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Abstract—Traditional dynamic selection methods fail to per-
form effectively when data dimensionality increases. In addition,
those methods do not provide any insights into important
features in the data, as the regions of competence used for data
classification are always constituted by the same set of features.
In this paper, we propose a two-stage framework based on
subspace clustering using a Gaussian Based Estimator, followed
by a k-Nearest subspace search mechanism to overcome these
limitations of dynamic selection. The idea of subspace allows for
regions of competence with different numbers of instances and
dimension sizes. Our hypothesis is that by using our framework,
we will achieve comparable results to the state-of-the-art dynamic
selection, with the benefit of producing a model that helps to un-
derstand the importance of sets of features for the patterns found
within the data. We test our approach to a high dimensional
microarray data of insect bite hypersensitivity in horses. Results
show that our approach is comparable to traditional dynamic
selection methods in terms of accuracy. In addition, it facilitates
the interpretability of the feature importance for each class of
the dataset.

Index Terms—dynamic selection, subspace clustering, Gaus-
sian kernel density estimator, nearest subspace search, protein
microarrays, insect bite hypersensitivity

I. INTRODUCTION

In the last decade, a number of researchers have shown that
for low-dimensional data, dynamic selection (DS) outperforms
single robust classifiers and traditional combination methods,
such as majority voting, bagging and boosting [1]–[6]. For
high-dimensional data, however, Maciel-Guerra et al. (2019)
showed that DS methods fail to perform as well, because the
k-Nearest Neighbours (k-NN) approach, commonly adopted
to define regions of competence, deteriorates as the number
of dimensions increases. As stated by Cruz et al. (2017) [1],
the mechanisms for a proper determination of the region of
competence for DS are underdeveloped; and advances in the
area could lead to increased performance of DS methods for
high-dimensional data.

In data sets with high feature spaces, many dimensions
are irrelevant and can directly impact in the quality of the
regions of competence retrieved [7], [8]. Feature selection and
extraction methods have been employed to remove irrelevant
features to improve those regions quality [7], [8]. However,
in high-dimensional data, a phenomena called local feature
relevance occurs, i.e., different subsets of features are relevant
for distinct regions of competence [7]. Therefore, traditional
feature selection and extraction methods using all features to
determine their individual importance might not be suitable.
Instead, subspace clustering methods narrow their search and
are able to elucidate clusters within multiple, possible over-
lapping subspaces of features and/or samples [8]. Subspace
clustering is an extension of traditional clustering methods
that attempts to find clusters in different regions of the feature
space in terms of features and samples [8].

The focus of this paper is therefore to incorporate subspace
clustering methods into the DS framework to tackle high
dimensional problems. The rationale behind DS techniques is
that not every classifier is an expert in predicting all unknown
samples; instead, each classifier or a combination of classifiers
of the pool is an expert in different regions of the feature
space where the test samples are located [1]–[3]. In practical
problems, different query samples have particular classification
difficulties and may be located in distinct subspace regions.
Hence, it is intuitive to think that adopting different classifiers
to predict the pattern of different test samples may increase
the performance of a multiple classifier system [1], [21].
Moreover, by using the concepts of subspace clustering into
the DS framework, it would be possible to know which
features are more important for the classification of each test
pattern.

Therefore, we propose a novel framework for DS meth-
ods called Subspace-Based Dynamic Selection (SBDS). By
incorporating a subspace clustering method, we hypothesise
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that it is possible to increase the performance of DS methods
and improve knowledge discovery in high-dimensional small-
instance data sets. To accomplish this, we use the main
characteristics of the DS framework and integrate it with the
concepts of subspace clustering. SBDS can be divided into
two steps: (1) subspace clustering based on a Gaussian Kernel
Density Estimator (GKDE) to find all one-dimensional clusters
and, subsequently, a merging procedure to find all subspaces;
(2) k-Nearest Subspace Search (k-NSS) to find the k most
similar subspaces in relation to each test sample. Despite
the large number of papers published in DS, to the best of
our knowledge, there is no comprehensive study available
combining subspace clustering with DS. We hope that the
proposed SBDS framework achieves higher performance when
compared with DS methods in terms of accuracy.

