
Reservoir Computing with Neuro-memristive
Nanowire Networks

Kaiwei Fu∗, Ruomin Zhu∗, Alon Loeffler∗, Joel Hochstetter∗, Adrian Diaz-Alvarez†,
Adam Stieg†‡, James Gimzewski†‡, Tomonobu Nakayama‡∗ and Zdenka Kuncic∗‡,

∗School of Physics and Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
Email: zdenka.kuncic@sydney.edu.au

†International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
‡California NanoSystems Institute, University of California at Los Angeles, California USA

Abstract—We present simulations based on a model of self–
assembled nanowire networks with memristive junctions and
neural network–like topology. We analyze the dynamical volt-
age distribution in response to an applied bias and explain
the network conductance fluctuations observed in our previous
experimental studies. We then demonstrate the potential of
neuromorphic nanowire networks as a physical reservoir by
performing benchmark reservoir computing tasks. The tasks
include sine wave nonlinear transformation, sine wave auto–
generation and forecasting the Mackey–Glass chaotic time series.

Index Terms—Neuromorphic systems, Memristive systems,
Nanowire networks, Reservoir computing

I. INTRODUCTION

Artificial neural networks are computational models using
algorithms that are loosely based on biological neural networks
[1]. Learning from data is the most time and power consuming
part of training such models and memory bandwidth is also
an important practical consideration. These challenges have
motivated further development of alternate approaches based
on Reservoir Computing (RC). Originating from echo state
networks and liquid state machines, which were proposed as
a means to reduce the training cost of recurrent neural network
models [2], RC leverages nonlinear dynamical properties of a
high-dimensional reservoir to process information [3]. Impor-
tantly, the reservoir itself is not trained, but rather the readout is
trained using relatively straightforward methods such as linear
regression or classification.

RC has been most successfully demonstrated for computa-
tional tasks in the temporal domain, such as wave generation
and time series prediction, including the well-known bench-
marking task Mackey–Glass chaotic time series prediction [4]–
[6].

Physical reservoir computing is based on the concept that
any physical dynamical system has the potential to serve
as a reservoir if it meets several requirements. Tanaka et
al. [7] list a number of such requirements, including high
dimensionality, non-linearity and fading memory. A number
of different physical reservoir models fulfil these requirements,
including in particular ones based on analog circuits [8] and
memristors [9]. Memristor-based physical RC is attractive
because of the synapse-like dynamical electrical switching
properties of memristive devices [9]–[13]. This has led to the

development of a class of neuromorphic systems and circuits in
which memristive RC has been successfully implemented, as
evidenced by the ability to perform benchmark learning tasks
such as hand-written digit and speech pattern recognition, as
well as the Mackey-Glass forecasting task [14]–[16].

Nanowire networks [17]–[24] represent another class of
neuro-memristive systems with an additional neuromorphic
property: their neural network-like topology, which arises
from their self–assembly, analogous to biological neural net-
works [25]. Inorganic nanowires comprised of silver readily
self–assemble into a complex network, forming two-terminal
memristive junctions where nanowires intersect. Memristive
switching occurs at the junctions as a result of the formation
of a conductive Ag filament above a voltage threshold [19].

Previous experimental and simulation studies based on Ag-
Ag2S-Ag nanowire networks developed by Stieg, Gimzewski
and colleagues demonstrated their potential for physical RC
through properties including higher harmonic generation, re-
current dynamics and waveform transformation [17], [19]–
[21]. While the synthesis of those particular nanowire net-
works was aided by a pre-patterned substrate, the resulting
network topology was sufficiently complex to observe emer-
gent nonlinear (i.e. power-law) dynamics at the network level.

