
RelationNet2: Deep Comparison Network
for Few-Shot Learning

Xueting Zhang
School of Informatics
University of Edinburgh

Edinburgh, UK
Xueting.Zhang@ed.ac.uk

Yuting Qiang
National Key Laboratory for Software Technology

Nanjing University
Nanjing, China

qiangyuting.new@gmail.com

Flood Sung
Independent Researcher

Beijing, China
floodsung@gmail.com

Yongxin Yang
School of Informatics
University of Edinburgh

Edinburgh, UK
yongxin.yang@ed.ac.uk

Timothy Hospedales
Samsung AI Research Centre School of Informatics

University of Edinburgh
Cambridge, UK Edinburgh, UK

t.hospedales@samsung.com t.hospedales@ed.ac.uk

Abstract—Few-shot deep learning is a topical challenge area
for scaling visual recognition to open ended growth of unseen
new classes with limited labeled examples. A promising approach
is based on metric learning, which trains a deep embedding to
support image similarity matching. Our insight is that effective
general purpose matching requires non-linear comparison of
features at multiple abstraction levels. We thus propose a new
deep comparison network comprised of embedding and relation
modules that learn multiple non-linear distance metrics based
on different levels of features simultaneously. Furthermore, to
reduce over-fitting and enable the use of deeper embeddings, we
represent images as distributions rather than vectors via learn-
ing parameterized Gaussian noise regularization. The resulting
network achieves excellent performance on both miniImageNet
and tieredImageNet.

I. INTRODUCTION

The ability to learn from one or few examples is an
important property of human learning to function effectively in
the real world. In contrast, our most successful deep learning-
based approaches to recognition [1–3] treat each learning
problem as tabula-rasa, limiting their application to open-
ended learning with rare data and expensive annotation (e.g.,
endangered species and medical images).

These observations have motivated a resurgence of interest
in FSL (few-shot learning) for visual recognition [4–7] and
beyond. Contemporary deep networks overfit in the few-shot
regime – even when exploiting fine-tuning [8], data augmen-
tation [1], or regularization [9] techniques. In contrast, ‘Meta-
learning’ techniques extract transferable task agnostic knowl-
edge from historical tasks and benefit sparse data learning of
specific new target tasks. These take several forms: Fast adap-
tation methods enable sparse-data adaptation without overfit-
ting – via good initial conditions [5] or learned optimizers
[10]. Weight synthesis approaches learn a meta-network that
synthesizes recognition weights given a training set [11, 12].
Deep metric learning approaches support representation [13]
and comparison [4, 6] of instances, allowing new categories to

be recognized with nearest-neighbour comparison. However,
existing approaches have several drawbacks including infer-
ence complexity [14, 15], architectural complexity [16], the
need to fine-tune on the target problem [5], or reliance on a
simple linear comparison [4, 6, 15].
We build on deep metric learning methods due to their

architectural simplicity and instantaneous training of new
categories. These methods use auxiliary training tasks to
learn a deep image-embedding such that the embedded data
becomes linearly separable [4, 6, 13]. Thus the decision is
non-linear in image-space, but linear in the embedding space.
For learning the target task, images are simply memorized
during few-shot training. But for testing the target task, query
images are matched to training examples by deep embedding
and similarity comparison function. Within this paradigm, the
recent Relation Network [17] achieved excellent performance
by learning a non-linear comparison function. Learning the
embedding and non-linear comparison module jointly allevi-
ates the reliance on the embedding’s ability to generate linearly
separable features.
We extend this idea of jointly learning an embedding and

a non-linear distance metric with the following further in-
sights. First, we introduce the notion of multiple meta-learners
operating at multiple abstraction levels. Concretely we train
non-linear distance metrics corresponding to each embedding
module in a feature hierarchy - thus covering features from
simple textures to complex parts [18]. Secondly, prior studies
only use a single linear [6] or non-linear comparison [17].
To provide the inductive bias that each layer of representation
should be potentially discriminative for matching, and enable
better gradient propagation [19] to each relation module, we
deeply supervise [20] all the relation modules. Finally, to
enable deeper embedding architectures to be used without
overfitting, we design each embedding module to output a
feature distribution, thus representing each image as a distri-
bution rather than a vector. This can be seen as an end-to-end

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

learnable noise regularizer that performs data augmentation in
semantic feature space rather than image space.

Overall RelationNet2 implements a Deep Comparison Net-
work (DCN) that can be seen as jointly learning embedding
and comparison as task agnostic meta knowledge [4, 6, 17,
21]. It makes full use of deep networks by making comparisons
with the full feature hierarchy extracted by the embedding net-
work, and learning Gaussian noise to improve generalization.
The resulting framework maintains the architecture simplicity
and efficiency of other methods in this line, while providing
excellent performance on both miniImageNet and the more
challenging tieredImageNet few shot learning benchmarks.

