREDICATES USED IN THE DEFINED FOL RULES.

Act(activity, time)
Loc(location, time)
Obj(object, time)
AbnormalActLoc(activity, location, time)
AbnormalActObj(activity, object, time)
AbnormalActT ime(activity, timeoftheday, time)
AbnormalActDur(activity, duration, time)
AbnormalActFreq(activity, frequency, time)
AbnormalSeqAct(activity1, activity2)

Equation 9 shows an example of a standard FOL rule in
MLN, which is a weighted FOL rule:

w Act(Eating, time) ∧ Loc(Bedroom, time)
⇒ AbnormalActLoc(Eating,Bedroom, time)

(9)

where w represents the weight of the rule, which is obtained
by weight learning from data. The mentioned rule consists of
three predicates: Act(Eating, time), Loc(Bedroom, time),
and AbnormalActLoc(Eating,Bedroom, time). It is also
composed of two constants: Eating and Bedroom and one
variable, which is time. Merging this type of rules makes a
Knowledge Base (KB) on abnormal human behaviors used
in the proposed framework; i.e, a list of rules modeling the
conditions to discriminate an abnormal behavior are provided
in this framework. The number of conditions may differ for
each type of abnormal human behavior.

The hybrid nature of MLN enables it to overcome the lim-
itation of data-driven approaches as well as rule-based ones.
In contrast to data-driven approaches, MLN can consider the
activity sequence and temporal relationships among activities.
Additionally, the contexts of human activity and behaviors
are not considered in the data-driven approaches while MLN
considers them. In terms of performance, MLN can perform
better in comparison with rule-based approaches as the unused
rules are removed in the weight learning process. Therefore
MLN can make inferences more efficiently than rule-based
approaches. The time consuming of reasoning depends on
the number of rules, in general, if the number of rules is
reduced, the time consuming will also be decreased. Moreover,
as opposed to pure rule-based approaches, it can deal with
some of the unreliability produced in the classification since
MLN can manage that during the weight-learning process. In
the proposed framework, when the LSTM model can hardly
predict one label describing ongoing activity, it might create
false abnormality conditions. However, in the training phase
of MLN, its effects are mitigated using a lower weight. It is
worth mentioning that, in most cases, the misclassifications
are rare, and the weight of rules depends on the rate of mis-
classification. Hence MLN can fully cover the classification
errors only if they are common.

Although MLN provides high performance in specific con-
texts, it has some limitations such as limitations of knowledge
representation using FOL. MLN also has limitations to model
high-level activities. In addition, the inability to automatically
discover inconsistencies among represented knowledge, lack
of domain knowledge, and hierarchical association of domain-
related concepts are other limitations of MLN [10]. Due to
these limitations and the ability of ontology to deal with them,
in the proposed framework, HAT ontology is used before MLN
to allows offering consistent knowledge, temporal modeling,
contextual modeling, high-level activity modeling, and enable
probabilistic inferences in a unified framework.

IV. EXPERIMENTS AND RESULTS

In this section, the performance of the proposed framework
are evaluated in terms of precision, recall, F-measure and
accuracy on the Orange4Home dataset [11] and the HAR
dataset using smartphones [12], benchmarks for human ac-
tivity recognition. To implement and evaluate the framework,
a computer equipped with an Intel i7-8650U 2.11GHz CPU
with 32GB RAM is used.



A. Description of the datasets

Orange4Home dataset [11] includes data collected from 236
sensors that capture information about the use of electrical
equipment, water consumption, operation of doors, etc. The
sensors are placed in the different locations of an instrumented
home. One occupant was involved in this dataset to do
seventeen daily living activities during four consecutive weeks
of working days. The total data recording is around 180 hours.
The Orange4Home dataset consists of four main contexts
of human activities, namely: identity, time-of-day, place, and
activity. Identity considers the literal sense of an occupant and
also his social role in the home. Time-of-day takes into account
temporal information such as date and time. Place considers
a geographical location in the home such as kitchen. Activity
takes into account a set of actions that the occupant performs.
HAR dataset using smartphones [12] includes data collected
from a waist-mounted smartphone with embedded inertial
sensors such as accelerometers and gyroscopes. The data
capture rate is fifty Hertz. Thirty participants were involved
in this dataset to do six activities, namely: (i) Walking, (ii)
Walking-upstairs, (iii) Walking-downstairs, (iv) Sitting, (v)
Standing, and (vi) Laying.

B. Performance of human activity recognition module

The LSTM model used in the human activity recognition
module is evaluated in terms of precision, recall, F-measure,
and accuracy. To evaluate the model, the batch size is set to 50
instances, and the epoch number is set to 300 iterations. The
internal architecture of the LSTM model and the time step of
the sequences are heuristically set.