More recently, we showed that self-assembled polymer
(PVP) coated Ag nanowire networks exhibit similar emer-
gent dynamical properties as Ag-Ag2S-Ag networks, even
though their memristive junctions differ [24]. Training in
hardware demonstrated these Ag-PVP-Ag nanowire networks
can associatively learn spatial patterns by recalling previously
established current pathways [26]. In addition to meeting the
requirements of high dimensionality, non-linearity and fading
memory, this suggests that physical RC may also be imple-
mented on our Ag-PVP-Ag nanowire networks. In this study,
we present simulations based on a model of our experimental
self-assembled Ag-PVP-Ag nanowire networks. Simulations
of these networks allow us to modify various parameters at the
junction level, which is impossible to do experimentally. We
first explore the switch junction and network dynamics under
an applied bias. Following this, we implement several reservoir
computing tasks, including nonlinear wave transformation,
sine wave generation and Mackey–Glass signal prediction.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. METHOD

A. Modeling switch and network dynamics

Self-assembled nanowire networks were modeled in Matlab
2019a, as described in our previous study [23]. Nanowire–
nanowire junctions were modeled as voltage–controlled mem-
ristive junctions described by a state-dependent Ohm’s law,
I = G(λ)V , where I is current, G is conductance, V is
voltage and λ = λ(t) is a state variable representing flux in
memristor theory [17], [24]. At each junction, λ represents
the conducting filament which parameterizes the conductance.
All junctions are initially in a high resistance “off” state.
After a voltage bias is established, an individual junction
switches to a low resistance “on” state when λ ≥ λcrit, where
λcrit is a set threshold. The ratio of these resistance states is
Roff/Ron = 103, with Ron = G−1

0 , where G0 = (13 kΩ)−1

is the conductance quanta.
A junction’s state λ(t) depends on its past history of voltage

input. The evolution of λ(t) is prescribed by the following
model [23]:

dλ

dt
=

 (|V (t)| − Vset)sgn[V (t)] , |V (t)| > Vset

0 , Vreset < |V (t)| < Vset

b(|V (t)| − Vreset)sgn[λ(t)] , |V (t)| < Vreset

(1)
where Vset is the on-threshold and Vreset is the off-threshold,
and b is a positive constant relating the relative rates of decay
and formation of the conductive filament, such that when
a junction switches off, the filament state can immediately
return to the state λ = λcrit/b to suppress fluctuations around
λcrit. The following default parameter values were used for
all the simulation results presented here: Vset = 10−2 V,
Vreset = 10−3 V and b = 10. These values were found to
produce simulation results that most closely matched experi-
mental measurements [23], [24].

A self–assembled nanowire network was modelled using
equation (1) and a modified nodal analysis [27] to solve
Kirchoff’s circuit law equations at each time point. As shown
in Fig. 1, the model simulates wires scattered on a plane with
uniformly random distributions of orientations and positions
and with lengths sampled from a gamma distribution [23]. At
the intersection of overlapping nanowires, memristive junc-
tions that have switched on are shown as large circles, while
those that are off are small squares. The wire and junction
color reflects the network voltage distribution (with wires as
equipotentials) and white arrows indicate the current flow
across the network, from source (green star) to drain (red star).
The voltage distribution and hence current flow continuously
adapt to the dynamically changing memristive junctions and
to the network’s structural connectivity [25].

B. Reservoir computing implementation

Reservoir Computing (RC) was implemented using the
nanowire network as a reservoir by allocating specific input
and readout nodes and training the readout using either lin-
ear regression or classification. Three temporal information
processing tasks were performed: (i) nonlinear waveform

Fig. 1. Simulation snapshot of a neuromorphic nanowire network: self-
assembled nanowires form a neural-like network, with each intersection of
overlapping nanowires forming a memristive junction. For visual clarity, a
network with only 100-nanowires and 262-junctions is shown. A voltage
bias applied across the network induces memristive switching from a low
conductance state (small squares) to a high conductance state (large circles).
Wire and junction color reflects voltage distribution and white arrows denote
current flow across the network.

transformation; (ii) wave generation; and (iii) prediction of
the Mackey–Glass chaotic time series.

For all tasks, the output signal error was calculated using
the mean square error (MSE):

MSE =
1

M

M∑
m=1

[T (tm)− y(tm)]
2 (2)

where T (tm) is the target signal, y(tm) is the trained readout
result, and M is number of time points. Performance accuracy
is quantified by 1 − RNMSE, where RNMSE is the root–
normalized MSE:

RNMSE =

√√√√√√√√
M∑

m=1
[T (tm)− y(tm)]2

M∑
m=1

[T (tm)]2
(3)