II. RELATED WORK

Contemporary approaches to deep-network few-shot learn-
ing have exploited the learning-to-learn paradigm [21]. Aux-
iliary tasks are used to meta-learn some task agnostic knowl-
edge, before exploiting this to learn the target few-sample
more effectively problem. The learning-to-learn idea has a long
history [14, 22, 23], but contemporary approaches typically
cluster into three categories: Fast adaptation, weight synthesis,
and metric-learning approaches.
Fast Adaptation These approaches aim to meta-learn an
optimisation process that enables base models to be fine-
tuned quickly and robustly. So that a base model can be
updated for sparse data target problems without extensive
overfitting. Effective ideas include the simply meta-learning
an effective initial condition [5, 24], and learning a recurrent
neural network optimizer to replace the standard SGD learning
approach [10]. Recent extensions also include learning per-
parameter learning rates [25], and accelerating fine-tuning
through solving some layers in closed form [26]. Nevertheless,
these methods suffer from needing to be fine-tuned for the
target problem, often generating costly higher-order gradients
during meta-learning process [5], and failing to scale to deeper
network architectures as shown in [12]. They also suffer from
a fixed parametric architecture. For example, once you train
MAML [5] for 5-way auxiliary classification problems, it
is restricted to the same for target problems without being
straightforwardly generalizable to a different cardinality of
classification.
Classifier Synthesis Another line of work focuses on syn-
thesising a classifier based on the provided few-shot training
data [27]. An early method in this line learned a transferrable
‘LearnNet’ that generated convolutional weights for the base
recognition network given a one-shot training example [11].
However, this was limited to binary classification. Condi-
tional Neural Processes [28] exploited a similar idea, but
in a Bayesian framework. SNAIL obtained excellent results
by embedding the training set with temporal convolutions
and attention [12]. The PPA model predicts classification
parameters given neuron activations [7]. In this case, the global
parameter prediction network is the task agnostic knowledge
that is transferred from auxiliary categories. Compared to the
fast adaptation approaches, these methods generally synthesize
their classifier in a single pass, making them faster to train

on the target problem. However, learning to synthesize a full
classifier does entail some complexity. This process can overfit
and generalize poorly to novel target problem.
Deep Metric Learning These approaches aim to learn a
deep embedding that extracts robust features, allowing them
to be classified directly with nearest neighbour type strategies
in the embedding space. The deep embedding forms the task
agnostic knowledge transferred from auxiliary to target tasks.
Early work simply used Siamese networks [13] to embed
images, such that images of the same class are placed near each
other. Matching networks [4] defined a differentiable nearest-
neighbour loss based on cosine similarity between the support
set and query embedding. Prototypical Networks [6] provide
a simpler but more effective variant of this idea where the
support set instances for one class are embedded as a single
prototype. Their analysis showed that this leads to a linear
classifier in the embedding space. RelationNet [17] extended
this line of work to use a separate non-linear comparison
module instead of relying entirely on the embedding networks
to make the data linearly separable [4, 6, 13]. This division of
labour between a deep embedding and a deep relation module
improved performance in practice [17]. Our approach builds
on this line of work in general and RelationNet in particular.
RelationNet relied on the embedding networks to produce a
single embedding for the relation module to compare. We
argue that a general purpose comparison function should
use any or all of the full feature hierarchy [18] to make
matching decisions. For example, matching based on colors,
textures, or parts – which may be represented at different
layers in a embedding network. To this end, we modularise
the embedding networks, and pair every embedding module
with its own relation module.
Use of Feature Hierarchies The general strategy of si-
multaneously exploiting multiple layers of a feature hierarchy
has been exploited in conventional many-shot classification
network [19, 29], instance recognition [30], and semantic
segmentation networks [31]. However, in the context of deep-
metric learning, the conventional pipeline is to extract a
complete feature [32, 33]. Importantly, in contrast to prior
approaches single ‘short-cut’ connection of deeper features to
a classifier [30, 31], we uniquely learn a hierarchy of relation
modules: One non-linear comparison function for each block
of the embedding modules. Our approach is also reminiscent
of classic techniques such as spatial pyramids [34] (since each
module in the hierarchy operates at different spatial resolu-
tions) and multi-kernel learning [35] (since we learn multiple
relation modules for each feature in the hierarchy). This can
also be seen as the first multiple meta-learner approach for
few shot learning problems.
Leaned Noise and Regularisation Many previous FSL
models struggle with deeper backbones [5, 12]. For best
performance, we would like to exploit a state-of-the-art em-
bedding module architecture (we use SENet [3]), and also
benefit from the array of comparison modules mentioned
above. To enable DCN to benefit from deep backbones without

overfitting, we modify the embedding modules to output
a feature distribution at each layer. Rather than generating
deterministic features at a module output, we generate means
and variances which are sampled in the forward pass, with
back propagation relying on the reparamaterization trick.
Unlike density networks [36] where such distributions are
only generated at the output layer, or VAEs [37] here they
are generated only once by the generator, we generate such
stochastic features at each embedding module’s output. This
can be seen as an end-to-end learnable data augmentation
strategy in semantic feature rather than image space. It is also
complementary to standard L2/weight decay and image space
augmentation techniques.