In this work, we use an equine insect bite hypersensi-
tivity (IBH) data set as a case study to test our proposed
SBDS framework. This disease is a well-characterised immune
response, that involves IgE antibodies to ordinary salivary
proteins from insects, with a known aetiology and fully
determined clinical symptoms, as described in Marti et al.
(2015) [22]. The IBH data set used has a smaller number of
samples (196) when compared to the number of features (384).
The proposed SBDS framework achieved higher results when
compared with DS methods.

This paper is organised as follows. Section II provides
background on the main concepts of this paper and depicts
related work associated with high-dimensional data. Section
III introduces our proposed SBDS framework and Section IV
describes the methodology used. Experimental results using
the IBH data set are shown in Section V. Section VI outlines
the conclusions and future work.

II. BACKGROUND

The quantity of data collected from multiple sources have
increased greatly in the past decade, particularly in medicine
and life sciences, which brings challenges and opportunities.
Heterogeneity, scalability, computational time and complexity
are some of the challenges that impede progress to ex-
tract meaningful information from data [23], [24]. Moreover,
biomarker discoveries in medical data sets, including protein
microarrays, can help in the diagnosis of diseases such as
allergies. We believe that approaches such as DS can help
better classifying and understanding important features in high
dimensional data, such as microarrays, as further discussed
next.

A. Dynamic Selection

Multiple Classifier Systems (MCS) are a very active area of
research with recent studies demonstrating its advantages over
a single robust classifier [1], [2], [25]. MCS are essentially
composed of three major stages: (1) pool generation, (2)
selection and (3) integration. In the pool generation stage,
the main goal is to train a pool of classifiers that are both
accurate and diverse, i.e. the classifiers must have a low error
rate (accurate) and two classifiers must make different errors
on new samples (diverse). In the second stage the goal is to
select a single or an ensemble of classifiers from the pool
of classifiers. This stage can be divided into two groups:
static (classifiers are fixed for all unknown test samples) and
dynamic selection (selects a different set of classifiers for
each test sample). The final stage consists of combining the
outputs of the selected ensemble of classifiers according to a
combination rule [1]–[3].

TABLE I
DS METHODS INVESTIGATED

Name Selection criteria DS Method Region of Competence Reference

Classifier Rank (CR) Ranking DCS k-NN [9]
Modified Classifier Rank (MCR) Ranking DCS k-NN [10]
Overall Local Accuracy (OLA) Accuracy DCS k-NN [10]
Local Class Accuracy (LCA) Accuracy DCS k-NN [10]
A Priori Probabilistic DCS k-NN [11]
A Posteriori Probabilistic DCS k-NN [11]
Multiple Classifier Behaviour (MCB) Behaviour DCS k-NN [12]
Modified Local Accuracy (MLA) Accuracy DCS k-NN [13]
DES - k-Means (DES-kMeans) Accuracy & Diversity DES k-Means [14], [15]
DES - k-Nearest Neighbour (DES-kNN) Accuracy & Diveristy DES k-NN [14], [15]
KNORA - Eliminate (KNORA-E) Oracle DES k-NN [5]
KNORA - Union (KNORA-U) Oracle DES k-NN [5]
DES - Exponential (DES-EXP) Probabilistic DES All training samples [16]
DES - Randomised Reference Classifier (DES-RRC) Probabilistic DES All training samples [4]
DES - Minimal Difference (DES-MD) Probabilistic DES All training samples [17]
DES - Kullback-Leibler Divergence (DES-KL) Probabilistic DES All training samples [18]
DES - Performance (DES-P) Probabilistic DES All training samples [18]
KNOP - Eliminate (KNOP-E) Behaviour DES k-NN [19]
KNOP - Union (KNOP-U) Behaviour DES k-NN [19]
Meta-Learning - DES (Meta-DES) Meta-learning DES k-NN [6]
Dynamic Selection on Complexity (DSOC) Accuracy & Complexity DCS k-NN [20]



Table I shows the most important DS methods found in the
literature in terms of their selection criteria. DS techniques can
select either a single classifier (Dynamic Classifier Selection)
or an ensemble of classifiers (Dynamic Ensemble Selection)
based on their competence level to predict the label of a
test sample. The competence is estimated considering only
the samples of a local region of the feature space. For DS
methods using k-NN, as indicated in the table I the region
of competence size is k; for approaches not adopting k-NN,
all data is used to make the prediction. The majority of DS
techniques relies on a k-NN algorithm and the quality of the
neighbourhood can have a huge impact on the performance of
DS methods [1]–[3].