1) Nonlinear transformation: For this task, RC was imple-
mented by setting two of N total nanowires in the network as
the source and drain. The voltage of all other nanowire nodes
was used to record the reservoir state at each time point. In an
experimental setting, this readout scheme may be implemented
using a multi–electrode array. A sine wave was used as the
input voltage signal and the target signal T (t) was one of
either four waveforms: sawtooth, square, doubled–frequency
sine, and cosine. The voltage readout was trained by linear
regression to nonlinearly transform the input by solving the
system of linear equations

X(t)θT = T (t) (4)

Fig. 2. Schematic depicting nonlinear transformation of an input signal (e.g. sine wave) using a nanowire network reservoir. In our implementation, one
reservoir node (nanowire) receives the input signal and others serve as readout nodes which are trained by linear regression to produce the desired output
signal (e.g. square wave).

where
X(t) = [v1(t), v2(t), v3(t), · · · , vn(t)] (5)

is the reservoir state, represented by a vector containing n
elements (the voltage values of the N nanowires in the network
reservoir), and θ is the output weight. The procedure is shown
schematically in Fig. 2.

To train the readout and solve (4) for θ, the following cost
function was used

J(θ) =
1

M

M∑
m=1

[T (tm)− y(tm)]2 (6)

with y(t) = X(t)θT , and minimized using the gradient descent
method:

∂J(θ)

∂θn
=

1

M

M∑
m=1

[T (tm)− y(tm)]vn(tm) (7)

Where the θn is the weight for each readout node (N totally
readouts). The training of weights was achieved in Matlab
2019a using the regress command.

To increase the accuracy of regression, piecewise linear
regression was used [28]. Using 1000 time points in each
period, the input and target signals were segmented into several
equal (i) intervals that were linearly regressed independently,
i.e.

X(ti)θ
T
i = T (ti) (8)

where X(ti) is the voltage readout of every nanowire in time
interval ti and θi are the corresponding output weights. Each
segment is a matrix, with rows representing the nodes (n) and
columns representing the time points ti of the current segment.

2) Wave auto–generation: This task is performed differ-
ently from nonlinear waveform generation. The goal is to
generate the desired wave without any external input after
a training period. The signal was divided into eight equal
intervals. During the first 1/8 interval, the network was primed
with the input signal (same sine wave as used in the previous
task) delivered to one source node and no output is read out. In
this period the network gets pre-actived. Training was applied
during the 2/8 – 4/8 period by delivering a teacher sine signal
u(t) to the source node. The voltage of every node was read
out and the output weights calculated using linear regression.

The predicted next time point value of the target signal u(t)
is a linear combination of u(t − 1) and the readout signal
values at t and t−1 according to the following auto–regression
equation:

u(t) = θ2N+2v0 +θ2N+1u(t−1)+~θ · [~v(t−1), ~v(t−2)] (9)

where v0 = 1 V, ~v(i) is the N -element vector containing
absolute values of voltage readout from each node at time
i, and ~θ is the corresponding 2N -element weight vector, so
that the output weights are given by

Θ = [θ1, θ2, θ3, ..., θ2N , θ2N+1, θ2N+2] (10)

This recording of history states is also referred to as the virtual
nodes method when the network is a delayed feedback system
[15]. Two virtual nodes are set in the sine wave generation
task. After the training period, the input was set to zero. The
last 4 intervals (from 5/8 to the end) is the wave generating
period, when u(t) is used as input for the next time point. In
this way, the network generates a wave without any external
input.

3) Mackey–Glass prediction: This task was performed in a
similar manner to the wave auto–generation task by explicitly
using the virtual nodes method [29] for delayed feedback
systems. Two external nodes, one serving as a source, the
other as a drain were connected to the network reservoir. The
source node receiving the input signal u(t) was connected
to 20 nanowire nodes on the left of the network, while the
drain was connected to 20 nodes on the right. To maximize
the network’s effective reservoir capacity, the initial Mackey–
Glass time-series signal was transformed by a proper temporal
mask [30]. The voltage drop across the 20 network nodes to
the drain was used as the readouts of the reservoir. For each of
the 20 reservoir voltage readouts, 50 virtual nodes were used
to track readout history, with the next step predicted as

u(t) = ~w · [v0, u(t−1), ~S(t−1), ~S(t−2), .., ~S(t−50)] , (11)

where v0 = 1 V, u(i) is the input signal at time i, ~w is a
1002-element weight vector and ~S(i) is a 20-element vector
representing the network’s readout at time i.