III. METHODOLOGY

A. Problem Definition
We consider a C-way K-shot classification problem for

few shot learning. There are some labelled source tasks with
sufficient data, denoted meta-train m-train, and we ultimately
want to solve a new set of target tasks denoted meta-test
m-test, for which the label space is disjoint. Within meta-train
and meta-test, we denote each task as being composed of a
support set of training examples and a query set of testing
examples. The meta-test tasks are assumed to be few-shot,
so m-test contains a support set with C categories and K
examples each. We want to learn a model on meta-train that
can generalize out of the box, without fine-tuning, to learning
the new categories in meta-test.

Support Set !"#$%&'() Query Set !"#$%&'(
*

Meta Train !+#$%&'(

Meta Test !+#$,-$

.

.
Query Set !"#$,-$*Support Set !"#$,-$)

Fig. 1: Few-shot learning: Problem Setup.

Episodic Training We adopt an episodic training paradigm
for few-shot meta-learning. During meta-training, an episode
is formed as follows: (i) Randomly select C classes from
m-train, (ii) Sample K images each class, which serve as
support set S

m-train =
{

(xi, yi)
}m
i=1, where m = K ∗ C , (iii)

For the same C classes, sample K ′ images each class serving
as the query set Q

m-train =
{

(x̃j , ỹj)
}n
j=1, where n = K ′ ∗ C ,

S
m-train ∩ Q

m-train = ∅. The support/query distinction mimics
them-test/ real-time testing. Our few-shot DCN will be trained
for instance comparison using episodes constructed in this
manner.

B. Model
Overview RelationNet2’s Deep Comparison Network
(DCN) is composed of two module types: embedding and

relation modules f� and g�, as shown in Fig. 2. The detailed
architecture will be given in Section III-C. A pair of images
xi and xj in the support and query set are fed to embedding
modules respectively. Then the multi-level embedding modules
output stochastic features to the corresponding multi-level
relation modules, and learn the relation score and weights for
different relation modules. Finally, the DCN learns weighted
non-linear metric of few shot learning tasks.
Distribution Embedding Modules Conventionally, an em-
bedding module (e.g., a ResNet or SENet block) outputs
deterministic features. As a regularisation strategy, we treat
each feature output as a random variable drawn from a parame-
terized Gaussian distribution, for which the embedding module
outputs the mean and variance. This design is illustrated in
Fig. 2. Each vth-level embedding module predicts a feature
mean f v�,� and a feature variance f v�,� . To generate a module’s
output f v� , we use the reparameterization trick to draw one (or
more) Gaussian random samples

f v� = f v�,� + " ⊙ f
v
�,� , (1)

where " is a standard Gaussian  (0, 1) random samples, and
⊙ denotes element-wise product.
Metric Hierarchy The vth-level of embedding modules
produce query and support image feature maps, which are
concatenated as [f v� (xi), f

v
� (xj)], and then fed into the cor-

responding vth-level relation module for comparison.
For a pair xi and xj at level v − 1, the relation module

outputs a similarity feature map gv−1� . The vth-level relation
module takes both the vth-level embedding output for query
and support, and also the (v − 1)th-level relation module
similarity feature map as input:

gv� = g([f v� (xi), f
v
� (xj), g

v−1
�]). (2)

The first relation module is special as it does not have a
predecessor to input, and we cannot use zero-padding because
0 has a specific meaning in our context. Thus we set g1� =
g([f 1

� (xi), f
1
� (xj)]).

Simultaneously, after an average pooling and fully con-
nected layer denoted q(⋅), each relation module also outputs a
real-valued scalar representing similarity/relation score rvi,j of
two images estimated at the feature level v,

rvij = q(gv�). (3)

K-Shot For K-shot with K > 1, the embedding module
outputs the average pooling of features, along the sample axis,
of all samples from the same class to produce one feature map.
Thus, the number of outputs for the v-level relation module is
C , regardless of the value of K .
Objective Function There are 2 steps to train the DCN
network. We first train the embedding network, then fix the
embedding network parameters and train the relation network
(run the whole DCN consisting of embedding and relation
modules, but only update the relation modules).

!"# $%EM1

!",'# $%

!",(# $%

$% ∈ *+ Classification
!", $%EM2

!",', $%

!",(, $%

!"- $%EM3

!",'- $%

!",(- $%

!". $%EM4

!",'. $%

!",(. $%
co
nv

7*7

RM1 RM2 RM3 RM4

!"# $/
EM1

!",'# $/

!",(# $/

$/ ∈ *0 Classification
!", $/

E2

!",', $/

!",(, $/

!"- $/
EM3

!",'- $/

!",(- $/
!". $/

EM4

!",'. $/

!",(. $/

co
nv

7*7

12# 12, 12-

3%,/# 3%,/, 3%,/- 3%,/.
Siamese

*+ ,Support	set
*0 ,Query	set EM Embedding	Module RM Relation	Module

Fig. 2: RelationNet2’s DCN architecture. There are 4 embedding modules f� for each embedding branch, and a set of 4 corresponding
relation modules g�. Support set and query set share the same embedding network. Each embedding module outputs a feature distribution
 (f�,�(x), f�,�(x)), we then randomly sample a feature f�(x) as the input of corresponding relation module and next embedding module.

