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Abstract—Machine learning models are vulnerable to very
small adversarial input perturbations. Here, we study the ques-
tion of whether the list of predictions made by a list of models
can also be changed arbitrarily by a single small perturbation.
Clearly, this is a harder problem since one has to simultaneously
mislead several models using the same perturbation, where
the target classes assigned to the models might differ. This
attack has several applications over models designed by different
manufacturers for a similar purpose. One might want a single
perturbation that acts differently on each model; like only mis-
leading a subset, or making each model predict a different label.
Also, one might want a perturbation that misleads each model
the same way and thereby create a transferable perturbation.
Current approaches are not applicable for this general problem
directly. Here, we propose an algorithm that is able to find a
perturbation that satisfies several kinds of attack patterns. For
example, all the models could have the same target class, or
different random target classes, or target classes designed to be
maximally contradicting. We evaluated our algorithm using three
model sets consisting of publicly available pre-trained ImageNet
models of varying capacity and architecture. We demonstrate
that, in all the scenarios, our method is able to find visually
insignificant perturbations that achieve our target adversarial
patterns. 1

Index Terms—adversarial examples, multi-model attack, model
set attack, DeepFool, deep neural networks

I. INTRODUCTION

Several studies have demonstrated that current deep learning

models are highly sensitive to small adversarial input perturba-

tions [1], [2]. The original formulation of the problem assumes

that we are given a model and a correctly classified example.

The attacker wishes to find a minimal input perturbation that

results in the prediction of any wrong label (untargeted attack)

or a given desired label (targeted attack). In the past few

years, a large number of methods have been proposed to create

better adversarial examples [3], [4] and to provide defense

mechanisms [5], [6]. Yuan et al. provide a recent overview [7].

We study a more general version of this problem, where

we are given a set of models trained on the same multi-class

classification problem, as well as an input example. We assume

that our set contains independently trained standalone models.

That is, our focus is not on model ensembles. We could

envisage the models to be products of different manufacturers.

This study was supported by the National Research, Development and
Innovation Office of Hungary through the Artificial Intelligence National
Excellence Program (grant 2018-1.2.1-NKP-2018-00008) and by grant
TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology,
Hungary.

1To encourage reproducible research, the code of our algorithm is made
available at http://github.com/istvanmegyeri/ARMS

Fig. 1. Left: original image (prediction: ’Gila monster’); Middle: multi-
model perturbation; Right: adversarial image (predictions: MobileNetV2:
’bison’, MobileNet: ’balloon’, NASNetMobile: ’pole’, DenseNet121: ’acorn’,
DenseNet169: ’washbasin, handbasin, washbowl, lavabo, wash-hand basin’,
DenseNet201: ’custard apple’).

Nevertheless, our results are applicable to any set of models.

We assume that the models are completely known; in other

words, we are concerned with the white box scenario.

Our formulation allows for a wide variety of attacks on a

given model set. The attacker may want every model to make

the same mistake or (if, for example, hired by one of the

manufacturers) to make different mistakes. The scenario where

all of the models are made to predict the same wrong label

is also related to the problem of finding adversarial examples

for ensembles of models in the hope that these examples will

also fool other unseen black box models [6], [8], [9]. In our

version, however, every single model will make the given

wrong prediction; not only the ensemble as a whole, where

it might be enough to mislead, for example, the majority of

the models (depending on the ensemble decision method).

An attacker may also be a nihilist who wants to achieve

chaotic behavior. One way of doing this would be to make

every model predict different random labels for the same input.

One might think that a single perturbation that satisfies such

harsh conditions should be extremely hard to find or might

not even exist. Figure 1 shows such a perturbation, found

by our algorithm. In a recent work, Song et al. investigated

random target labels [10] in a multi-label classification setting.

However, our setting is more challenging because we have a

set of models trained on the same multi-class classification

task. For this reason, the intersection of arbitrary classes is

expected to be smaller than in a multi-label problem.

