
An Efficient Spiking Neural Network for
Recognizing Gestures with a DVS Camera

on the Loihi Neuromorphic Processor
Riccardo Massa1,2,∗, Alberto Marchisio1,∗, Maurizio Martina2, Muhammad Shafique1

1Technische Universität Wien, Vienna, Austria 2Politecnico di Torino, Turin, Italy
Email: s251880@studenti.polito.it, {alberto.marchisio, muhammad.shafique}@tuwien.ac.at, maurizio.martina@polito.it

Abstract—Spiking Neural Networks (SNNs), the third
generation NNs, have come under the spotlight for machine
learning based applications due to their biological plausibility
and reduced complexity compared to traditional artificial Deep
Neural Networks (DNNs). These SNNs can be implemented with
extreme energy efficiency on neuromorphic processors like the
Intel Loihi research chip, and fed by event-based sensors, such
as DVS cameras. However, DNNs with many layers can achieve
relatively high accuracy on image classification and recognition
tasks, as the research on learning rules for SNNs for real-world
applications is still not mature. The accuracy results for SNNs
are typically obtained either by converting the trained DNNs into
SNNs, or by directly designing and training SNNs in the spiking
domain. Towards the conversion from a DNN to an SNN, we
perform a comprehensive analysis of such process, specifically
designed for Intel Loihi, showing our methodology for the design
of an SNN that achieves nearly the same accuracy results as
its corresponding DNN. Towards the usage of the event-based
sensors, we design a pre-processing method, evaluated for the
DvsGesture dataset, which makes it possible to be used in the
DNN domain. Hence, based on the outcome of the first analysis,
we train a DNN for the pre-processed DvsGesture dataset, and
convert it into the spike domain for its deployment on Intel
Loihi, which enables real-time gesture recognition. The results
show that our SNN achieves 89.64% classification accuracy and
occupies only 37 Loihi cores.

Index Terms—Machine Learning, Spiking Neural Networks,
Gesture Recognition, Event-Based Processing, Neuromorphic
Processor, Loihi, Accuracy, Conversion, DVS Camera.

I. INTRODUCTION

Recent developments of artificial Deep Neural Networks
(DNNs) have pushed forward the state-of-the-art in the field
of image recognition [9]. However, the high power demand
required by these networks when it comes to perform inference
tasks on the edge devices [16][24] limits the spread of DNNs
in scenarios/use-cases where the energy/power consumption is
crucial [23][28]. On the other hand, Spiking Neural Networks
(SNNs), due to their biologically plausible model, have shown
promising results both in terms of power/energy efficiency and
real-time classification performance [27]. By leveraging the
spike-based communication between neurons, SNNs guarantee
a lower computational load, as well as a reduction in the latency.
As a side effect, SNNs have also shown a different behavior
than DNNs when threatened by adversarial attacks [17].
Along with the development of efficient SNN specialized
accelerators (like TrueNorth [18], SpiNNaker [7] and Intel
Loihi [5]), another advancement in the field of neuromorphic
hardware has come from a new generation of camera, the
DVS event-based sensor [15]. Such a device, differently from

*These authors contributed equally to this work.

a classical frame-based camera, works emulating the behavior
of the human retina. Thus, the recorded information is not a
series of time-wise separated frames, but a sequence of spikes,
which are generated every time a change of light intensity is
detected. The event-based behavior of these sensors pairs well
with SNNs, i.e., the output of a DVS camera can be used as
the input of an SNN to elaborate events in real-time.

A promising approach to train SNNs in a supervised learning
scenario is to train a DNN with state-of-the-art backpropagation
approaches, and then assign the trained parameters (weights
and biases) to an equivalent SNN representation by applying
a conversion process. This approach has shown promising
results [22], mostly because it allows to get the best from
the two worlds: the converted SNN totally behaves like a
normal SNN, with its benefits in terms of efficiency and
latency. At the same time, the network has been trained with
efficient methodologies that ensure good results in classification
tasks. However, such a conversion may not always provide
the expected results. In fact, many aspects have to be taken
into account, like the original DNN structure, the training
process, as well as the parameters that control the DNN-to-SNN
conversion. This is especially true when the converted SNN has
to be deployed on a limited precision hardware like Intel Loihi,
which restricts the degree of freedom of the conversion process.

Towards this, in this paper, we present a complete DNN-to-
SNN design process (Figure 1A), systematically discussing the
effects of the key parameters that are used in the conversion.
We evaluate their effect, and extract important general rules
that can be successfully applied when it comes to develop an
SNN for Intel Loihi or similar neuromorphic processors. Once
we have an SNN that gets good accuracy results both on the
MNIST [14] and the CIFAR10 [13] datasets, we evaluate it
also on the DvsGesture dataset [2], which comprise 11 gestures
recorded with a DVS event-based camera (Figure 1B). The
main challenge when adopting the DNN-to-SNN conversion
approach to get a trained SNN is that we cannot train a DNN
on the event-series coming from the DVS camera. For this
reason, we first need to collect the events into frames, and
then train the DNN on such converted dataset. Different pre-
processing techniques are discussed in this paper, also reporting
the accuracy results achieved by the DNN on the generated
converted dataset. Finally, after performing the conversion, the
SNN is tested on the DvsGesture dataset, and afterwards, it is
ready to be deployed for real-time classification on Intel Loihi.