A total of 10,000 time points were used to generate 100 s
of the discretized Mackey–Glass signal. The first 50 s was

(a) (b)

Fig. 3. Nanowire network simulation geometry and activation. (a) Snapshot visualization of nanowire network at t = 0.01 s after a square pulse is input at
(1) with voltage 0.7 V (network is grounded at (2)), showing the distribution of nanowires (lines) and junctions (squares). Nanowire colour denotes absolute
voltage and junction colour denotes voltage drop from low (blue) to high (yellow). The green and red stars indicate the locations of source (1) and drain (2).
The white arrow marks the current with direction and the value (arrow’s length). (b) Voltage bias as a function of time (red line) and the resulting network
conductance (blue curve) between source and drain. The minimum voltage after the square pulse is 0.015 V.

the training period using the masked Mackey–Glass signal as
input. After training, for each subsequent 90 time point period,
the network generated 60 time points of predicted signal
using the auto–regression equation 11. For the remaining
30 time points, the original signal was input to renormalize
the system’s state and thereby mitigate error amplification.
Different combinations of prediction and update periods were
also tested.

III. RESULTS AND DISCUSSION

A. Switch dynamics

A 100-nanowire network, with 261 junctions, was simu-
lated. Fig. 3 (a) shows a snapshot of the network structure
upon initialization, where all junctions (squares) are in a high-
resistance state (Roff = 10 kΩ and λ = 0). Fig. 3 (b) shows
the one source and one drain network’s conductance response
(blue) to a square input voltage pulse (red) of amplitude 0.7 V
and duration 70 s, after which the voltage drops to 0.015 V.
This stimulation protocol was used to analyze the effect of
the network’s circuit loops on local voltage redistribution and
its fading memory property as the response persists with a
relatively slow decay after the input signal drop.

The conductance time series reflects the voltage redistri-
bution dynamics in the network, which depends on the local
circuitry (i.e. series vs. parallel). Thus, junctions at the edge
of the network where there are fewer loops and close to the
source (drain), have higher (lower) voltages, while junctions
near the center of the network receive relatively lower absolute
voltage. Fig. 4 shows the network and junction states at two
neighboring time points. The white circle highlights a mem-
ristive junction that switches from off to on, with its voltage
drop decreasing accordingly by several orders of magnitude to

a value lower than Vreset. Subsequently, this junction will turn
off again and regain a high voltage, switching on again once
|V (t)| > Vreset and λ > λcrit (cf. eqn. (1)). Thus, voltage
redistribution and switch dynamics are inextricably linked via
the network’s complex circuitry.

The voltage fluctuations at the single junction level lead to
fluctuations in network conductance, as can be seen in Fig.
5, which shows a zoom-in of Fig. 3 in the interval 59 s - 60 s.
Notice that every time the junction turns off, the filament state
immediately returns to its initial state (λ drops by a factor
of 10). The just-off junctions need a period of time to turn
on which prolong the fluctuation and make it available to be
observed. Avizienis et al. [17] observed similar fluctuations in
current in their experimental Ag-Ag2S-Ag nanowire network.
They attributed this behavior to voltage redistribution by
recurrent loops. As their network was activated by a DC
bias, this produced an overall decrease in network conductivity
with time [17]. Here, the network is activated with a square
pulse (Fig. 3), after which a residual DC bias of 0.015 V is
applied. The network conductance exhibits fading memory
immediately after the pulse ends, but still maintains a high
value, which suggests capacity for long–term memory. The
short–term, fading memory results from the change in filament
state from λmax to λcrit. The rate at which this occurs depends
on the voltage distribution dynamics in the post-activation
stage. The fading memory property is essential for reservoir
computing applications [7].

B. Application to Reservoir Computing

1) Nonlinear transformation: Nonlinear transformation
tasks were performed with our network as a reservoir using
a 0.1 Hz sine wave input signal delivered to one nanowire

Fig. 4. Network and junction states at two neighbouring time points: t = 1.02 s
(top); and t = 1.03 s (bottom). The colorbar shows voltage absolute values.
The white circle marks a junction whose voltage decreases significantly once
it turns on. The voltage absolute value of this junction is 0.12 V at 1.02 s, and
0.0002 V at 1.03 s when this junction switches on.

allocated as the source node, with another allocated as the
drain. Simulations were performed for networks of two differ-
ent sizes: 100 and 700 nanowires. Fig. 6 confirms the ability
of the nanowire networks to generate higher harmonics and
thus its potential to perform reservoir computing (RC).