We first train the embedding network � as a conventional
multi-class classifier for the data in m−train using cross
entropy loss lCE . To leverage our distribution-embedding, we
add a feature variance regularizer:

� ← argmin
�

lCE(�) − � 1
m

m
∑

i=1
�i, (4)

where �i is the predicted standard deviation of each instance
and m is their total number, and � is the hyperparameter
to finetune the influence of the regularizer (here is 0.01).
This ensures that feature distributions are learned, and we
do not collapse to standard (zero-variance) vector embedding
(our mean � is about 0.5). This pipeline can be seen as
a learnable data augmentation strategy at each level of the
feature hierarchy for relation modules. Learning with these
augmented features improves generalization. After embedding
training, the parameters � of embedding modules are fixed.

We next train the column of relation modules � on m−train
with an episodic strategy [4] using cross entropy loss lCE
at each module (Fig. 2). To weight the V relation modules,
we assign a learnable attention weight wvc,j to the calculated
relation similarity score rvc,j of each module.

�← argmin
�

C
∑

c=1

n
∑

j=1

V
∑

v=1
lCE(wvc,jr

v
c,j , 1(yc = yj);�), (5)

where j = 1… n refers to query samples and c refers to a
batch of K support examples of class yc in a C-way-K-shot
problem. rc,j are the relation scores between query image j
and the class yc support images.
Additionally, wvc,j = �v(gvc,j) is a sigmoid-activated fully

connected layer that computes a scalar attention weight given
relation feature map gvc,j , and the weights of �v are included
in �.

Testing Strategy To evaluate our learned model on C-way-
K-shot learning, we calculate the final relation score rc,j of
one query image xj to the images of each support class c:

rc,j =
V
∑

v=1
wvj r

v
c,j (6)

where rvc,j is the relation score between image j and the
support images of class c at module v.
Finally, the class with the highest relation score rc is the

final predicted classification. We evaluate the approach by the
resulting classification accuracy.

C. Network Architecture
RelationNet2’s DCN architecture (Fig. 2) uses 4 embedding

modules, each paired with a relation module. We explain our
method with SENet for concreteness, but it can be instantiated
with any backbone.
Embedding Subnetwork As shown in Fig. 2, first we use
a 7×7 convolution followed by a 3×3 max-pooling, which is
a common size reduction as [3]. Then, we have 4 embedding
modules each composed of a number of SENet blocks. Finally,
an avg-pooling and a fully-connected layer are used to produce
C logit values, corresponding to C classes in m-train. More
specifically, 4 embedding modules followed the 4 SENet basic
blocks composition [3, 4, 6, 3], respectively. In original SENet
paper [3], they use SE-ResNet-50, but here we use smaller
backbones as SE-ResNet-34, where (3+4+6+3) ∗ 2+2 = 34.
Otherwise, we follow the other setting in [3], e.g., reduction
ratio r = 16 as suggested.
Distribution Embedding Conventually, an embedding
module outputs deterministic features. As explained in Sec-
tion III-B, each DCN embedding module’s output is split into
two parts: the mean feature f�,� sized [b, c, ℎ,w] ([batch_size,
channel, height, width]), and standard deviation (std) f�,� sized
[b, 1, ℎ,w].

We assume that every channel shares the same standard
deviation (std). This means, in addition to the penultimate-to-
output layer (now it is penultimate-to-mean layer), we have a
new penultimate-to-std layer (with its own parameters). The
motivation behind sharing stds across channels is to reduce
the number of parameters in the newly introduced layer. We
also control the amount of noise added by applying Sigmoid
activation to constrain the std to the range [0, 1]. We sample
one feature vector per image in a single forward pass, but
multiple samples are drawn considering the whole batch.
Relation Subnetwork As illustrated in Fig. 2, the relation
column consists of 4 serial modules, each of which has 2
SENet blocks, with a pooling and a fully-connected layer
to produce the relation score. Thus the relation modules is
designed as [2,2,2,2], where the SENet block architecture is
the same as the one used in embedding module.

IV. EXPERIMENTS

We evaluate RelationNet2’s DCN architecture on few-shot
classification with miniImageNet and tieredImageNet datasets.
PyTorch code to reproduce results is available at https://github.
com/zhangxueting/DCN.
Baselines We compare several state-of-the-art baselines for
few-shot learning including Matching Nets [4], Meta Nets [16],
Meta LSTM [10], MAML [5], Baseline++ [38], Prototypical
Nets [6], Graph Neural Nets [39], Meta-SSL [40], Relation Net
[17], Meta-SGD [25], TPN [41], CAVIA [42], DynamicFSL
[27], SNAIL [12], AdaResNet [43], TADAM [44], MTL [45],
TapNet [46], MetaOpt Net [15], PPA [7], LEO [47].
Data Augmentation We follow the standard data augmen-
tation [2, 3, 38, 48] with random-size cropping and random
horizontal flipping Input images are normalized through mean
channel subtraction.

