
Approximating Optimisation Solutions for the
Travelling Officer Problem with Neural Networks

Wei Shao
School of Science
RMIT University

Melbourne, Australia
wei.shao@rmit.edu.au

Jeffrey Chan
School of Science
RMIT University

Melbourne, Australia
jeffrey.chan@rmit.edu.au

Flora D. Salim
School of Science
RMIT University

Melbourne, Australia
flora.salim@rmit.edu.au

Abstract—Deep learning has been extended to a number of new
domains with critical success, though some traditional orienteer-
ing problems such as the Travelling Salesman Problem (TSP) and
its variants are not commonly solved using such techniques. Deep
neural networks (DNNs) are a potentially promising and under-
explored solution to solve these problems due to their powerful
function approximation abilities, and their fast feed-forward
computation. In this paper, we outline a method for converting
an orienteering problem into a classification problem, and design
a multi-layer deep learning network to approximate traditional
optimisation solutions to this problem. We test the performance
of the network on a real-world parking violation dataset, and
conduct a generic study that empirically shows the critical
architectural components that affect network performance for
this problem.

Index Terms—deep learning, optimisation, function approxi-
mation

I. INTRODUCTION

The travelling salesman problem (TSP) is a well-known
combinatorial optimisation problem in the artificial intelli-
gence research community, with extensive real-world exam-
ples and applications [1]. As a classical, NP-hard problem, it
has been studied extensively in both theory and applications
[2]. As a result of its ubiquity, many efficient optimisation
algorithms have been proposed for approximating solutions,
such as ant colony optimisation, [3], greedy selection [4], and
genetic algorithms [5]. However, in today’s era of big data,
this classic formulation is not as suitable for many real-world
applications which often include additional contextual and
historical information [6]. Although traditional methods for
solving the TSP can be used in such domains, we might hope
to gain an advantage by developing new methods – that do
take contextual and historical data into account – for solving
such problems.

The travelling officer problem (TOP) is a variant of travel-
ling salesman problem (TSP) [7] but provides a way to use
contextual and historical data. Nowadays, parking violation
has become a prominent challenge for administration in most
big cities. Parking officers need to stick infringement notices
on violating cars before they leave the parking zone, but this
can be challenging for many reasons. Firstly, the majority of
infringing vehicles leave within a short period. Secondly, many

Fig. 1: The Travelling Officer Problem – a parking officer
faces four parking violation in different directions. The parking
officer knows the time-in-violation for each car, and estimates
the probability of each car leaving. The parking officer needs
to choose a path that catches as many of these violators as
possible. Yellow line in the map shows the First-Come-First-
Serve (FCFS) solution. The red line illustrates the probability-
based greedy solution.

violation events occur at the same time in a large area. As
shown in Figure 1, parking officers must balance the travelling
time between the officer’s location relative to the infringing
vehicles, and the probability that these cars will leave.

Shao et al. [7] previously defined this problem, and two
heuristic solutions were demonstrated for generating paths
using spatio-temporal data collected from on-ground sensors
in parking spaces. The path generated by these optimisation
methods (E.g. Red line in Figure 1) were shown to be better
than the First-Come-First-Serve solutions (E.g. Yellow line in
Figure 1), and achieved a higher return on parking fines when
evaluated on the real-world parking dataset [7]. Despite this,
the efficiency of these optimisation solutions cannot satisfy
the requirements of real-time application. Given the dynamic
nature of parking events [8]–[11] and short-term nature of
parking violations, this makes application of more traditional
methods difficult.

Deep learning models can achieve real-time performance

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

since their training and inference are broken up into two dis-
tinct sessions. Training can be done offline, and inference runs
in constant time, making neural networks ideal for problems
like the TOP where fast evaluation is desired. However, a
significant portion of current classification approaches tend to
solve supervised learning problems for which the solution is
known and provided as a training dataset. In addition, the TOP
is a typical optimisation problem, and deep learning models
are not typically used to solve optimisation problems directly.
In order to leverage deep learning models, the TOP problem
needs to be transformed into a supervised classification prob-
lem in order to obtain good potential paths as labels.