B. High-Dimensional Data

Exploring associations, making reliable predictions and ex-
tracting information are some of the problems that are yet
to be solved in high dimensional data [23], [26]. According
to Verleysen and François (2005) [27], traditional machine
learning techniques were often created having in mind intuitive
properties and examples in low-dimensional data sets. How-
ever, when tackling high-dimensional data, collinearity, numer-
ical instability, overfitting, model instability are some of the
known problems that can occur. Moreover, high-dimensional
spaces have geometrical properties that are not intuitive [27],
for instance:

• Distance concentration: within very high dimensional
spaces, the distance between all data instances become
almost equal, making, therefore, nearest neighbours to be
unable to distinguish between “near” or “far” data points
[28].

• Hubness: Let D ⊂ Rd be a set of d-dimensional points
and Nk(~x) the number of k-occurrences of each point
~x ∈ D, i.e., the number of times a point ~x appears among
the k-NN of all points in D, according to some distance
metric [28]. According to Radovanovic et al. (2010) [28],
as d increases, the distribution of Nk becomes consider-
ably skewed to the right, resulting in the appearance of
hubs, i.e., points that are “popular” nearest neighbours.

Therefore, these properties of high-dimensional spaces (dis-
tance concentration and hubness) can directly affect machine
learning application, specially the ones that deal with distance
metrics such as k-NN. Our hypothesis is that subspace clus-
tering methods can overcome these issues, since they are able
to select a subset of features and samples.

In general, the ensemble classifiers provide better classifica-
tion accuracy than individual classifiers [29]. However, many
ensemble methods proposed in the literature are not much
accurate in high-dimensional biomedicine data, according to
the recent survey made by Meshram and Shinde (2015) [29].

C. Subspace Clustering

Most traditional clustering algorithms attempt to find clus-
ters using similarity measures based on distance metrics [7],
[8], [30]. Moreover, these methods use the whole set of
features to compute the similarities [7], [8], [30]. Feature

selection and extraction methods can be a good choice to
decrease the dimensionality of the data set. Nonetheless,
according to Tian and Gu (2019) [30] some features might
only work for a subset of samples and appear as noise for the
rest of the samples, and this phenomenon is more common in
high dimensional data sets.

To deal with this problem, subspace clustering has been
used to elucidate clusters in different subsets of features and
samples, as shown in Parsons et al. (2004) [8], Kriegel et
al. [7] and Muller et al. (2009) [31]. Clusters determined in
subspaces can reduce the computational cost and provide a
more relevant information regarding local structures of the
feature space, which can assist establishing the most important
features relevant to the end point investigated [7], [8], [30].
For microarray studies, for instance, the goal is to understand
which biomarkers (features) are relevant to the biological
activity.

Muller et al. (2009) [31] divided subspace clustering meth-
ods into three groups:

• Cell-based: divide the data space into grid cells with a
threshold and search for subspace clusters depending on
the count of points in each cell [30], [31].

• Density-based: define clusters as dense regions separated
by sparse regions. Since density estimation is based
on distance between objects, the methods in this class
compute distance by taking only the relevant dimensions.

• Clustering-oriented: these methods are similar to tradi-
tional clustering, where parameters such as the number of
clusters, their average dimensionality, or other statistical
oriented properties are required to establish groupings.

The proposed SBDS framework uses a density-based sub-
space clustering method. More specifically, it uses a Gaussian
Kernel Density Estimator (GKDE) to find all one-dimensional
clusters and subsequently it uses the same merging procedure
proposed by Tian and Gu (2019) [30] to find all the subspace
clusters. The GKDE methods was chosen due to its simplicity
in defining one-dimensional clusters.