Since the Orange4Home dataset includes the activity and
location labels, two LSTM models are independently used to
classify input data into activity and location labels. The perfor-
mance obtained using the LSTM model on the Orange4Home
dataset are shown in Table III. The latter shows that the
performance results obtained in the case of activity recognition
and location recognition are more than 95% in terms of
precision, recall, F-measure, and accuracy. One can observe
that the performance results in the case of location recognition
are better than those in the case of activity recognition. This
can be explained by the fact that the number of samples in the
case of location is higher than the number of samples in the
case of activity; therefore, the LSTM model can be trained
better in the case of location. Moreover, the classes in the
case of location are more distinguishable compared with those
in the case of activities. LSTM model is compared with two
baseline models [29], namely: MultiLayer Perceptron (MLP)
and the SVM model, on the Orange4Home dataset, see Table
IV. The results show that the proposed LSTM model obtains
better results in terms of F-measure. This is explained by the
fact that the LSTM model is an appropriate model for time-
series data while MLP and SVM models do not consider the
activity sequences.

The HAR dataset using smartphones [12] includes only
the activity label; therefore, one LSTM model is used for
human activity recognition. The performance obtained using

TABLE III
PERFORMANCE ACHIEVED USING THE LSTM MODEL ON THE

Orange4Home DATASET.

Precision Recall F-Measure Accuracy
Activity recognition 96.00 95.71 95.85 95.71
Location recognition 97.98 97.89 97.93 97.90

TABLE IV
PERFORMANCE COMPARISON OF THE LSTM MODEL WITH BASELINES IN

THE CASE OF ACTIVITY RECOGNITION ON THE Orange4Home DATASET.

Baselines [29] Proposed model
Evaluation Metric MLP SVM LSTM

F-measure 77.85 89.60 95.85

the LSTM model are shown in Table V. The results demon-
strate that the model achieves more than 94% in terms of
precision, recall, F-measure, and accuracy, which demonstrates
its effectiveness. Moreover, the LSTM model is compared
with two baseline models [30], namely: K-Nearest Neighbors
(KNN) and SVM, on the HAR dataset, see Table VI. The
results show that the LSTM model performs better compared
with the KNN and SVM models and obtains the highest
average F-measure with 94.05%.

C. Performance of abnormal human behavior detection mod-
ule

The MLN used in the abnormal human behavior detection
module is implemented using Tuffy [31], an open-source MLN
inference engine. The abnormal human behavior detection
module is evaluated in terms of precision, recall, F-measure,
and accuracy.

The Orange4Home dataset does not include any infor-
mation about objects. Therefore, abnormal behaviors related
to objects are not evaluated in the case of this dataset.
The performance evaluation on this dataset is based on
five types of abnormal human behaviors: (i) recurrent un-
expected activities in specific locations, AbnormalActLoc;
(ii) recurrent unexpected activities in particular times of the
day, AbnormalActT ime; (iii) recurrent unexpected activities
within particular ranges of duration, AbnormalActDur; (iv)
recurrent unexpected activities with particular frequencies per

TABLE V
PERFORMANCE ACHIEVED USING LSTM MODEL ON THE HAR dataset.

Precision Recall F-Measure Accuracy
Activity recognition 94.08 94.03 94.05 97.98

TABLE VI
PERFORMANCE COMPARISON OF THE LSTM MODEL WITH BASELINES ON

THE HAR dataset.

Baselines [30] Proposed model
Evaluation Metric K-NN SVM LSTM

F-measure 90.16 93.79 94.05



TABLE VII
ABNORMAL HUMAN BEHAVIOR DETECTION PERFORMANCE OBTAINED USING SVM AND THE PROPOSED FRAMEWORK ON THE Orange4Home DATASET.

SVM Proposed Framework

Abnormality type Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy
AbnormalActLoc 95.22 95.11 95.14 95.11 89.40 94.63 91.94 95.03
AbnormalActT ime 98.66 98.66 98.66 98.66 94.98 99.53 97.20 98.28
AbnormalActDur 81.47 79.59 74.53 79.59 72.00 97.29 82.75 94.86
AbnormalActFreq 66.45 81.52 73.22 81.52 81.25 76.47 78.78 93.06
AbnormalSeqAct 76.61 72.85 72.71 72.85 87.76 70.37 78.11 86.12
Average 83.68 85.54 82.85 85.54 85.08 87.66 85.76 93.47

TABLE VIII
ABNORMAL HUMAN BEHAVIOR DETECTION PERFORMANCE OBTAINED USING SVM AND THE PROPOSED FRAMEWORK ON THE HAR dataset.