To overcome the above challenges, we use solutions gener-
ated by optimisation methods as labels for training. We pro-
pose a spatio-temporal data segmentation approach to trans-
form the optimisation problem into a classification problem,
and design a deep feed-forward neural network to approx-
imate optimisation solutions. Training deep neural networks
to replace optimisation has many advantages in this case: the
computationally expensive optimisation problem can be solved
as part of the training session, and once this is done, the
test session can roll out trajectories that approximate those of
the original optimiser with simple feed-forward computation.
Moreover, neural networks scale very well, allowing such a
technique to take advantage of a huge amount of additional
contextual and temporal information and explore the unclear
structure of this data.

There are challenges in both the transformation and learning
tasks. Traditional orienteering problems only focus on the
spatial domain, usually in the form of a static 2D graph.
The TOP also considers the temporal domain, which consists
of many temporal views of this same spatial graph. We
need a method that works with both spatial and temporal
information. Secondly, classification methods need the input
features and the corresponding labels; the TOP does not
provide any existing solutions or features. It is non-trivial to
integrate the optimisation solution with classification to solve
this problem. Finally, it is unclear how to effectively use deep
neural networks to approximate the optimisation solution in
orienteering problems. As a result, the design of an appropriate
deep learning architecture for this type of problem is needed.

This paper explores the use of deep learning techniques for
the solution of the TOP, and makes the following contributions:

• We propose a framework to solve travelling officer
problem incorporating optimisation approaches and deep
neural networks.

• We propose a novel segmentation method to transform a
spatio-temporal graph into a sequence of features.

• We explain the reason that DNN can approximate the
greedy and other optimisation solutions.

• We validate our claim that the TOP can be solved using
a combination of both optimisation solutions and neural
network classifiers through extensive experiments with
a large real-world dataset, including a comparison with
traditional machine learning methods.

II. RELATED WORK

There is an extensive body of research in applying neural
networks to TSP variants going back to [12], though the net-
works used in these studies typically fall into the category of
Hopfield networks, and self-organising feature map networks
(see [13]–[15]). Hopfield networks are fully recurrent, and
memorise training examples by minimising an energy cost
function. However, many recent advances in deep learning
have been made with feed-forward neural networks, on the
back of better optimisation algorithms and the ability to train
on large datasets. Though Hopfield networks have been used
for classification tasks, their performance is not as good as
modern deep learning techniques. On combinatorial tasks, the
number of neurons required by a Hopfield network scales
with n2 (where n is the number of nodes in the graph)
which can be problematic for larger graphs. Our study is
different from these previous works in two ways: firstly,
we are approximating a solution to a more difficult, time-
dependent version of the TSP (the TOP). Our problem is
focused on maximising a temporally-dependent reward, rather
than navigating a geographically-fixed set of nodes. Using
different temporal views of the data to generate training
samples can dramatically increase the size of the training set
(this is inspired by [16]). Secondly, rather than using Hopfield
networks, we propose re-framing the problem as a supervised
learning task for classification. Under this framework, we use
an optimisation algorithm to generate the training set for a
classifier, which is then trained to generate a trajectory through
a given graph.

Additionally, there numerous recent works in effectively
combining optimisation with deep learning. Fischetti and Jo
modelled deep neural networks as a 0-1 mixed integer linear
program [17]. Galassi et al. used a deep neural net to learn the
structure of a combinatorial problem, and mentioned that such
research is still at an early stage [18]. Ma et al [19] propose a
Graph Pointer Networks trained using reinforcement learning
(RL) for solving the TSP. Bello et al. presents a framework
to tackle combinatorial optimisation problems using neural
networks and reinforcement learning [20]. Dai et al. presents
an end-to-end machine learning framework for automatically
designing greedy heuristics for hard combinatorial optimisa-
tion problems on graphs which inspires our work as well [21].

III. BACKGROUND

A. Overview of On-street Parking in City

The Melbourne Transportation Council set up in-ground
sensor systems around CBD areas. For each car parking area,
the sensor can detect parking space availability, and check its
violation state with parking rules. The sensors report parking
events to information centre periodically, and the system
would send the message to the patrolling parking officer who
supervises this area when the nearby parking cars are in
violation state. Then the patrolling parking officer will go
to check the cars in violation, and dispatched to issue an
infringement notice.