In these simulations, the targets are: sawtooth, square,
cosine and doubled–frequency sine wave. Fig. 7 shows the
results for the 700-node network. Table I lists the accuracy
results for both network sizes and for single vs. piecewise
linear regression with 4 segments. The 700-node network,
which is a larger reservoir with more degrees of freedom,
performs consistently better than the 100-node network for
all transformation tasks. For each network, multi–segment
regression improves accuracy significantly in all cases, most
significantly for the 2f sine and cosine transformations, which
show the lowest accuracies for single–segment regression.

Using the 2f sine wave transformation as an example, Fig. 8
plots the accuracy achieved for this task as a function of

Fig. 5. Zoom–in of network conductance in Fig. 3(b) in the interval 59 s - 60 s,
showing fluctuations.

Fig. 6. Sine wave input and higher harmonics generation in a 100-node
network. Top panel: Sine wave (0.1 Hz) voltage input used for nonlinear
transformation tasks and corresponding network conductance; Bottom panel:
Power Spectral Density (PSD) of one nanowire node, showing odd harmonics
at 3,5,7,9.

(a) (b)

(c) (d)

Fig. 7. Nonlinear transformation of an input sine wave by a 700-node nanowire network using piecewise linear regression (target in red, result in black): (a)
sawtooth target with 4-times regression, accuracy=89.3%; (b) square wave target with 2-times regression, accuracy=92%; (c) doubled–frequency sine wave
target with 4-time regression, accuracy=93.7%; (d) cosine wave target with 4-times regression, accuracy=97.2%.

TABLE I
ACCURACY OF NONLINEAR TRANSFORMATION TASKS FOR NETWORKS OF

DIFFERENT SIZES (100 AND 700 NODES) AND FOR SINGLE (1) VS.
MULTIPLE–SEGMENT (4) LINEAR REGRESSION.

Accuracy 100-node (1) 700-node (1) 100-node (4) 700-node (4)

Square 58.1 % 64.3 % 92.0 % 92.0 %
Sawtooth 39.2 % 44.9 % 88.5 % 89.3 %
2f -sine 2.4 % 31.6 % 71.3 % 93.7 %
Cosine 2.6 % 16.9 % 88.2 % 97.2 %

the regression time segmentation. For both the 100-node and
700-node networks, the accuracy increases most rapidly up
to 5-times regression. Saturation is reached by the 700-node
network (i.e. improvement is marginal) beyond this number
of temporal regression segments. The noticeable decrease in
accuracy for the 100-node network (Fig. 8 (a)) at 10-times
regression may be due to how the time series of the input

signal (sine wave) is segmented around the monotonically
increasing/decreasing intervals. A similar effect was also ob-
served for the 700-node network for other targets.

These results corroborate previous experimental studies by
Demis et al. [31] using their Ag-Ag2S-Ag physical nanowire
reservoir for nonlinear transformation tasks. They applied one
input electrode and read out the voltage of other measurement
electrodes in contact with their network (the size of which is
difficult to determine experimentally). The accuracy of their
experimental measurement are < 90 % (using standard single
regression readout). Here, piecewise regression improves the
accuracy remarkably and thus could be an effective way to
process periodic signals in RC.

2) Wave auto-generation: In this task, the sine wave used
previously as the input signal is now generated by the network
without any external input after a training period. The result
is shown in Fig. 9 for a 700-node network. The MSE is
negligible, giving an accuracy of ≈ 100 %. Notice that the
length of the generated sine wave (120 s) is longer than the

(a) (b)

Fig. 8. Accuracy of nonlinear transformation as a function of linear regression segmentation for the doubled–frequency sine wave task using: (a) a 100-node
network; and (b) a 700-node network.