A. miniImagenet
Dataset miniImageNet has 60,000 images in consist of 100
ImageNet classes, each with 600 images [4]. Following the
split in [10], the dataset is divided into a 64-class training set,
16-class validation set and a 20-class testing set.
Settings We evaluate both 5-way-1-shot and 5-way-5-
shot, where each episode contains 5 query images for each
sampled class. There are 5*5+1*5=30 images per train-
ing episode/mini-batch for 5-way-1-shot experiments, and
5*5+5*5=50 images for 5-way-5-shot experiments. When it
comes to 5-shot, we calculate the class-wise average feature
across the support set. Thus we get 5*5*5*1=125 feature pairs
as input for the relation module. For embedding and relation
module training, optimization uses SGD with momentum 0.9.
The initial learning rate is 0.1, decreased by a factor of 5
every 60 epochs, and the training epoch is 200. All models
are trained from scratch, using the robust RELU weight
initialization [49]. We follow [38] in using 224×224 pixels
crops for evaluation on ResNet and SENet, and [10] in using
84×84 images for the smaller Conv-4 backbone.
Results Following the setting of [6], when evaluating test-
ing performance, we batch 15 query images per class in a

testing episode and the accuracy is calculated by averaging
over 600 randomly generated testing tasks (for both 1-shot
and 5-shot scenarios). In Tab. I, DCN achieves excellent
performance with different embedding backbones. Specifically,
the accuracy of 5-way miniImageNet with SENet is 63.19%
and 76.58% for 1-shot and 5-shot respectively. We note that
MetaOptNet [15] uses significantly more advanced regulariz-
ers than standard among the competitors (which corresponds
to about 2% performance according to [15]), also requires
an order of magnitude higher dimensionality of embeddings
[64,160,320,640] than the other competitors [64,96,128,256].
Overall DCN’s 1-shot recognition performance is state-of-the-
art among methods that do not require optimisation at meta-
test time (unlike, e.g., MAML [5] and MetaOptNet [15]). It
is noteworthy that achieving good performance with deeper
backbones is not trivially automatic as Dynamic FSL, for
example, fails to improve from Conv-4 to ResNet embedding.
DCN’s learned noise regularizer helps it to exploit a powerful
SENet backbone without overfitting. Direct comparison among
models is complicated by the diversity of embedding networks
used in different studies, so we show the results of DCN
with each commonly used backbone in Tab.I, e.g. Conv-4 and
ResNet-12. We can see that DCN performs favorably across a
range of architectures.
Cross-way Testing Results Standard procedure in few-
shot evaluation is to train models for the desired number of
categories to discriminate at testing time. However, unlike
alternatives such as MAML [5], our method is not required
to match label cardinality between training and testing. We
therefore evaluate 5-way trained model on 20-way testing in
Tab. II. It shows that our model outperforms the alternatives
clearly despite DCN being trained for 5-way, and the others
specifically for 20-way, indicating another important aspect of
DCN’s flexibility and general applicability.
B. tieredImagenet
Dataset tieredImageNet is a larger few-shot recognition
benchmark containing 608 classes (779,165 images), in which
training/validation/testing categories are organized so as to
ensure a larger semantic gap than those in miniImageNet,
thus providing a more rigorous test of generalization. This
is achieved by dividing according to 34-higher-level nodes in
the ImageNet hierarchy [40], grouped into 20 for training (351
classes), 6 for validation (97 classes) and 8 for testing (160
classes), respectively.
Settings Similar to the setting of miniImageNet, we use
5 query images per training episode. Due to the larger data
size, we train embedding modules with a larger batch size
512, initial learning rate 0.3 and 100 training epochs. Other
settings remain the same as miniImageNet.
Results Following the former experiments, we batch 15
query images per class in each testing episode and the accu-
racy is calculated by averaging over 600 randomly generated
testing tasks. From Tab. III, DCN achieves the state-of-the-art
performance on the 5-way-1-shot and 5-shot tasks with com-
fortable margins. Again, this is state-of-the-art performance

Model Embedding miniImagenet 5-way Acc.
1-shot 5-shot

MATCHING NETS [4] Conv-4 43.56 ± 0.84% 55.31 ± 0.73%
META LSTM [10] Conv-4 43.44 ± 0.77% 60.60 ± 0.71%
MAMLO [5] Conv-4 48.70 ± 1.84% 63.11 ± 0.92%
BASELINE++ [38] Conv-4 48.24 ± 0.75% 66.43 ± 0.63%
META NETS [16] Conv-5 49.21 ± 0.96% -
PROTONET [6] Conv-4 49.42 ± 0.78% 68.20 ± 0.66%
GNN [39] Conv-4 50.33 ± 0.36% 66.41 ± 0.63%
META SSL [40] Conv-4 50.41 ± 0.31% 64.39 ± 0.24%
RELATION NET [17] Conv-4 50.44 ± 0.82% 65.32 ± 0.70%
META SGDO [25] Conv-4 50.47 ± 1.87% 64.03 ± 0.94%
TPN [41] Conv-4 52.78 ± 0.27% 66.59 ± 0.28%
CAVIA [42] Conv-4 51.82 ± 0.65% 65.85 ± 0.55%
DYNAMIC FSL† [27] Conv-4 56.20 ± 0.86% 72.81 ± 0.62%
RELATIONNET2 (DCN) Conv-4 53.48 ± 0.78% 67.63 ± 0.59%