B. Parking Sensor Data

The parking events data recently has been published online,
which attracts researchers to study and analyse. The parking
events data were recorded from October 1, 2011, to September
30, 2012 (12 months). A total number of 12,208,178 records
were logged. Each record comprises the information of a
parking event including area name, street name, street segment
and some other parking information. It also provides the spatial
information such as the latitude and longitude of the parking
spaces.

Figure 2 shows the distribution of violations with the length
of time in violation. The horizontal axis denotes the length of
time from the beginning of the violation to the car leaving,
and the vertical axis shows the total violation numbers within
a month. Figure 2 shows that there are only a small part of
cars in violation beyond 100 minutes, and most violations
between five and 60 minutes. This is the key observation that
we take into account in our spatio-temporal-based optimization
approach. Using such observations we build a probabilistic
model that can estimate the likelihood of a car in violation
leaving which allows us to optimise the strategy that officers
use to catch cars in violation.

Fig. 2: The numbers of violation with total violation time

C. Travelling Officer Problem

The Travelling Officer Problem describes the problem of a
parking officer traversing a fully connected graph to maximise
a cumulative reward (in this case, parking violations). There
is a time cost C(u, w) associated with travelling from node
u ∈ v to w ∈ v (or parking lot u to w , where v denotes
all nodes in the graph or all parking lots in the area) that is
dependent on the officer’s walking speed (we do not assume
that the officer stops at intermediary nodes).

The officer must choose between chasing for the potential
reward for catching a parking violation at a given node by
considering the probability that the violation may no longer
exist by the time he/she arrives, and the opportunity of cost
saving from not travelling to other nodes containing parking
violations. The solution of the TOP aims to find a path S that
maximises the number of valid nodes with time limits (e.g.
working hours), and the time-varying state of each node. The

valid nodes denote the car at parking lot xi is in a state of
violation.

Let T be the total travelling budget, and fj,t ∈ {0, 1}
denotes whether there is an infringement at node j at time t .
We denote a solution S = {(x1 , t1), (x2 , t2), ..., (x|S|, t|S|)}
as the path travelling over nodes, where xi ∈ v and denote
the ith node in the path, and ti ∈ Time denote the time
when officer arrives at the node xi (note Time is whatever
time unit/division you are using). Because in the TOP, ti is
deterministic from the path of nodes visited, we can infer ti
from just the visited nodes, and we will simplify our path s to
x1, x2, . . . , x|S|. Let R denote the infringement fine amount
(assuming each infringement cost the same). In this paper, we
assume the R is a constant value.

Then the TOP problem is to find a path S that maximises
the total return, satisfying the total travelling time budget. A
formal definition of this problem is as follows:

arg max
S

∑
xi∈S

fi,t · R

s.t. ∑|S|−1
i=1 C(xi, xi+1) ≤ T (1)

tk =
∑k
i=2 C(xi, xi+1), for 1 < k < |S| (2)

t1 = 1 (3)

D. Heuristic Optimisation

Previously, Shao et al. [7] discussed two heuristic optimisa-
tion methods (greedy and ACO) to solve the Travelling Officer
Problem; it was shown that both algorithms performed well at
the task of collecting parking violation fines. In order to take
advantage of temporal information in the TOP, the authors
proposed a dynamic temporal probability model and integrated
it with traditional optimisation methods. The proposed greedy
algorithm can be formalised as a single function as follows:

arg max
i

exp

(
−
τi + di

V

α

)
, (4)

where τi denotes the overstayed time of cars at node xi , and
di denotes the route distance between node xi and the current
position of the parking office. V is a constant to denote the
speed of the parking officer, and α is a parameter which is
set by historical data analysis. The proposed greedy algorithm
seek for ith nodes calculated by Eq. 4 as the next position for
parking officer.