Fig. 9. Sine wave generation by a 700-node network. Top panel – target
sine wave signal (teacher input). Middle panel – training by linear regression.
Bottom panel – pre-activation period (30 s) and training period (90 s, black)
followed by generating period (120s, red). Accuracy is ≈ 100%.

training period (90 s) and indeed, the period of auto–generation
can be prolonged further for hundreds of seconds.

3) Mackey–Glass next-step prediction: Fig. 10 shows re-
sults for the Mackey–Glass task for two different predic-
tion/update relative timestep lengths: 60/30 and 50/40 (using
100 timesteps/s), with accuracies 97.8% and 98.7%, respec-
tively. The network is first initialized by the masked input
signal (in blue) before autonomous generation commences (at
t = 50 s). The update steps are required to renormalize the
predicted signal, as small deviations amplify exponentially due
to the chaotic dynamics, which makes Mackey–Glass forecast-
ing particularly challenging. Errors can be further mitigated by
increasing the network reservoir size (these results are for 700-
nanwoire nodes, 14,533 memristive junctions), the number of

Fig. 10. Mackey–Glass time series prediction task. The masked Mackey-
Glass input signal (blue) followed by the predicted signal (red) interspersed
with masked signal updates. Top panel – 60-time-point prediction with 30-
time-point update (accuracy 97.8%); Bottom panel – 50-time-point prediction
with 40-time-point update (accuracy 98.7%). The zoom–in shows a period
during generation to better visualize the prediction and update components.

readout nodes (20 used here), and/or the number of virtual
nodes used for next–step prediction (50 used here, (11)). Our
simulated system is similar to that of Moon et al. [15], who
demonstrated Mackey–Glass forecasting in an experimental
system comprised of 20 memristors, each expanded with
50 virtual nodes. They achieved long–term forecasting using
periodic updates of 25 timesteps after every 50 timesteps of
prediction.

IV. CONCLUSIONS

Neuro–memristive switch junctions in neuromorphic
nanowire networks adaptively redistribute voltage throughout
the network circuitry. The resulting transient dynamics in
this high–dimensional system are ideally suited to reservoir
computing applications. We presented various reservoir
computing implementations of nanowire networks for
temporal information processing. We demonstrated the ability
of these networks to nonlinearly transform an input sinusoidal
signal into non–sinusoidal periodic signals, a second-harmonic
signal and a phase–shifted sinusoidal signal. We found that
piecewise linear regression can significantly improve accuracy
in these tasks. We also demonstrated the ability of these
networks to autonomously generate signals, both periodic and
non-periodic, as for the case of the Mackey–Glass chaotic
time series. In that case, we achieved a prediction accuracy
of ≈ 98 % with the use of periodic updates to mitigate errors.

Overall, these results demonstrate that self–assembled silver
nanowire networks represent a unique class of physical reser-
voir for neuromorphic information processing, particularly for
temporal data. Work is ongoing to develop the hardware
implementation of reservoir computing on these neuromorphic
systems.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[3] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[4] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[5] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[6] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[7] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances
in physical reservoir computing: A review,” Neural Networks, 2019.

[8] M. C. Soriano, D. Brunner, M. Escalona-Morán, C. R. Mirasso, and
I. Fischer, “Minimal approach to neuro-inspired information processing,”
Frontiers in Computational Neuroscience, vol. 9, p. 68, 2015.

[9] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[10] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized
conductance atomic switch,” Nature, vol. 433, no. 7021, p. 47, 2005.

[11] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and
M. Aono, “Short-term plasticity and long-term potentiation mimicked
in single inorganic synapses,” Nature Materials, vol. 10, no. 8, p. 591,
2011.

[12] M. Aono, “Nanoionics,” Nature Materials, vol. 6, no. 11, pp. 833–840,
2007.

[13] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,”
Advanced Materials, vol. 21, no. 25-26, pp. 2632–2663, 2009.

[14] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir
computing using dynamic memristors for temporal information process-
ing,” Nature Communications, vol. 8, no. 1, p. 2204, 2017.

[15] J. Moon, W. Ma, J. H. Shin, F. Cai, C. Du, S. H. Lee, and W. D. Lu,
“Temporal data classification and forecasting using a memristor-based
reservoir computing system,” Nature Electronics, pp. 1–8, 2019.

[16] C. H. Bennett, D. Querlioz, and J.-O. Klein, “Spatio-temporal learning
with arrays of analog nanosynapses,” in 2017 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2017,
pp. 125–130.