D. Nearest Subspace Search

According to Basri et al. (2011) [32], the Nearest Subspace
Search problem is defined as follows: let S1,S2, · · · ,Sn be a
collection of subspaces inRd, each with an intrinsic dimension
dS retrieved from a data set with m samples and d features.
Given a query Q in Rd, the distance between the query and
the ith subspace is dist(Q,Si). We seek the subspace S∗ that
is the nearest to the query, i.e., S∗ = argmini dist(Q,Si).

Basri et al. (2011) [32] proposed a mathematical approach
to calculate an approximate distance between points and
subspaces from subset dimensions to tackle high dimensional
data. Their experiments indicate that an approximate nearest
subspace can be located faster than the exact nearest subspace,
with little loss of accuracy, in large databases.

In 2015, Hund et al. [33] introduce the concept of Subspace
Nearest Neighbour Search (SNNS). It aims at finding query-
dependent subspaces for nearest neighbour search, i.e. to find



the nearest neighbours of query in a relevant subspace. The pa-
per proposes three questions: (1) ”What is a relevant subspace
for a given query?”; (2) ”How can we computationally extract
this relevant information?”; and (3) ”How can we adapt ideas
from subspace clustering, outlier detection, or feature selection
for SNNS?”. Their proposed model for SNNS attempts to
address those questions by assuming axis-parallel subspaces
and defining a relevant subspace iff the following holds: ”a
set of objects a, b, c are NN of the query q in a subspace S,
iff a, b and c are NN of q in all dimensions of S”.

The three questions proposed by Hund et al. (2015) [33]
to SNNS will be used as a motivation to define our Nearest
Subspace Search algorithm on SBDS.

E. Related Work on IBH Protein Microarray Classification

Protein microarrays are an example of these data sets. They
are a powerful tool in allergy diagnosis, as they monitor the
interactions between the immune system and allergies. The
intensity of the immune response is measured by the fluores-
cence observed, which is proportional to the concentration of
antibodies in each spot on the microarray. In this section, we
review the approaches used for the IBH dataset. Further details
on the data set used can be found on Section IV-A

In 2015, Marti et al. [22] studied the influence of allergen-
specific IgE against insect bites in horse sera to understand
the causes of IBH. The authors demonstrated using the fluo-
rescence of protein microarrays and a Partial Least Square
Discriminant Analysis (PLSDA) that healthy and allergic
horses could be highly differentiated. In addition, they were
able to automatically selected 31 features using the variable
importance in projection scores. Among those features were

different Culicoides sp. salivary proteins which are in agree-
ment with clinical knowledge about IBH [22].

In 2019, Maciel-Guerra et al. [34], investigated the use of
DS methods on the same protein microarray data used by Marti
et al. (2015) [22]. The authors have compared DS results
with traditional machine learning methods before and after
feature selection using a wrapper with backward elimination
embedded with a regularised extreme learning machine. The
DS methods did not have a increase in performance and most
of them produced statistically similar results. In addition, tra-
ditional machine learning methods outperformed DS methods.

III. SUBSPACE-BASED DYNAMIC SELECTION (SBDS)

In this section, we introduce the proposed SBDS framework
(Fig. 1) which aims to merge different concept of DS, subspace
clustering and nearest subspace search. The objective of this
framework is to improve feature relevance in high-dimensional
small-instances data sets while maintaining or increasing the
performance when compared with DS methods. The advantage
of SBDS over DS is the use of subspace clustering to search
through the feature and sample spaces for relevant clusters
(equivalent to regions of competence in DS). By training
different classifiers in distinct subspaces, we ensure that each
classifier (or a combination of classifiers) is an expert in a
different region of the feature space [1]–[3].

The proposed approach generates possible clusters for each
individual dimension using a Gaussian Kernel Density Estima-
tor (GKDE). Subsequently, a merging process is conducted to
combine the one-dimensional clusters to form the subspaces.
Finally, a classifier is trained on each subspace, and a 7-
nearest subspace search is conducted to find the most similar
subspaces to each unknown test sample. The majority voting
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Fig. 1. Proposed novel SBDS framework. The red dashed square indicates the Step 1 (subspace clustering) and the blue dashed squared indicates Step 2
(k-Nearest Neighbour Search and decision making).



of these 7 classifiers will give the final prediction for each test
sample. Further details of each stage are given next.