In the ACO algorithm, the ants decide the next node by
the pheromone distribution left by previous ants. The prob-
ability of these choices was modelled as being proportional
to [φ(xuw)]α • [η(xuw)]β , where η is the probability of
a node being invalid by the time the officer arrives. The
greedy algorithm used a similar dynamic probability model to
estimate the most promising node, and would greedily select
the best one. The details of both algorithms are shown in [7].

Fig. 3: Flowchart of the proposed model. The state matrix is extracted from parking event data. The officer position matrix is
randomly generated, and a relative distance matrix which measures the distance between the parking officer and other parking
lots is calculated using the Google Maps API. From there, the state matrix and relative distance matrix are fed into the optimiser
to generate labels for the classifier. These labels are then used for training, and the classifier is used to roll out trajectories on
the test set.

IV. METHODOLOGY

In this section, we propose a framework to transform the
TOP – a spatio-temporal orienteering problem – into a classi-
fication problem that can be solved by a feed-forward deep
neural network incorporating optimisation solutions. Figure
3 illustrates the overview of our framework. It primarily
consists of three parts: spatio-temporal feature extraction,
optimisation-based search, and a feed-forward neural network.
Spatio-temporal feature extraction aims to extract features and
build a training dataset from the public parking violation
historical dataset. Classification labels are generated by using
optimisation to find a path from any given map. The DNN
then uses the state and relative distance as the input features,
and uses the optimisation solution S as the ground truth label
to learn the optimisation algorithm. We outline the details of
each component in the following subsections.

A. Spatio-temporal Feature Extraction Method

A significant difference between traditional sub-path plan-
ning problems and the TOP is temporal dependence. Tradi-
tional sub-path problems generally consist of spatial data such
as the location of the vertices, or the edges of the graph [22],
[23]. For such static graphs, information is limited; however,
time is continuous, meaning that even finer-grained slices can
be taken to generate further data points when the temporal
dimension is included. Each time frame becomes a static 2-D
graph at timestamp ti, corresponding to a data sample χi.

we extract a vector χi = {χi,x1
, χi,x2

, . . . , χi,xn
} in

Figure 4,, where n is the number of parking lots (the
number of nodes in the graph) from parking violation
events at time ti and slicing time frame every ∆t.
For example, at node xj , there are p violation events
{(τaxj ,1, τ

e
xj ,1), (τaxj ,2, τ

e
xj ,2), . . . , (τaxj ,p, τ

e
xj ,p)}, where τaxj ,k

is

Fig. 4: Spatio-temporal feature extraction method: The bot-
tom part represents the parking violation events in temporal
domain. The red bar indicates the violation interval. The red
arrows slices the state information of each node with a fix-
length time step. Inf denotes that there is no violation in the
specific parking lot.

the start time of the kth violation interval at node xj , and τexj ,k

is the end time of the kth violation interval at node xj . For
any time ti, there only two cases: 1) ti is located between one
of violation events interval. That is, τaxj ,k

< ti < τexj ,k
and

1 ≤ k ≤ p, or 2) time ti is not located in any violation events.
In this first case, we set the value χi,xj = ti − τaxj ,k

. In the
second case, We set the value as −1 if there is no violation for
parking lot xj at time ti. The number of time lots is denoted
as m = T

∆t
, where T is the maximum time constraint and

∆t denotes the time step we choose for slicing the temporal
domain.

Except for temporal features, we also extract spatial fea-
tures. The first component in the second row of Figure 3
shows a officer position matrix, where position filled with red
colour in each row denotes the current location of the parking
officer at time ti. For simplicity, the officer will not change the
path between two nodes. Therefore, the possible position of
officers are the same as the parking lots positions. The relative
distance matrix shown in the bottom row in the Figure 3 store
the distance between current parking officer location and other
nodes xj ∈ v. Therefore, for any time ti, we can get a relative
distance vector d = {d1 , d1 , . . . , dn}, where dj measure the
route distance between the parking officer and node xj .