BASELINE++ [38] ResNet-18 51.87 ± 0.77% 75.68 ± 0.63%
RELATIONNET [38] ResNet-18 52.48 ± 0.86% 69.83 ± 0.68%
PROTONET [38] ResNet-18 54.16 ± 0.82% 73.68 ± 0.65%
SNAIL [50] ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%
DYNAMIC FSL [27] ResNet-12 55.45 ± 0.89% 70.13 ± 0.68%
ADARESNET [43] ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%
TADAM [44] ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%
MTL [45] ResNet-12∗ 61.20 ± 1.80% 75.50 ± 0.80%
TAP NET [46] ResNet-12 61.65 ± 0.15% 76.36 ± 0.10%
METAOPTNETO [15] ResNet-12∗ 64.09 ± 0.62% 80.00 ± 0.45%
RELATIONNET2 (DCN) ResNet-12 63.92 ± 0.98% 77.15 ± 0.59%

PPA [7] WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%
LEOO [47] WRN-28-10 61.78 ± 0.05% 77.59 ± 0.12%

MAML SENet 55.99 ± 0.99% -
RELATIONNET SENet 57.39 ± 0.86% -
PROTONET SENet 51.60 ± 0.85% -
RELATIONNET2 (DCN) SENet 63.19 ± 0.87% 76.58 ± 0.66%

TABLE I: Few-shot classification results on miniImageNet. All ac-
curacies are averaged over 600 test episodes and are reported with
95% confidence intervals. Best-performing method is bold, along with
any others whose confidence intervals overlap. From top to bottom:
Simple conv block embeddings to other deep embeddings (ResNet,
WRN, SENet). ‘-’: not reported. †: use two-step optimization with
added attention. O: requires gradient-based optimisation at meta-test
time. ∗: Use a wider ResNet than standard and higher dimensional
embedding.

for methods that do not require optimisation at meta-testing.
We also note that Meta-SSL [40] and TPN [41] are semi-
supervised methods that use more information than ours, and
have additional requirements such as access to the test set for
transduction.

C. Further Analysis

1) Application to Other Metric Learners: Our main insight
is the value of feature comparison at multiple abstraction levels
in metric learning, as well as that of learned noise regularizers
for deep networks in the few-shot regime. We now confirm
that these ideas can be applied to other base metric learners.
Tab VI shows the 5-way-1-shot miniImageNet results for both
RelationNet [17] and ProtoNet [6] base learners controlling
for these features. We can see that both architectures benefit
from deep comparisons and regularizers. However, the benefit
is greater for RelationNet, which we attribute to the learnable
non-linear relation modules. These can learn a different com-

Model Embedding miniImagenet 20-way Acc.
1-shot 5-shot

MATCHING NETS [25] Conv-4 17.31 ± 0.22% 22.69 ± 0.86%
META LSTMO [25] Conv-4 16.70 ± 0.23% 26.06 ± 0.25%
MAMLO [25] Conv-4 16.49 ± 0.58% 19.29 ± 0.29%
META SGDO [25] Conv-4 17.56 ± 0.64% 28.92 ± 0.35%

RELATIONNET2 (DCN) Conv-4 27.56 ± 0.24% 39.56 ± 0.81%
RELATIONNET2 (DCN) ResNet-12 31.65 ± 0.34% 50.25 ± 0.46%
RELATIONNET2 (DCN) SENet 32.90 ± 0.39% 51.37 ± 0.39%

TABLE II: 20-way classification accuracy on miniImageNet. DCN is
trained on 5-way with different embeddings and transferred to 20-
way. Meta LSTM, MAML, and Meta SGD results are from [25].

Model Embedding tieredImagenet 5-way Acc.
1-shot 5-shot

REPTILE [41] Conv-4 48.97% 66.47%
MAML [41] Conv-4 51.67% 70.30%
META SSL† [40] Conv-4 52.39 ± 0.44% 70.25 ± 0.31%
PROTO NET [41] Conv-4 53.31% 72.69%
RELATION NET [41] Conv-4 54.48% 71.31%
TPN† [41] Conv-4 59.91% 73.30%
TAP NET [46] ResNet-12 63.08 ± 0.15% 80.26 ± 0.12%
METAOPTNETO [15] ResNet-12∗ 65.81 ± 0.74% 81.75 ± 0.53%

RELATIONNET2 (DCN) Conv-4 60.58 ± 0.72% 72.42 ± 0.69 %
RELATIONNET2 (DCN) ResNet-12 68.58 ± 0.63% 80.65 ± 0.91%
RELATIONNET2 (DCN) SENet 68.83 ± 0.94% 79.62 ± 0.77%

TABLE III: Few-shot classification results on tieredImageNet. All
accuracies are averaged over 600 test episodes and reported with
95% confidence intervals. For each task, the best-performing method
is bold. †: Make use of additional unlabeled data for semi-supervised
learning or transductive inference. O: requires gradient-based optimi-
sation at meta-test time. ∗: Uses a wider ResNet than standard size
and higher dimensional embedding.