A. Data generation

Initially the data is normalized using a Min-Max normal-
ization approach, which scales the data between 0 and 1 for
each feature. Then data is randomly divided into 75% for the
training set and 25% for the testing set using a stratified k-fold
cross validation to preserve the proportion of samples for each
class.

B. Find One-Dimensional Clusters

Given a training data set, we determine the clusters in each
dimension using a GKDE. A cluster is defined by a local
maximum of the estimated density function, i.e. all points near
the local maximum are assigned to the same cluster (Fig. 2).

Fig. 2. Example of a Gaussian Kernel Density Estimator to find one-
dimensional clusters.

C. Merging Procedure

After finding all one-dimensional clusters, a merge process
is conducted to obtain the subspace clusters. Here we adopt
a general method based on Tian and Gu (2019) [30]. The
authors proposed to first merge similar clusters with different
subspaces by using the Jaccard coefficient. In addition, if a
cluster is contained in another cluster (in terms of samples)
they must be merged [30]. The summary of the merging
process is the same as the one proposed by Tian and Gu (2019)
[30] and is described as follows:

Step 1 : set an empty set DB
Step 2 : choose one dimension that has not been merged

and determine its clusters using a GKDE
Step 3 : choose one cluster of the current dimension
Step 4 : compare the selected cluster with all subspace

clusters in DB to find if there is a similar cluster
by computing the Jaccard coefficient (Equation 1).
If no similar subspace exists, go to Step 7

Step 5 : merge the chosen cluster with its similar one
Step 6 : compare the selected cluster with all subspace

clusters in DB to find if it is contained in another

subspace (Equation 2). If it is merge them and go to
Step 8

Step 7 : add the selected subspace to DB and compare the
select cluster with all subspaces in DB to find if there
is one that contains it. If there is, merge them

Step 8 : if all cluster of current dimension are selected, go
to Step 9. Otherwise go to Step 3

Step 9 : if all dimensions are merged, return DB. Otherwise
go to Step 2.

The Jaccard coefficient to measure the similarity between
two subspaces is defined as:

J(E,F ) =
|E ∩ F |
|E ∪ F |

(1)

where E and F are the samples of two subspaces. Besides,
the containment relationship of E and F is defined as:

C1(E,F ) =
|E ∩ F |
|E|

C2(E,F ) =
|E ∩ F |
|F |

(2)

if C1(E,F ) is close to 1 and C2(E,F ) gets a smaller value,
E is contained in F .

After the merging process, we train one classifier per
subspace cluster, iff the subspace contains samples for more
than one class. The next step is to find the nearest subspaces
to each test sample in order to make their prediction.

D. 7-Nearest Subspace Search

For each unknown test sample, we need to determine the
7-nearest subspaces. This value is the same as the one used
on most papers in DS to define the size of the region of
competence. This step measures the similarity between a point
and a subspace.

We first calculate the centroid Ci for each subspace Si, by
averaging each feature for all instances in Si. Subsequently,
we measure the average Euclidean distance (dSc) between all
points in Si and Ci . We also calculate the Euclidean distance
(dTc) between the test sample Q (using only the dimensions
within Si) and Ci.

The ratio between the two distances dTc and dSc is calcu-
lated to verify whether the instance Q belongs to the subspace.
However, we observed that this ratio does not remain con-
stant as the dimensionality increases. High dimensional data
produces higher distance values, which adds bias toward the
k-nearest low dimensional subspaces, since we are selecting
the k smallest ratios.

To prevent this bias the ratio needs to be multiplied by a
function of the dimension, in a way that the ratio between Q
and all subspaces are comparable.

Equation 3 therefore gives the final value that will be used
to compare the point-to-subspace similarities. The multiplier
factor 1

1+
√

(dim)∗ln(dim)
was found empirically. Finally, the 7

smallest ratios are selected.