B. Optimisation

The TOP is an NP-hard problem that can be solved by tra-
ditional optimisation methods under an objective function and
constraints. As mentioned previously, optimisation solution S
is series of nodes at time ti. However, a complete path should
be broken into multiple decisions to transform an optimisation
problem to a classification problem. That is, at any time ti,

we need to run the optimisation algorithm and only select the
first node x1 in the path S. As a result, we can get a series of
labels l = {xt11 , x

t2
1 , . . . , x

tm
1 }, where xti1 is the first node of

path S which is given by optimisation method at time ti.
The classification problem aims to learn a categorical like-

lihood over a set of classes from a training set. In this case, if
we regard each node xi as a class label and use state matrix
and relative distance matrix as the features for the training,
the classifier should learn to choose the next node.

C. Neural Networks

In order to achieve similar performance with optimisation
methods, it is not enough to use an existing general neural
network because the general neural networks are sensitive to
the hyper-parameters and architecture. Therefore, we propose a
specific neural network which is designed with each operation
of the greedy algorithm in TOP. Figure 5 shows the completed
architecture of neural networks designed for replacing the
greedy algorithm in TOP. The first layer is the input layer
concatenated by two vectors: a relative distance vector d, and
the state vector χi which is calculated in Section IV-A. The
first hidden layer h1 aims to learn a linear combination of
d and χi. If we pay attention to Eq. 4, we can find that
this layer can approximate the function h1(di, τi) = − τi+

di
V

α .
Universal approximation theorem [24] states that a feed-
forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on
compact subsets of Rn. This is a continuous function on a
real value dataset. Therefore, we design a hidden layer h1 to
approximate this function. Then we use a sigmoid function
which is also a non-linear activation function to approximate
exponential function. This is also a non-linear function [25]
[26]. Layer h2 now consists probabilities pi to denote the
capture chance by parking officer for node xi. Since arg max
is not a continuous function, we cannot use the hidden layer.
Fortunately, softmax function is a perfect function to choose
the max value from p = {p1, p2, . . . , pn} [27]. Therefore, the
output of the network becomes the next node that the officer
should travel to.

For other components of the neural network, we used Adam
[28] for optimisation, and early stopping for regularisation. We
used dropout at each layer to prevent overfitting [29].

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our proposed
model, and compare it with traditional classification methods
and optimisation-only solutions on a real-world dataset. The
rules and assumptions are outlined in [7].

A. Dataset

We tested the proposed model on the Melbourne parking
event dataset, published by the Melbourne City Council, and
used previously in [30] [7] [31] [32]. A detailed description of
this dataset is included in [7]. We took time slices throughout
the week for training, and tested the performance of the
classifier using different time slices to ensure that the test

Fig. 5: Architecture of greedy-like DNN. Input layer consists
of relative distance vector and state vector for each parking
node. Output layer is a one-hot vector denotes the next
travelling node.

and train sets were drawn from the same distribution. For
reward evaluation, we randomly chose a week’s worth of data
from a year-long data set. For other experiments, we randomly
selected a single day. For the rewards study, we chose 50 nodes
from all vertices in the graph, and extracted sampling data at
10 second intervals. the dataset consists of all parking events
in the CBD’s on-street car parking bays over a year.

To apply our model to the dataset, we used six attributes
extracted from the dataset (as shown in Table I), and a list of
attributes we defined from that dataset (Table II).

Distance is the most important attribute that we use to
calculate the cost and find the solution in our model. Since
we conducted experiments in real scenarios, it was important
to measure the distance between two points on the map. There-
fore, we extracted records that reflected accurate positions and
driving distance (the distance calculated on the street path
using Google Maps) between car parking bays.

B. Evaluation Metric

We use two criteria to evaluate the performance of our
proposed method: rewards, and classification accuracy. The
definition of rewards is given in [7]. It denotes how many
cars in violation can be caught by parking officers. Since we
use the optimisation solution as the ground truth, we also use
the classification accuracy to measure the degree to which the
classifier learns the optimisation algorithm.

C. Experimental settings

We applied both ACO and greedy algorithm which is used
in Shao et al. [7] to the dataset and the DNN, Support vector
machine (SVM) [33] and Random Forest (RF) [34] to learn
the optimisation solutions.

D. Classification Model Comparison

In the first experiment, we evaluate all classifiers over a
week by rewards and categorical accuracy. There are two
sub-set of experiments. First experiment compares the greedy
algorithms and classifiers that learn from the greedy algorithm.