parison function at each abstraction level, but are also more
complex so benefit more from the additional regularisation.
2) Ablation Study: We further investigate the detailed de-

sign parameters of our method with a series of ablation studies
reported in Tab. IV. The conclusions are as follows:
Deep Supervision: The DCN-No Deep Sup. Result shows

that deep supervision is important to gain full benefit from a
column of relation modules. Module Weighting: Learning at-
tention weights per module helps somewhat compared to man-
ually tuned module weights. More importantly, it eliminates
the need for hand-tuning model weights. Multiple Non-linear
Metrics: Tab IV also shows the testing accuracy with each
DCN relation module output score rv in isolation (DCN-rv).
Each module performs competitively, but their combination
clearly leads to the best overall performance, supporting our
argument that multiple levels of the feature hierarchy should
be used to make general purpose matching decisions. Multiple
meta learner design is a creative contribution of our work.
3) Architecture: Our DCN benefits from deeper embedding

architectures (Tab. I). It improves when going from simple
convolutional blocks (used by early studies [5, 6, 17]), to
ResNet [2] and SENet [3]. For fair comparison, when fixing
a common ResNet-12, DCN outperforms the others that do

0.0 0.2 0.4 0.6 0.8 1.0
Score 1

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

2
Relation Module 1

[20, 0]
[20, 10]
[20, 20]

[10, 0]
[10, 10]
[10, 20]

[0, 0]
[0, 10]
[0, 20]

0.0 0.2 0.4 0.6 0.8 1.0
Score 1

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
2

Relation Module 2

0.0 0.2 0.4 0.6 0.8 1.0
Score 1

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
2

Relation Module 3

0.0 0.2 0.4 0.6 0.8 1.0
Score 1

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
2

Relation Module 4

Fig. 3: Illustration of query-support score distribution and the link to ImageNet hierarchy. Colors indicate query images of a
(query, support1, support2) class triple matching the specified ImageNet distance relationship [D(q, s1), D(q, s2)].

Model miniImageNet 5-way-1-shot Acc.

DCN Full model 63.19 ± 0.87%
DCN-No module weight 62.88 ± 0.83%
DCN-No deep sup. 58.02 ± 0.80%

DCN-r1 52.25 ± 0.80%
DCN-r2 58.07 ± 0.80%
DCN-r3 60.69 ± 0.81%
DCN-r4 58.31 ± 0.79%

TABLE IV: Ablation study using 5-way-1-shot classification on
miniImageNet evaluating the impact of regularization techniques and
multiple relation modules.

20 30 40 50 60 70 80 90 100
Accuracy(%) of RM1

20

30

40

50

60

70

80

90

100

Ac
cu
ra
cy
(%

) o
f R

M
4

malamute

African hunting dog

liver-spotted dalmatian

golden retriever

lion cub

bookshop

hourglass

Fig. 4: Category-wise accuracy of RM1 vs RM4. Different relation
modules are better at detecting different categories.

not require meta-test optimization. Moreover, when fixing
a common SENet, competitors RelationNet/ProtoNet/MAML
are improved, but still surpassed by DCN.

4) Relation Module Analysis: A key contribution in DCN
is to perform metric learning at multiple abstraction levels

Module RM1 RM2 RM3 RM4

RM1 - - - -
RM2 0.75 - - -
RM3 0.55 0.73 - -
RM4 0.34 0.45 0.61 -

TABLE V: Spearman rank-order correlation coefficient between
different relation modules: Modules make diverse predictions.

Model Noise Reg.? Deep Comparisons? Acc.

PROTONET [6] X X - 1 module 51.04 ± 0.77%
PROTONET ✓ X - 1 module 51.60 ± 0.85%
PROTONET X ✓- 4 modules 53.62 ± 0.82%
PROTONET ✓ ✓- 4 modules 54.78 ± 0.88%

RELATIONNET [17] X X - 1 module 52.48 ± 0.86%
RELATIONNET ✓ X - 1 module 57.39 ± 0.86%
RELATIONNET2 (DCN) X ✓- 4 modules 60.57 ± 0.86%
RELATIONNET2 (DCN) ✓ ✓- 4 modules 63.19 ± 0.87%

TABLE VI: Multiple deep comparisons and distribution embedding
of features benefit both RelationNet (learnable relation modules) and
ProtoNet (fixed linear modules) few-shot architectures. Accuracy is
calculated on 5-way-1-shot classification of miniImagenet.

simultaneously via a series of paired relation and embedding
modules. Relation modules are analyzed to provide insight into
the complementarity.
Score-Distance Correlation We first check how the re-
lation module (RM) scores relate to distances in the Im-
ageNet hierarchy. Using miniImageNet data, we search for
(support1, support2, query) category tuples where the distance
D(query, support1) and D(query, support2) match a certain
number of links, and then plot instances from these tuples
query categories against the relative relation module scores
RM(q, s1), RM(q, s2). Fig. 3 presents scatter plots for the
four relation modules where points are images and colors
indicate category tuples with specified distance from the two
support classes. We can see that: (1) The scores generally
match ImageNet distances: The most/least similar categories
(red/magenta) are usually closer to the top right/bottom left
of the plot; while query categories closer to one support class
are in the opposite corners (blue/yellow-green). (2) Generally,
higher numbered relation modules are more discriminative,
separating classes with larger differences in relation score.
Score Correlation We next investigated if relation module
predictions are diverse or redundant. We analyzed the corre-
lation in their predictions by randomly picking 10,000 image
pairs from miniImageNet and computing the Spearman rank-
order correlation coefficient [51] between each pair of relation
module’s scores. The results in Tab. V, show that: (1) Many
correlations are relatively low (down to 0.34), indicating that
they are making diverse, non-redundant predictions; and (2)
Adjacent RMs have higher correlation than non-adjacent RMs,
indicating that prediction diversity is related to RM position