We propose a heuristic iterative algorithm to solve our

multi-model adversarial problem. The algorithm is inspired by

the DeepFool method [3] in that we also guide our search with

the help of linear approximations of decision boundaries. We

evaluated our method over the ImageNet dataset [11] using

three sets of pre-trained models. We selected model sets so
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that we could evaluate different aspects of model diversity

such as architecture and capacity. Model capacity is interesting

to consider, since it has been shown that capacity alone could

increase the robustness of individual models [5]. The diversity

of the model architectures within the set is another important

factor. For example, in [9], Pang et al. used the ensemble of

diverse models to train a robust ensemble classifier. We expect

that the diversity and the capacity of the models play a key role

in robustness, and a set that is diverse along both dimensions

is harder to attack.

We demonstrate that our algorithm can find feasible adver-

sarial perturbations that fool all the models according to the

given pattern in all the scenarios we examined. The adver-

sarial target patterns include predicting the same wrong label,

predicting different randomly selected labels, and predicting a

set of labels that are designed to be maximally inconsistent.

We found that model sets that include models with different

architectures have a somewhat higher robustness than sets with

similar architectures but with different capacity. However, in

each case, the perturbations we found are imperceptible to the

human eye.

In a recent paper [12], we made preliminary steps towards

tackling the multi-model problem. Our original contributions

here are the following:

1) Formalizing the targeted multi-model adversarial pertur-

bation problem.

2) Proposing and evaluating several novel algorithm vari-

ants for solving the multi-model adversarial perturbation

problem. These include the application of the pseudo-

inverse of the constraint matrix, the application of the

aggregated gradient instead of the maximal distance

direction, the introduction of a step size limit to reduce

the perturbation size, and the introduction of a candidate

class list to manage problems with many classes.

3) Evaluating the algorithm over ImageNet using pre-

trained publicly available deep networks.

4) Evaluating several adversarial patterns including the

random label assignment and two variants of ‘hard’

label assignments where the idea is to assign different

target labels to different models so that the required

perturbation is maximally inconsistent.

The outline of the paper is as follows. In Section II we

describe our algorithms in detail. In Section III we present

several designs for creating adversarial target pattern. In Sec-

tion IV we present our experimental evaluation. Section V

concludes the paper.

II. ATTACKING MODEL SETS

Let us first introduce our notations. As mentioned in the

Introduction, the problem is defined over a set of models and

an example to perturb. The example is given in the form (x, y),
where x ∈ R

d is the feature vector, and y ∈ C is its true label.

The set C contains the class labels and Cadv = C \ {y} is the

set of possible adversarial target labels for x.

The set of multi-class models is given as F = {f1, . . . , fm},
where fi : R

d → R
|C|. That is, the models have one

output for every possible class label. We assume that all the

models are trained over the same multi-class problem. The

classification of a given input x by a model fi is given by

ki(x) = argmaxj fi,j(x), where fi,j(x) is the jth element of

the vector fi(x).

Although not strictly required by the framework, we note

that in our implementation we used the unnormalized output

(that is, the output without the softmax normalization) as our

models fi. When it is possible, this makes sense, because

the normalization simply makes the gradients flatter without

changing the ranking of the labels.

The predicted labels of the models are given by K(x) =
(k1(x), . . . , km(x)) ∈ Cm. In this study, we define the set

Cmadv as the set of all the possible adversarial patterns for

the model set F . Note that this way, we require here that

all the models are assigned an adversarial label. This is not a

severe restriction, one could also allow or even require some

models to retain their true labels. An attacker will probably

have further specific restrictions on the desired target patterns,

so the set of desired adversarial patterns are given as a subset

of all the patterns as P ⊆ Cmadv. Formally, we are looking for

a perturbation r∗ that has minimal L2 norm and makes the

classifiers predict one of the desired patterns:

r∗ = argmin
r
‖r‖2, subject to K(x+ r) ∈ P . (1)

The constraint of this optimization problem in (1) can be

unrolled as a system of equations for a given pattern p ∈ P
as

k1(x+ r) = p1
...

km(x+ r) = pm.

(2)

We can transform this system of equations into a system of

inequalities using the fact that the equations require that the

adversarial label correspond to the maximal element in the

model’s output. Accordingly, for the ith equation ki(x+ r) =
pi, let k̂i(x) = argmaxj 6=pi

fi,j(x) be the label that is the

most likely label among the labels other than pi. This gives

us the equivalent system of inequalities

f1,k̂1(x+r)(x + r) ≤ f1,p1
(x+ r)

...

fm,k̂m(x+r)(x+ r) ≤ fm,pm
(x+ r),

(3)

where the equality holds when a point x + r is exactly on

the decision boundary between classes pi and k̂i(x+ r). This

can be considered as a generalization of the formalization of

the DeepFool [3] algorithm where, instead of a system of

inequalities, we have just a single inequality. In other words,

in the model set there is only one model.