Second experiments evaluates the ACO and classifiers that
learn from ACO.

Figure 6 shows the weekly rewards obtained by optimisation
solutions – greedy and ACO. It also shows achieved rewards
from different classification methods learned from the optimi-
sation solutions. the DNN outperformed the other techniques.
Interestingly, we found that classification was more accurate
on weekends compared to weekdays because weekends aver-
age a lower number of violations than weekdays, largely due
to less stringent parking rules. Overall, The DNN achieves
similar performance to the greedy on this problem as expected.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Sun Mon Tue Wed Thu Fri Sat

R
ew

ar
ds

 (
 %

 o
f t

ot
al

 r
ew

ar
ds

)

 Greedy

 ACO

 DNN-Greedy

 DNN-ACO

 RF-Greedy

 RF-ACO

 SVM-Greedy

 SVM-ACO

Fig. 6: Weekly rewards obtained through different algorithms.

E. Evaluation of Model Components

We also studied the effect of varying the parameter settings
of the problem, as measured by classification accuracy and
rewards achieved:
• Number of nodes: the number of nodes indicates the

depth of the search space in orienteering problems. In
this case, the number of nodes is also associated with the
number of rewards, and the size of the training set;

• Minimum time step: we extract training samples from
the dataset with a time step. For each time step ti, we
extract a temporal image from the dataset and add it to
our training set.

We evaluated our classifiers on graphs with sizes varying
from 10 to 50 nodes. Figure 7 shows that the classification ac-
curacy drops significantly as the size of the graph is increased,
which suggests that classification methods imitate optimisation
solutions well in smaller search spaces. It is possible that in
larger search spaces, the limited number of training examples
is the limiting factor preventing the classifiers from being able
to learn better an approximation of the optimisation routine.
Though the rewards increase with the number of nodes in the
problem, this is likely the result of greater potential rewards
due to the presence of more nodes in the graph. Notably,
the gap in performance between the optimisation solution
and the classification solutions become larger for these larger
problems. The DNN outperformed both the SVM and RF

TABLE I: Attribute list for parking events

Attribute Name Description
Street Marker The signs placed on the side of parking bays
Area Name City area, - used for administrative purposes
Arrive Time Time that the sensor detected a vehicle over it
Departure Time Time that the sensor detected a vehicle is leaving
In Violation Indicates that the parking event exceeded the legally permissible time
Sign Parking sign in effect at the time of the parking event.

TABLE II: Other attributes used in experiments

Attribute Name Description
Location The longitude and latitude of the parking slot
Violation Time The violation time based on signs
Violation Period The length of time that car overstays

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

Nodes

R
ew

ar
ds

 (
 %

 o
f t

ot
al

 r
ew

ar
ds

)

Greedy
ACO
DNN-Greedy
DNN-ACO
RF-Greedy
RF-ACO
SVM-Greedy
SVM-ACO

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Nodes

C
at

eg
or

ic
al

 a
cc

ur
ac

y

DNN-ACO
DNN-Greedy
RF-ACO
RF-Greedy
SVM-ACO
SVM-Greedy

Fig. 7: The effect of the number of nodes n on the total reward
obtained, and the categorical accuracy as seen on the test set.

solutions by increasing its total reward along with the graph
size. In contrast, the SVM and RF performance dropped under
the same conditions. Interestingly, we find that all classifiers
achieve higher accuracy when they learn from greedy than
ACO. This phenomenon may be caused by the complexity of
the optimisation solution. This is planned for future study.

We also evaluated the model on data from a single day with
varying time step sizes from 10 to 60 seconds. Figure 8 shows
that smaller time steps resulted in better overall accuracy on
the validation set, but this did not necessarily translate to
better rewards. This is potentially because smaller time steps
provided more training data. However, it does not suggest that
testing accuracy is higher.