TABLE II
ACCURACY, SENSITIVITY AND SPECIFICITY RESULTS OF THE IBH DATA SET

Classifiers Accuracy Sensitivity Specificity
SBDS 0.7986 ± 0.0455 0.9270± 0.0389 0.4027± 0.1199
CR 0.7217± 0.0659 0.8171± 0.0747 0.4277± 0.1133
MCR 0.7612± 0.0522 0.8936± 0.0512 0.3527± 0.1605
OLA 0.7245± 0.0493 0.8405± 0.0551 0.3666± 0.1151
LCA 0.7177± 0.0582 0.8288± 0.0765 0.3750± 0.1268
A Priori 0.7231± 0.0631 0.8234± 0.0727 0.4138± 0.1317
A Posteriori 0.7599± 0.0222 0.9811 ± 0.0253 0.0777± 0.0984
MCB 0.7265± 0.0684 0.8315± 0.0884 0.4027± 0.1219
MLA 0.6844± 0.0474 0.7801± 0.0623 0.4055± 0.1268
DES-kMeans 0.7299± 0.0547 0.7990± 0.0661 0.5166 ± 0.1280
DES-kNN 0.7442± 0.0473 0.8676± 0.0546 0.3638± 0.1402
KNORA-E 0.7361± 0.0666 0.8180± 0.0754 0.4833± 0.1298
KNORA-U 0.7803± 0.0437 0.9234± 0.0503 0.3388± 0.1234
DES-EXP 0.7578± 0.0598 0.8585± 0.0867 0.4472± 0.1603
DES-RRC 0.7768± 0.0477 0.9189± 0.0563 0.3388± 0.1359
DES-MD 0.7578± 0.0598 0.8585± 0.0867 0.4472± 0.1603
DES-KL 0.7626± 0.0607 0.9009± 0.0772 0.3361± 0.1352
DES-P 0.7782± 0.0389 0.9072± 0.0472 0.3805± 0.1069
KNOP-E 0.7211± 0.0639 0.8171± 0.0757 0.4250± 0.1125
KNOP-U 0.7823± 0.0429 0.9351± 0.0455 0.3111± 0.1137
Meta-DES 0.7401± 0.0582 0.8387± 0.0727 0.4361± 0.1192
DSOC 0.7694± 0.0508 0.9045± 0.0566 0.3527± 0.1547

R =
dTc

dSc
∗ 1

1 +
√
dim ∗ ln(dim)

(3)

where dim is the dimension of the subspace.
The predictions are given by the 7 classifiers associated with

each one of the 7-nearest subspaces, and a majority voting is
used to define the label of the test sample.

IV. METHODOLOGY

A. The Insect Bite Hypersensitivity Data Set

A total of 196 horses comprising 49 non-affected (healthy)
controls and 147 IBH-affected horses are included in the study.
A complex protein microarray containing 384 extracts and
pure proteins from a wide range of protein families (e.g.
fruit, dairy, seeds, pollen, fungi, insects, fish) is assembled
essentially as described by Marti et al. (2015) [22]. The
data set does not contain missing values and is pre-processed
according to the scheme described by Vigh-Conrad et al.
(2010) [35]. The authors normalise the data by correcting the
autofluorescence in both red and green channels [35]. They
assume that for each spot, the red channel intensity (R) is the
sum of the fluorescence of the second antibody - IgE (RIgE)
and autofluorescence (RAF ); while the green channel intensity
(G), since is not affect by the second antibody, is, therefore,
equal to its autofluorescence (GAF ). On slides with buffer
only, they observed that RAF = mGAF + b, in other words, a
linear relationship exists between the red and green channels
[35]. RAF and GAF were, therefore, obtained by applying
linear models for each allergen separately, and the resulting
value of RAF was subtracted from R to obtain RIgE . By
using this normalisation, the final intensities are centered at 0.
Finally, the data is further normalised for each feature to have
a range between 0 and 1.