Due to the nonlinearities of the functions fi,j(x + r),
this problem cannot be solved directly. As in the DeepFool

algorithm, we substitute these functions with their first order

approximations around x, that is, fi,j(x + r) ≈ fi,j(x) +



Algorithm 1 Multi-model adversarial perturbation

1: Input: example x, models F , adversarial patterns P
2: x0 ← x
3: i← 0
4: while i < imax and K(xi) /∈ P do

5: for pk ∈ P do

6: rk ← approximateQP(xi, pk)

7: end for

8: r ← rargmink ‖rk‖2
⊲ rk with the smallest norm

9: r ← min(η/‖r‖2, 1) · r ⊲ enforce ‖r‖2 ≤ η
10: xi+1 ← xi + r
11: i← i + 1
12: end while

13: return xi ⊲ the perturbed input

∇fi,j(x)T · r, which results in the following system of in-

equalities:

∇(f1,k̂1(x)
(x) − f1,p1

(x))T · r ≤ f1,p1
(x) − f1,k̂1(x)

(x)
...

∇(fm,k̂m(x)(x) − fm,pm
(x))T · r ≤ fm,pm

(x) − fm,k̂m(x)(x),
(4)

which is a set of linear constraints. The objective of the

optimization problem is quadratic, which means that we have

a quadratic programming (QP) problem.

A naive view would be to solve this problem with an

efficient QP solver, and—since the linear constraints only

approximate the actual constraints—iterate this procedure until

the original set of constraints is satisfied. Using a QP solver,

however, introduces certain problems. First, although efficient

solvers are known, we might need to run them many times,

which might become inefficient. Second, if there is no feasible

solution for the linear approximation, the original problem

might still have one, so we should create new approximations

for each iteration. For these reasons, instead we used three

heuristics to approximate the solution of the QP problem. We

discuss these later on in more detail.

We are now ready to present the pseudocode of the algo-

rithm, represented as Algorithm 1. We assume that we are

given an example x. The models in F have to predict one of

the patterns in P . Recall that if there are more than one pattern

in P , satisfying any of these patterns is considered a success.

The outer loop runs until this goal is met (or we reach the

maximal number of iterations).

The inner loop iterates through the patterns, and calculates

the heuristic solution of the QP that is defined by the particular

pattern. After calculating these approximate solutions rk, the

one with the smallest norm is selected. If the magnitude

of this perturbation is larger than the allowed maximum

step size η, then the perturbation is normalized. This step

offers some protection to the algorithm in cases where the

linear approximation has a large error. This perturbation size

restriction technique is partly related to trust region methods.

Here, we use a fixed η parameter that controls the size of

the trusted region in a static manner. Changing η dynamically

could offer further improvements [13].

A. Heuristics to Solve the Inner QP Problem

Let us now describe three implementations of the method

APPROXIMATEQP that is used in the inner loop of Algo-

rithm 1. Let us first normalize the inequalities in (4) by divid-

ing both sides by ‖∇(fi,k̂i(x)
(x)−fi,pi

(x))‖2. Let us introduce

a new notation to represent the normalized inequalities. On the

left hand side, let

wi =
∇(fi,k̂i(x)

(x)− fi,pi
(x))

‖∇(fi,k̂i(x)
(x) − fi,pi

(x))‖2
(5)

and on the right hand side, let

f ′
i,pi

=
fi,pi

(x)− fi,k̂i(x)
(x)

‖∇(fi,k̂i(x)
(x) − fi,pi

(x))‖2
. (6)

With these notations, equation i becomes wT
i · r ≤ f ′

i,pi
.

Note that the value f ′
i,pi

represents the gap between the

class that is currently predicted by model fi and the desired

adversarial target class pi. Thus, we know that at the beginning

of the attack f ′
i,pi
≤ 0 and the equality holds exactly when the

predicted class is already the target class. From now on, all

the heuristics below will ignore the models where the target

class is already predicted, and the algorithms will work only

with those equations that still have a negative right hand side.