[17] A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono,
A. Z. Stieg, and J. K. Gimzewski, “Neuromorphic atomic switch
networks,” Plos One, vol. 7, no. 8, p. e42772, 2012.

[18] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono,
and J. K. Gimzewski, “Emergent criticality in complex turing b-type
atomic switch networks,” Advanced Materials, vol. 24, no. 2, pp. 286–
293, 2012.

[19] H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis, M. Aono,
A. Z. Stieg, and J. K. Gimzewski, “A theoretical and experimental
study of neuromorphic atomic switch networks for reservoir computing,”
Nanotechnology, vol. 24, no. 38, p. 384004, 2013.

[20] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, R. Aguilera, H.-H. Shieh,
C. Martin-Olmos, E. J. Sandouk, M. Aono, and J. K. Gimzewski,
“Self-organization and emergence of dynamical structures in neuromor-
phic atomic switch networks,” in Handbook of Memristor Networks.
Springer, 2014, pp. 391–427.

[21] E. C. Demis, R. Aguilera, H. O. Sillin, K. Scharnhorst, E. J. San-
douk, M. Aono, A. Z. Stieg, and J. K. Gimzewski, “Atomic switch
networks—nanoarchitectonic design of a complex system for natural
computing,” Nanotechnology, vol. 26, no. 20, p. 204003, 2015.

[22] H. G. Manning, F. Niosi, C. G. da Rocha, A. T. Bellew, C. O’Callaghan,
S. Biswas, P. F. Flowers, B. J. Wiley, J. D. Holmes, M. S. Ferreira et al.,
“Emergence of winner-takes-all connectivity paths in random nanowire
networks,” Nature Communications, vol. 9, no. 1, p. 3219, 2018.

[23] Z. Kuncic, I. Marcus, P. Sanz-Leon, R. Higuchi, Y. Shingaya, M. Li,
A. Stieg, J. Gimzewski, M. Aono, and T. Nakayama, “Emergent
brain-like complexity from nanowire atomic switch networks: Towards
neuromorphic synthetic intelligence,” in 2018 IEEE 18th International
Conference on Nanotechnology (IEEE-NANO). IEEE, 2018, pp. 1–3.

[24] A. Diaz-Alvarez, R. Higuchi, P. Sanz-Leon, I. Marcus, Y. Shingaya,
A. Z. Stieg, J. K. Gimzewski, Z. Kuncic, and T. Nakayama, “Emer-
gent dynamics of neuromorphic nanowire networks,” Scientific Reports,
vol. 9, no. 1, pp. 1–13, 2019.

[25] A. Loeffler, R. Zhu, J. Hochstetter, M. Li, K. Fu, A. Diaz-Alvarez,
T. Nakayama, J. M. Shine, and Z. Kuncic, “Topological properties of
neuromorphic nanowire networks,” Frontiers in Neuroscience, vol. 14,
p. 184, 2020.

[26] A. Diaz-Alvarez, R. Higuchi, Q. Li, Y. Shingaya, and T. Nakayama,
“Associative routing through neuromorphic nanowire networks,” AIP
Advances, vol. 10, no. 2, p. 025134, 2020.

[27] Chung-Wen Ho, A. Ruehli, and P. Brennan, “The modified nodal
approach to network analysis,” IEEE Transactions on Circuits and
Systems, vol. 22, no. 6, pp. 504–509, June 1975.

[28] V. E. Mczgee and W. T. Carleton, “Piecewise regression,” Journal of
the American Statistical Association, vol. 65, no. 331, pp. 1109–1124,
1970.

[29] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information
processing using a single dynamical node as complex system,” Nature
Communications, vol. 2, no. 1, pp. 1–6, 2011.

[30] L. Appeltant, G. Van der Sande, J. Danckaert, and I. Fischer, “Con-
structing optimized binary masks for reservoir computing with delay
systems,” Scientific Reports, vol. 4, p. 3629, 2014.

[31] E. C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A. Z. Stieg, and
J. K. Gimzewski, “Nanoarchitectonic atomic switch networks for un-
conventional computing,” Japanese Journal of Applied Physics, vol. 55,
no. 11, p. 1102B2, 2016.