B. Experimental Design

For evaluating the results we employ accuracy, sensitivity
and specificity for each classifier. The experiment is carried
out using 30 replications. For each replication, the datasets are
randomly divided as 75% for training and 25% for testing.
These divisions are performed preserving the proportion of
samples for each class by using the stratified k-fold cross
validation function in the scikit-learn [36] library.

The same DS methods used in Maciel-Guerra et al. (2019)
[34] are listed in Table I. More information about each method
can be found on their respective reference. Similarly to Maciel-
Guerra et al. (2019) [34], 11 decision trees are used to
compose the pool of classifiers. The size of the region of
competence is set to 7 for all techniques based on k-NN.

V. RESULTS

In our experiment, SBDS is compared with some state-of-
art machine learning methods and some of the most import DS
methods in the literature using a protein microarray data set.
Table II shows accuracy, sensitivity and specificity results for
all techniques mentioned on Section IV-B. The numbers after
the “±” symbol are standard deviation. From the obtained
results in Table II it is relevant to observe that all methods
have learned better the majority class. Moreover, our pro-
posed SBDS framework performed better in terms of accuracy
(0.7986) than all DS methods. A posteriori had the highest
sensitivity (0.9811) and DES-kMeans the highest specificity
(0.5166).

These results indicate that SBDS is able to achieve similar
results by having an embedded subspace clustering method.
This allows us to verify which features were selected in each
subspace to predict the label of the unknown test sample.
Therefore, our method poses a great advantage in comparison



TABLE III
FREQUENCY OF PROTEINS THAT WERE SELECTED IN THE 7-NEAREST

SUBSPACE SEARCH

Allergome name Latin name Appearance
Api g [Root] Apium graveolens 81.70%
Cul n 10.03 Culicoides nubeculosus 78.88%
Cul o2P Culicoides obsoletus 77.78%
Mal d [Fruit] Malus domestica 77.78%
Cul o 7 Culicoides nubeculosus 76.98%
Cul o 7 Culicoides nubeculosus 73.89%
Cul o 7 Culicoides nubeculosus 71.40%
Culicidae Cul E culicidae 71.24%
C0145 Culicoides obsoletus 64.07%
Cul ob 8 Culicoides obsoletus 61.81%
Mus xp Musa x paradisiaca 60.80%
Pru p 3 Prunus persica 57.96%
Bos d 4 Bos domesticus 57.93%
Cul o1P Culicoides nubeculosus 57.64%
Cul o 7 Culicoides nubeculosus 56.63%
Cul n 4 Culicoides nubeculosus 56.05%
Cor a 9 Corylus avellana 55.65%
Culicidae Cul C culicidae 54.18%
Cul o 1 Culicoides nubeculosus 53.64%
Culicidae Cul D culicidae 53.04%
Cul o 4 Culicoides obsoletus 50.80%

to DS methods in terms of giving this additional information
of which are the most important features for each sample.

Table III shows which features were most selected by the
7-Nearest Subspace Search over all test samples in the 30
iterations. It is important to notice that 16 out of the 21 proteins
are related to the Culicoides sp. allergome family that are
clinically the cause of IBH in horses.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel framework, extending DS meth-
ods to select classifiers based on subspace clustering called
SBDS. It first searches for one-dimensional clusters using a
GKDE and then a merging procedure is conducted to generate
subspace clusters. A classifier is then trained on each subspace.
Finally, a 7-nearest subspace search is conducted to determine
which classifiers will be used to make the prediction for each
unknown test sample. SBDS can be classified into a density-
based approach and find subspace clusters efficiently.

Accurate diagnosis of a disease is vital for a successful
treatment. Moreover, precision diagnostic of each separate
individual allows doctors to give personalised treatment. The
proposed SBDS algorithm brings this possibility by incorpo-
rating a subspace clustering method into the DS framework.
SBDS achieved the highest accuracy over all DS methods,
but did not achieve the highest sensitivity and specificity.
Moreover, it has the advantage of showing which features were
selected for the classification of each test sample.

Future work will be conducted by verifying if similar results
occur with other high-dimensional data sets and how it is
possible to improve the nearest subspace search by investigat-
ing other methods. Moreover, we intend to investigate quality
measures for subspaces to be able to select only interesting
ones.
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