1) MAX: Here, the idea is that we first identify the model

that has the largest gap between its target class and the current

class. We then approximate the minimal perturbation that

closes this gap, that is, that ’fixes’ this model. The idea is that

this way we first solve the hardest model and then gradually

adjust for the rest of the constraints. The approximation takes

the linear approximation of the model, for which the minimal

perturbation can be computed in closed form. The formulation

of this heuristic is

j = argmax1≤z≤m−f ′
z,pz

rmax = −f ′
j,pj

wj .
(7)

Note that this computation is very similar to that of DeepFool,

since here we have a single model to consider (the one with

the maximal gap), and on that model we essentially run a

DeepFool step.

2) AVG: Here, we compute a direction that takes into

account all the models, instead of just choosing the one with

the maximal gap. Recall, that the vector wi represents the

direction of the minimal perturbation required to ’fix’ model

i, and ‖wi‖2 = 1 due to the normalization. We first compute

the average of these directions, weighted by the gap values.

We then return a perturbation vector that points in this average

direction. The length of the returned vector is computed to be

the maximum of the gap values. The reason is that this way we

are guaranteed not to overshoot, because this step size is the

minimal step size that potentially changes all the predictions.

If we use a smaller step size, there will be at least one model

that will not predict the target label. The formulation is

wavg =
∑m

z=1−f ′
z,pz

wz

j = argmax1≤z≤m−f ′
z,pz

ravg = −f ′
j,pj

wavg

‖wavg‖2

.
(8)



3) PINV: When we have only one model, the minimal

perturbation is computed as one step of the Newton method,

as done by DeepFool and by the MAX heuristic above as well.

We could also try to generalize this idea to multiple models by

taking the set of inequalities in (4) and demanding that equality

holds in each inequality. Since the number of variables will be

usually larger than the number of equalities, the system will be

underdetermined. We can then still solve this set of equalities

using the pseudo-inverse technique as applied in [10].

This heuristic will return a perturbation that points towards

the intersection of all the decision boundaries, which may

or may not be the smallest perturbation among those that

satisfy (4). In pathological cases, this intersection might be

extremely far from the optimal perturbation direction. In fact,

there might not even be such an intersection. Still, we include

this algorithm for comparison with [10]. Also this algorithm

could potentially be fast (ignoring pathological corner cases),

since in every iteration we try to solve every constraint.

Consider the matrix W = (w1, · · · , wm)T and vector F =
(−f ′

1,p1
, · · · ,−f ′

m,pm
)T . The system of equations is then W ·

r = F , so the perturbation returned by the PINV algorithm is

given by

rpinv = W+ · F, (9)

where W+ = (WTW )−1WT (assuming W has full rank) is

the pseudo-inverse of W . Note that it is known that rpinv will

be the minimum norm solution if there is a solution, and it

will represent an approximation with minimal error if there is

no solution [14].

B. Time complexity

The number of iterations of the algorithm depends on many

factors and hyperparameters. We evaluate this experimentally

later on. Here, we focus on the time complexity of a single

iteration. To perform one iteration, the linear approximation in

(4) needs to be calculated for every p ∈ P . For each pattern

p, we need to compute the prediction and the gradient of each

model, which means that we need to propagate one forward

pass and one backward pass through every network, if the

models are feedforward neural networks. Thus, the cost of

one iteration is 2 · m · |P| network propagations. If P has

only one element then the time complexity depends only on

m (the number of models). Note that these calculations can be

parallelized across the models as well as the patterns, and only

the forward pass needs to be performed before the backward

pass.

III. ADVERSARIAL TARGET PATTERNS

Our algorithm was formulated as a targeted attack, where

the acceptable adversarial patterns are given in the pattern set

P . This set might contain a single pattern, which is similar to

the classical targeted attack. Although it would be possible

to formulate a modified algorithm for the untargeted case,

one can achieve a similar effect by including several carefully

selected patterns in the target set.