in the feature hierarchy.
Prediction Success by Module We know that RM pre-
dictions do not necessarily agree. But to find out if they
are complementary, we made a scatter plot of the per-class
accuracy of RM-1 vs. RM-4 in Fig. 4. We can see that many
categories lie on the diagonal, indicating that RM-1 and-4 get
them right equally often. However, there are some categories
below the diagonal, indicating that RM-1 gets them right more
often than RM-4. Examples include both stereotyped and fine-
grained categories such as ‘hourglass’ and ‘African hunting
dog’. These below diagonal elements confirm the value of
using deeper features in metric learning.

V. CONCLUSION

We proposed RelationNet2, a general purpose matching
framework for few-shot learning. It implements a Deep Com-
parison Network architecture that performs effective few-shot
learning via learning multiple non-linear comparisons corre-
sponding to multiple levels of feature extraction, while resist-
ing overfitting through stochastic regularisation. The resulting
method achieves state-of-the-art results on miniImageNet and
the more ambitious tieredImageNet, while retaining architec-
tural simplicity, and fast training and testing processes.
Acknowledgements This work was supported by EPSRC
grant EP/R026173/1.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[3] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018.

[4] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in NIPS, 2016.

[5] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017.

[6] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in NIPS, 2017.

[7] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recognition
by predicting parameters from activations,” in CVPR, 2018.

[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NIPS, 2014.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[10] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

[11] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, and A. Vedaldi,
“Learning feed-forward one-shot learners,” in NIPS, 2016.

[12] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” in ICLR, 2018.

[13] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, 2015.

[14] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[15] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with
differentiable convex optimization,” in CVPR, 2019.

[16] T. Munkhdalai and H. Yu, “Meta networks,” in ICML, 2017.
[17] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,

“Learning to compare: Relation network for few-shot learning,” in
CVPR, 2018.

[18] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in CVPR, 2017.

[20] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in AISTATS, 2015.

[21] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” arXiv preprint arXiv:2004.05439, 2020.

[22] S. Thrun, “Is learning the n-th thing any easier than learning the first?”
in NIPS, 1996.

[23] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” TPAMI, vol. 28, no. 4, pp. 594–611, 2006.

[24] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[25] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly
for few shot learning,” arXiv preprint arXiv:1707.09835, 2017.

[26] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi, “Meta-learning
with differentiable closed-form solvers,” in ICLR, 2019.

[27] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in CVPR, 2018.

[28] M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. J. Rezende, and S. Eslami, “Conditional
neural processes,” arXiv preprint arXiv:1807.01613, 2018.

[29] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
in ICML Deep Learning Workshop, 2015.

[30] X. Chang, T. M. Hospedales, and T. Xiang, “Multi-level factorisation
net for person re-identification,” in CVPR, 2018.

[31] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Hypercolumns
for object segmentation and fine-grained localization,” in CVPR, 2015.

[32] W. Ge, W. Huang, D. Dong, and M. R. Scott, “Deep metric learning
with hierarchical triplet loss,” in ECCV, 2018.

[33] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning for
face verification in the wild,” in CVPR, 2014.

[34] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006.

[35] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels
for object detection,” in ICCV, 2009.

[36] C. M. Bishop, “Mixture density networks,” Aston University, Tech. Rep.,
1994.

[37] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
ICLR, 2014.

[38] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang, “A closer
look at few-shot classification,” in ICLR, 2019.

[39] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
in ICLR, 2018.

[40] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel, “Meta-learning for semi-supervised few-
shot classification,” in ICLR, 2018.

[41] Y. Liu, J. Lee, M. Park, S. Kim, and Y. Yang, “Transductive propagation
network for few-shot learning,” in ICLR, 2019.

[42] L. M. Zintgraf, K. Shiarlis, V. Kurin, K. Hofmann, and S. Whiteson,
“Fast context adaptation via meta-learning,” in ICML, 2019.

[43] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid adaptation
with conditionally shifted neurons,” in ICML, 2018.

[44] B. Oreshkin, P. R. López, and A. Lacoste, “Tadam: Task dependent
adaptive metric for improved few-shot learning,” in NIPS, 2018.

[45] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for
few-shot learning,” in CVPR, 2019.

[46] S. W. Yoon, J. Seo, and J. Moon, “Tapnet: Neural network augmented
with task-adaptive projection for few-shot learning,” in ICML, 2019.

[47] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,” in
ICLR, 2019.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
ICCV, 2015.

[50] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A simple neural network module for
relational reasoning,” in NIPS, 2017.

[51] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 15, no. 1, pp. 72–101,
1904.