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

Time step (second)

R
ew

ar
ds

 (
 %

 o
f t

ot
al

 r
ew

ar
ds

)

DNN-ACO
DNN-Greedy
RF-ACO
RF-Greedy
SVM-ACO
SVM-Greedy

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60

Time step (seconds)

C
at

eg
or

ic
al

 a
cc

ur
ac

y

DNN-ACO
DNN-Greedy
RF-ACO
RF-Greedy
SVM-ACO
SVM-Greedy

Fig. 8: The effect of the time step ∆t on the total reward
obtained, and the approximation accuracy as seen on the test
dataset.

F. Computational Complexity Analysis

Finally, we evaluated the computational efficiency of both
the optimisation method and the neural network, by varying
the number of nodes from 10 to 50 and then measuring the
execution time of the program. Figure III shows that the
running time for DNN is much faster than the optimisation
algorithm since we exclude the training time. We only consider
the test session time as the running time of DNN because
the training session can be done offline. That is, we can use
historical data to train the DNN before using it. Optimisation
methods cannot be applied to the real scenario before we know
it. Therefore, it is fair to compare the testing time of DNN and
running time of the optimisation methods.

It shows that testing time is significantly shorter than other
algorithms and does not change with the number of nodes.
Therefore, DNN-based model is much more efficient than
optimisation solution in the real-world scenario.

VI. DISCUSSION AND FUTURE WORK

The neural network performed reasonably consistent across
all days, though in general, it fared worse compared to the
greedy algorithm during the week. Notably, we found that
when the performance of the greedy algorithm was low, the
gap between the neural network and the optimisation algorithm
was very small.

In this paper, we only introduce one kind of DNN for
the greedy algorithm which may not suitable for ACO and
other optimisation algorithms such as greedy algorithm is one
of the simplest optimisation algorithms. Our next goal is to
design different neural networks architectures for different
optimisation methods and generalise current DNN to more
existing optimisation problems.

VII. CONCLUSION

A technique was shown for reformulating an orienteering
problem as a classification problem, and using conventional
optimisation to generate labels for training. We took finer
time slices of the dataset to increase the amount of training
data, and this was shown to improve accuracy. We design a
neural network to approximate the greedy algorithm in TOP.
We evaluated on a large real-world dataset by sampling at a
different time interval to generate a distinct test set. It was
shown that the DNN could be used to approximate the greedy
algorithm in TOP.

TABLE III: Time consuming for different algorithms with different number of nodes. (seconds)

Methods node 10 node 20 node30 node 40 node50
Greedy 7.12 15.71 21.78 28.05 33.96
ACO 112.16 217.60 232.41 427.52 528.08
DNN (Training Greedy) 77.12 152.6 244.49 349.57 443.17
DNN (Testing Greedy) 0.24 0.57 1.04 1.33 1.72
DNN (Training ACO) 74.89 152.42 232.60 323.39 405.49
DNN (Testing ACO) 0.27 0.34 0.44 0.49 0.53

REFERENCES

[1] H. Sumita, Y. Yonebayashi, N. Kakimura, and K.-i. Kawarabayashi, “An
improved approximation algorithm for the subpath planning problem and
its generalization,” in 26th International Joint Conference on Artificial
Intelligence, IJCAI 2017. International Joint Conferences on Artificial
Intelligence, 2017.

[2] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[3] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on evolutionary computation, vol. 1, no. 1, pp. 53–66, 1997.

[4] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical pro-
gramming, vol. 1, no. 1, pp. 127–136, 1971.

[5] H. Braun, “On solving travelling salesman problems by genetic algo-
rithms,” in International Conference on Parallel Problem Solving from
Nature. Springer, 1990, pp. 129–133.

[6] Y. Mei, F. D. Salim, and X. Li, “Efficient meta-heuristics for the multi-
objective time-dependent orienteering problem,” European Journal of
Operational Research, vol. 254, no. 2, pp. 443–457, 2016.

[7] W. Shao, F. D. Salim, T. Gu, N.-T. Dinh, and J. Chan, “Travelling officer
problem: Managing car parking violations efficiently using sensor data,”
IEEE Internet of Things Journal, 2017.

[8] M. S. Rahaman, Y. Ren, M. Hamilton, and F. D. Salim, “Wait time
prediction for airport taxis using weighted nearest neighbor regression,”
IEEE Access, vol. 6, pp. 74 660–74 672, 2018.