In the following, we describe and motivate our four different

designs for the pattern set that we will use in our experimental

evaluation. We assume that we are given a fixed input x and the

patterns are designed as a function of this input. Our patterns

include three targeted patterns and an untargeted one.
Some of the designs are based on a ranking of class labels

C, based on the output of all the models for a given input

x. For a given input, each individual model defines a ranking

of the class labels based on the ordering of the values of the

corresponding output elements. The highest ranking class is

predicted by the model. The idea is that we wish to identify

those class labels that are ’similar’ to the true class label and

hence that are ranked high by most of the models. Further,

we are also interested in those labels that are treated as very

irrelevant by most of the models.
The ranking of the labels can be defined as a suitable

aggregation of the rankings of the individual models. Formally,

the ranking of a class label c ∈ C for a given example x and a

classifier fi is denoted by qi,x(c) ∈ {0, . . . , |C| − 1}. In other

words, qi,x(c) is the rank of label c in the ranking defined by

fi(x). For the predicted class label we have qi,x(ki(x)) = 0.

Note that any ranking aggregation could be used to determine

the common ranking. Here we used the Rank Product [15]

aggregation method, where the ranking of a label c is defined

by the ordering of the geometric mean rankings

RPx(c) =

m∏

j=1

qj,x(c)
1/m, ∀c ∈ C (10)

A. Random

Prandom contains only one element, that is, it defines a

targeted attack. This single pattern contains randomly gener-

ated adversarial class labels for all of the models. This attack

should be hard because the perturbed input should end up

in the intersection of the different unrelated classes of the

different models.

B. Reverse

Our goal here is to define a target pattern that is even harder

than the random pattern. Preverse will also contain only a

single pattern. To create this pattern, we used the ranking of the

class labels described above. From this ranking, we selected

the label that ranks the lowest, namely the label that is the

most irrelevant among the model set. We then demand that

the pattern contain this label for all the models.

C. Diverse

As another attempt to define a pattern that is maximally

hard, here Pdiverse has one pattern that contains labels that

rank low and, in addition, that are also inconsistent with each

other. We again use the low end of the ranking of the labels but

this time we consider the last 10 labels. Next, we compute the

adversarial direction for this ten labels for every model, using

a single linear approximation (DeepFool) step. We now have

10 directions for all the models. Out of this set, for every

model we select the direction such that the set of selected

directions over all the models form a maximally diverse set.

We measured the diversity of a given candidate pattern with the

help of the average cosine similarity of every pair of directions.

The pattern with the lowest value is selected. In our evaluation,

we performed an exhaustive search to find the most diverse

pattern.



TABLE I
NETWORKS USED IN THE EVALUATION

Model Parameters Depth Correctly Classified

MobileNetV2 [16] 3.5M 88 7153

MobileNet [17] 4.2M 88 7257
NASNetMobile [18] 5.3M - 7832

DenseNet121 [19] 8.1M 121 7729

DenseNet169 [19] 14.3M 169 8095

DenseNet201 [19] 20.2M 201 8331

D. Consistent

Here, we define an untargeted attack. This case is excep-

tional for two reasons. First, we include more than one pattern

in Pconsistent. Second, and most importantly, in this case the

pattern set will be dynamic; that is, we will update the set of

target patterns in every iteration using the method described

here. For clarity of presentation, this step is not included in

the pseudocode of Algorithm 1.

The patterns can just target the same adversarial label for

every model. In other words, all the models are required

to predict the same, adversarial label. We used the top 10

adversarial labels in each cycle. The ranking of the labels is

updated in each iteration using the Rank Product method and

the (already perturbed) input xi.

IV. EXPERIMENTS

We did experiments on models trained over the Ima-

geNet [11] dataset that contains RGB images with varying

sizes. The images are labeled with one of 1000 class labels.

In the preprocessing stage, a 224 × 224 image was cropped

from the middle of every original image.

Table I lists the pre-trained models we used along with

references. The table contains basic information about the

architecture of the networks. To evaluate our multi-model

algorithm, we created model sets using these individual

models. The mobile set includes the three mobile networks.

The members of the mobile set have a similar capacity,

that is, they have a similar number of parameters. However,

they have rather different network architectures. MobileNet

uses depthwise separable convolutions and MobileNetV2 uses

residual connections as well. NasNetMobile contains non-

human-designed blocks. The dense set contains the three

variants of DenseNet. These models have a similar architecture

but have a different capacity. Lastly, we also experimented

with the union of the mobile and dense sets that contain all

the six models. We will refer to this set as ‘All’.