SVM Proposed Framework

Abnormality type Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy
AbnormalActDur 80.98 84.89 84.17 84.17 96.15 96.15 96.15 99.15
AbnormalSeqAct 62.04 77.31 70.24 70.24 90.44 94.53 92.44 94.69
Average 71.51 81.10 77.20 77.20 93.29 95.34 94.29 96.92

day, AbnormalActFreq; and (v) recurrent unexpected se-
quences of activities, AbnormalSeqAct, see Table VII. The
HAR dataset includes only information about activities; there-
fore, only two types of abnormal human behaviors, namely:
(i) recurrent unexpected activities within a particular ranges
of duration, AbnormalActDur; and (ii) recurrent unexpected
sequences of activities, AbnormalSeqAct, are evaluated on
this dataset, see Table VIII.

Since the used datasets do not consist of abnormal activities,
an algorithm is implemented to inject different abnormalities
to simulate the presence of these abnormal human behavior
types. This algorithm randomly selects 30% of sample data
and injects abnormal human behavior randomly. For instance,
to inject AbnormalActLoc abnormal human behavior type,
the algorithm randomly selects a value between 0 and 1 for
each sample data; if the value is less than 0.3, this data sample
will be selected to change. Afterward, the algorithm randomly
chooses another value between 0 and 1; if the value is less
than 0.5, the location of that sample data will be changed to an
unexpected location according to the activity. Otherwise, the
activity of that sample data will be changed to an unexpected
activity according to the location. Unexpected location and
activity are obtained using the list of the normal locations for
each activity.

The rules used for detecting abnormal behavior are intrin-
sically deterministic. However, in the proposed framework,
abnormal behavior detection is coupled with a machine-
learning model, LSTM model, that produces probabilistic
results; hence, it might cause non-determinacy in abnormal
behavior detection. In other words, if the LSTM model falsely
predicts a label for a sample data; the abnormal behavior
detection may produce a false detection; the LSTM model can
hardly predict leaving activity, which creates false abnormality
conditions and MLN can eliminate false positives created by
the classification errors only if they are common. This can be
observed through the results of Table VII. The abnormal hu-

man behavior detection module performs the best in the case of
AbnormalActT ime abnormality type, because, it only relies
on one output of the LSTM model. Moreover, as this model
provides better prediction in the case of location recognition
than the activity recognition; consequently, abnormal behavior
detection performs better in the case of AbnormalActLoc
in comparison with AbnormalActDur, AbnormalActFreq,
and AbnormalSeqAct. This can be explained by the fact that
detecting AbnormalActLoc abnormality type relies on two
outputs from LSTM model, one from the activity recognition
and another one from the location recognition while detecting
the other three abnormality types rely on multiple activity
recognition. It is similar for the HAR dataset, see Table VIII.
For the HAR dataset, the recall rates of abnormal behaviors are
similar for both AbnormalActDur and AbnormalSeqAct
types of abnormality, however, the precision rate is better in the
case of AbnormalActDur abnormality type in comparison
with AbnormalSeqAct abnormality type. In the former, the
LSTM model only affects the starting and ending points of
an activity period; however, in the latter, the LSTM model is
involved in the prediction of all points of the activity period.
Hence it might produce more prediction errors, which will
result in more false positives in abnormal behavior detection.

The proposed framework is compared with an baseline data-
driven approach based on the SVM model, the most common
model used for abnormality detection [32], [33]. Table VII
shows the comparison results on the Orange4Home dataset
while Table VIII presents those results on the HAR dataset.
One can observe similar evaluation results in the cases of
abnormalities related to the location and time of the day.
However, the proposed framework has better performance
compared to the SVM-based approach in the case of abnor-
mality related to duration, frequency, and activity sequence,
called respectively AbnormalActDur, AbnormalActFreq,
and AbnormalSeqAct. These results can be explained by the
fact that the SVM model fails to consider the sequence of



activities, and also fails to consider the contexts of human
behaviors, such as the frequency and duration of human activ-
ities whereas using the proposed framework allows taking into
account human activity sequences and also human behavior
contexts.

V. CONCLUSION

In this paper, a hybrid context-aware framework is proposed
to detect abnormal human daily living behavior. An LSTM
model is used to classify input data into appropriate human
activities by predicting a set of labels describing the ongoing
activity. The predicted labels are then analyzed to capture
six components used in the proposed definition of human
behavior. The obtained human activities and behaviors are
conceptualized using the HAT ontology, which is proposed to
provide a formal specification of a shared conceptualization to
describe abnormal human activities. Afterward, MLN is used
to detect abnormal human behaviors. The proposed framework
has been evaluated on two datasets and compared with an
baseline data-driven approach based on the SVM model.
The obtained results demonstrate the ability of the proposed
framework to detect abnormal human behaviors with high
performance. These results also illustrate the superiority of
the proposed framework to the baseline approach. In terms
of research perspectives to this study, an interesting topic is
increasing the capability of this framework using probabilistic
Answer Set Programming (ASP). Another research direction
to explore is to provide a recommendation system to enhance
the quality of people’s lives.
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