[9] M. S. Rahaman, M. Hamilton, and F. D. Salim, “Queue context pre-
diction using taxi driver knowledge,” in Proceedings of the Knowledge
Capture Conference. ACM, 2017, p. 35.

[10] M. S. Rahaman, M. Hamilton, and F. D. Salim, “Predicting imbalanced
taxi and passenger queue contexts in airport,” in PACIS, 2017, p. 172.

[11] S. Ahmed, M. S. Rahman, and M. S. Rahaman, “A blockchain-based
architecture for integrated smart parking systems,” in 2019 IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2019, pp. 177–182.

[12] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biological cybernetics, vol. 52, no. 3, pp. 141–
152, 1985.

[13] B. F. La Maire and V. M. Mladenov, “Comparison of neural networks
for solving the travelling salesman problem,” in Neural Network Appli-
cations in Electrical Engineering (NEUREL), 2012 11th Symposium on.
IEEE, 2012, pp. 21–24.

[14] S. Abdel-Moetty, “Traveling salesman problem using neural network
techniques,” in Informatics and Systems (INFOS), 2010 The 7th Inter-
national Conference on. IEEE, 2010, pp. 1–6.

[15] J.-Y. Potvin, The traveling salesman problem: a neural network perspec-
tive. Université de Montréal, Centre de recherche sur les transports,
1992.

[16] Y. Liu, Y. Zheng, Y. Liang, S. Liu, and D. S. Rosenblum, “Urban
water quality prediction based on multi-task multi-view learning,” 25th
International Joint Conference on Artificial Intelligence, IJCAI 2016,
2016.

[17] M. Fischetti and J. Jo, “Deep neural networks as 0-1 mixed integer linear
programs: A feasibility study,” arXiv preprint arXiv:1712.06174, 2017.

[18] A. Galassi, M. Lombardi, P. Mello, and M. Milano, “Model agnostic
solution of csps via deep learning: A preliminary study,” in International
Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Springer, 2018, pp. 254–262.

[19] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori, “Combinatorial optimiza-
tion by graph pointer networks and hierarchical reinforcement learning,”
arXiv preprint arXiv:1911.04936, 2019.

[20] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[21] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017, pp. 6348–6358.

[22] M. S. Rahaman, Y. Mei, M. Hamilton, and F. D. Salim, “Capra: A
contour-based accessible path routing algorithm,” Information Sciences,
vol. 385, pp. 157–173, 2017.

[23] M. S. Rahaman, M. Hamilton, and F. D. Salim, “Coact: A framework
for context-aware trip planning using active transport,” in 2018 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2018, pp. 645–650.

[24] B. C. Csáji, “Approximation with artificial neural networks,” Faculty of
Sciences, Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

[25] Y. Ito, “Approximation of functions on a compact set by finite sums of
a sigmoid function without scaling,” Neural Networks, vol. 4, no. 6, pp.
817–826, 1991.

[26] S. Ferrari and R. F. Stengel, “Smooth function approximation using
neural networks,” IEEE Transactions on Neural Networks, vol. 16, no. 1,
pp. 24–38, 2005.

[27] M. Tokic and G. Palm, “Value-difference based exploration: adaptive
control between epsilon-greedy and softmax,” in Annual Conference on
Artificial Intelligence. Springer, 2011, pp. 335–346.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[30] W. Shao, F. D. Salim, A. Song, and A. Bouguettaya, “Clustering big
spatiotemporal-interval data,” IEEE Transactions on Big Data, vol. 2,
no. 3, pp. 190–203, 2016.

[31] K. K. Qin, W. Shao, Y. Ren, J. Chan, and F. D. Salim, “Solving
multiple travelling officers problem with population-based optimization
algorithms,” Neural Computing and Applications, pp. 1–27, 2019.

[32] W. Shao, Y. Zhang, B. Guo, K. Qin, J. Chan, and F. D. Salim,
“Parking availability prediction with long short term memory model,” in
International Conference on Green, Pervasive, and Cloud Computing.
Springer, 2018, pp. 124–137.

[33] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