During our experiments, we evaluated the individual models

as well as the three model sets. In our evaluation, we worked

with a set of 10,000 randomly selected images taken from the

training set for the individual models. The subset was the same

for every model. Out of this set of examples, we removed those

examples that were misclassified by the respective model.

Table I shows the number of examples that were classified

correctly. These examples form the evaluation set for the given

model. Due to their larger cost, the model sets were evaluated

on a smaller set, that contains 100 randomly selected examples

taken from the training set. Here, we also used the same

TABLE II
MODEL SETS

Model set Correctly Classified

Mobile 53

Dense 74
All 52
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Fig. 2. Perturbation size and number of iterations for the individual models
as a function of maximum step size (η). The models are shown in the order
of increasing capacity.

examples for every model set. Table II shows the number of

examples that were classified correctly by all the members of

the given set. These examples form the evaluation set for the

given model set.

Our main figure of merit is perturbation size. We define

perturbation size as the L2 norm of the adversarial perturbation

found, normalized by
√
d, where d = 224 × 224 × 3 is the

input dimension. We normalize by
√
d because in the case of

image data, this way we characterize the average perturbation

of each pixel irrespective of the resolution of the image, which

is a more natural measure. Recall, that each input feature has

a value in the range [0, 255].
The properties of the individual models can be seen in

Figure 2. Note that for individual models, our algorithm is

equivalent to DeepFool when η = ∞. All the attacks on all

the correctly classified examples were successful, irrespective

of the value of η. Clearly, the perturbation size increases with

model capacity. When setting a smaller η, we get a smaller

perturbation, but at the cost of more iterations. Interestingly,

the effect of η is much stronger on NASNetMobile than

on any other model. In this case, we can get a marked

improvement over the DeepFool algorithm. This is interesting,
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Fig. 3. Perturbation size and number of iterations for the mobile set as a
function of the maximum step size (η) and QP solver heuristic.

because DeepFool is often used to compute an upper bound

on the sensitivity of models, and in this case this upper bound

could be improved significantly. In general, setting a smaller

η improves the perturbation size in each case to some extent.

Next, we evaluated our multi-model algorithms on the

mobile set to test the effect of η, and the different QP solver

heuristics. The results are shown in Figure 3. We specified

imax = 10, 000. Like before, all the attacks were successful,

although the required number of iterations is significantly

larger than in the case of the individual models. A lower η
results in a smaller perturbation and an increased iteration

number.

The PINV and the AVG heuristics need fewer iterations,

as we expected. This is because these heuristics take into

account all the models in the model set in each iteration.

We can see that PINV results in the largest perturbation,

again, as expected, although the difference from the alternative

heuristics is surprisingly small.

For the other two model sets (dense and all), we performed

our experiments with a fixed η = 10 maximum step size

because, based on Figure 3, it offers a good compromise

between perturbation size and cost. The perturbation size and

the number of iterations over the three model sets and the four

attack patterns can be seen in Figure 4. The three heuristics are

shown separately. All the attempted attacks were successful.

The perturbation size of every model set for the four patterns

is larger than that for the individual models. Also, significantly

more iterations are required.

The consistent pattern leads to the smallest perturbation size

and the random and reverse patterns give a larger perturbation,

TABLE III
UNTARGETED INDIVIDUAL MODEL ATTACK WITH η = 10

Model Mean iterations

MobileNetV2 6.5

MobileNet 6.7
NASNetMobile 9

DenseNet121 8.3

DenseNet169 8.6

DenseNet201 9.2

TABLE IV
UNTARGETED MODEL SET ATTACK WITH η = 10

Model set MAX mean iter AVG mean iter PINV mean iter

Mobile set 25.9 16.9 14.9

Dense set 25.9 16.6 14.6
All 57.9 26.9 24.6

as expected. Surprisingly, the diverse pattern is not consistently

harder than the reverse pattern. In terms of the number of

iterations, there are significant differences among the attack

patterns. The attacks that are designed to be hard always

require orders of magnitude more iterations than the easiest

(untargeted) attack.

It is interesting that the mobile set requires a larger perturba-

tion than the dense set. We expected the opposite, because the

attack seemed to be harder if the models in the set are similar,

due to the requirement of unrelated classes having a non-empty

intersection. Combining all the six models further increases the

perturbation size, but it is still less than 1% on average for an

input feature. As we will see later, such a perturbation is still

imperceptible.

To better illustrate the difference between the number of

iterations required to compute the attack for individual models

and model sets, we present the average iteration number

for these two cases in tables III and IV. We illustrate the

untargeted case, that is, the attack pattern was Pconsistent for

the model set, and a simple untargeted DeepFool attack was

used for the individual attacks. From these tables, we see that

the required number of iterations appears to be proportional

to the number of models in the set.

To illustrate the perturbations that our algorithm creates,

we include an example for all the combinations of our three

model sets and four attack patterns in figures 5, 6, 7 and 8.

The examples we include are the ones that have the largest

perturbation among the example inputs. The applied heuristic

was MAX, and we set η = 10. In all the images, the top

row contains the original images, the middle row contains the

perturbation and the perturbed images are in the bottom row. In

the patterns, the order of the models is the same as in Table I.

V. CONCLUSIONS

Here, we introduced an iterative algorithm to find small

adversarial perturbations that fool multiple models simultane-

ously in a given pattern. This problem formulation has many

interesting applications, such as the generation of transferable

adversarial examples as well as generating a single pertur-

bation such that all the models in a given model set predict
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Fig. 4. Perturbation size and iterations for all the four attack patterns and the three QP solver heuristics (η = 10).

Fig. 5. The consistent attack pattern over the mobile set (abacus → dumbbell),
dense set (abacus → corn) and all the models (abacus → dumbbell).

specified, different classes. The latter scenario allows us to

explore the decision boundaries of the model set from a new

perspective.

The algorithm can be regarded as a generalization of the

DeepFool method to model sets. Also, we improved the

DeepFool algorithm itself by adding the step size parameter.

We evaluated our algorithm on three model sets using four

attack patterns over the ImageNet database. We found that the

algorithm produces small and successful perturbations reliably

in all the attack scenarios we examined. Perhaps the most

interesting result is that imperceptible adversarial perturbations

were found even when the labels were selected to make the

Fig. 6. The random attack pattern over the mobile set (crib → [llama,
thunder snake, Norwich terrier]), dense set (Australian terrier → [cornet,
lycaenid, malinois]), and all the models (abacus → [centipede, Pembroke,
Band Aid, bow-tie, EntleBucher, coyote, poncho]).

problem as hard as possible. This was surprising to us, even

in the light of the vast literature on adversarial attacks.

The perturbation sizes over the three model sets offered

some interesting insights as well. The set with different model

architectures (mobile set) needed somewhat larger perturba-

tions, but we expected just the opposite. Increasing the size of

the model set increased perturbation size as well. Nevertheless,

all the perturbations we found are imperceptible to the human

eye.



Fig. 7. The reverse attack pattern over the mobile set (greenhouse → pro-
jector), dense set (comic book → albatross) and all the models (comic book
→ mongoose).
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[6] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
Proc. 6th International Conference on Learning Representations (ICLR),
2018. [Online]. Available: https://openreview.net/forum?id=rkZvSe-RZ

[7] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Networks and Learning
Syst., vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[8] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in Proc. 5th International
Conference on Learning Representations (ICLR), 2017. [Online].
Available: https://openreview.net/forum?id=Sys6GJqxl

[9] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving
adversarial robustness via promoting ensemble diversity,” in
Proceedings of the 36th International Conference on Machine
Learning, (ICML), 2019, pp. 4970–4979. [Online]. Available:
http://proceedings.mlr.press/v97/pang19a.html

[10] Q. Song, H. Jin, X. Huang, and X. Hu, “Multi-label adversarial perturba-
tions,” in 2018 IEEE International Conference on Data Mining (ICDM),
Nov 2018, pp. 1242–1247.

Fig. 8. The diverse attack pattern over the mobile set (abacus → [soft-coated-
wheaten terrier, soft-coated wheaten terrier, apron]), dense set (comic book
→ [sturgeon, black stork, capuchin]), and all the models (Australian terrier
→ [Saluki, borzoi, black stork, Saluki, gorilla, kuvasz]).

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.
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