In a nutshell, our Novel Contributions are:
• We perform a comprehensive parameter analysis of the

process of converting a DNN into an SNN. (Section III)
• We design a pre-processing method for the DvsGesture

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



DNN-to-SNN conversion analysis

DNN 
training

frame based
accumulation

DVS pre-processing
and training 

SNN testing 
on Loihi

DNN training
MNIST CIFAR10 conversion

conversion SNN 
model

map SNN
on Loihi

Events can be directly sent 
to Loihi and pre-processed

before deployment

(B)

(A)

Fig. 1: Workflow of our research.

dataset through frame-based accumulation, to make such
dataset compatible with the DNN domain. (Section IV)

• We train a given DNN for the pre-processed DvsGesture
dataset and convert it to an SNN that can then be deployed
on Intel Loihi. (Section V)
Before proceeding to the technical sections, in Section II

we present an overview of the SNNs, the Intel Loihi research
chip, and of the DNN-to-SNN conversion approach, to a level
of detail necessary to understand the contributions of this paper.

II. BACKGROUND AND RELATED WORK

A. Spiking Neural Networks
Spiking Neural Networks (SNNs) are based on the

biologically plausible models of neurons [20], which
communicate asynchronously through series of spikes.
The structure and behavior of an SNN are presented in
Figure 2.

The SNNs’ major improvements over traditional DNNs are
the following [20]:
• The intrinsic asynchronous, spike-based communication

protocol adopted in the network allows to reduce the
power/energy consumption required in the computations and
communication.

• The asynchronous, spike-based design makes this networks
ideal to cooperate with event-based sensors. The events
provided as an input can be seen as a train of spikes directly
processable by the network.
The SNNs’ main weakness relies on the fact that the classical

supervised learning approach, i.e., the backpropagation, cannot
be applied due to the non-differentiability of the SNN loss
function [21]. Therefore, two main approaches have been
proposed to achieve supervised learning in SNNs:
• Use the backpropagation algorithm directly in the spiking

domain. This method generally requires to substitute the
loss function with a placeholder function, that can be
differentiated [19][25].

• Train an equivalent DNN model and then convert it to an
SNN in the spiking domain.

In this article, we focus on the latter approach. Training the
network in the DNN domain allows us to use the current state-
of-the-art training policies and techniques. Moreover, the DNN-
to-SNN conversion technique has shown promising results,
allowing to get SNNs that reach the same, or very close
levels of accuracy, compared to their corresponding DNN
versions [21][22]. However, some precautions and limitations
have to be considered when using this approach, as we will
explain in our analysis in Section III.

B. Intel Loihi Neuromorphic Research Chip

DNNs achieve the best results in terms of accuracy and
efficiency when executed on highly parallel hardware like
GPUs, and even more with specialized hardware accelerators,
like Google TPU [10], MPNA [8]. Similarly, SNNs require their
specialized hardware to achieve the best results in terms of
power/energy efficiency and latency [3]. Neuromorphic chips
represent an efficient hardware solution when it comes to the
implementation of SNNs. Unlike the artificial neuron model
and synchronous structure of traditional DNNs, the highly
parallel asynchronous structure, combined with the hardware
implementation of a biologically plausible neuron model, such
as the leaky-integrate-and-fire (LIF) model [26], allows to
achieve far better results both in latency and power/energy
efficiency with SNNs when compared to their CPU and
GPU implementation. Recent developments in the field of
neuromorphic hardware have brought valid and powerful
solutions for the deployment of SNN models, like IBM
TrueNorth [18], SpiNNaker [7] and Intel Loihi [5].

In this paper, we focus on the Intel Loihi [5], which
is a neuromorphic processor providing highly parallel and
energy efficient asynchronous computation. The chip comprise a
neuromorphic mesh of 128 neurocores, and 3 x86 processors, as
well as an asynchronous network-on-chip (NoC) that connects
neurocores allowing neuron-to-neuron communication. Each
neurocore implements up to 1024 spiking neural compartments
units, such that the compartments can be combined in a tree
structure to form multi-compartment neurons. Neurons variables
are updated at every algorithmic time-step. The spikes generated
by a neuron are delivered to all the compartments belonging to
its synaptic fan-out through the NoC. The NoC allows to deliver
spikes between different neurocores in a packet-messaged form,
following a mesh operation that is executed over a series of
algorithmic time-steps. In the absence of a global clock, a
barrier synchronization mechanism is used to ensure that at the
end of each time-step all neurons are synchronized. An off-chip
communication interface allows to extend the mesh up to 4096
on-chip cores, and up to 16,384 hierarchically connected cores.

The architecture of a single Loihi chip is displayed in
Figure 3. The biologically-plausible neuron model adopted by
the Loihi architecture is based on a modified version of the
CUBA leaky-integrate-and-fire model [5]. More specifically,
each neuron is represented as a dendritic compartment, which
receives the incoming spikes from the pre-synaptic neurons.

Each neuron is characterized by its compartment current
uc(t) and its compartment membrane potential vc(t) [5]. Given
a postsynaptic neuron ni, it receives an input train of spikes
from presynaptic neuron nj that can be represented as a train



neuron 
                       

integrates 
dendritic current

and generates        

neuron

time

Vth
membrane potential

spikes

spikes
bias current

spikerates 
of output 
neurons 

are computed
and output 

is predicted
class

Output spiketrains

(A)

(B)

(C)

(D)

spikes travel to 
the post-synaptic 

neuron

spikes

t ime

pixel intensity sets 
       

of input neurons

time

Fig. 2: Structure and main steps for an SNN for image classification task. In this example, a fully-connected SNN, with neurons represented as circles and
synapses as lines, is shown. (A) The input image is not converted with a spike-encoding algorithm, but pixel intensities set the bias currents of neurons in
the input layer. (B) The spikes from the pre-synaptic neuron travel across the synapse and accumulate in the dendritic tree of post-synaptic neurons. The
membrane current of the post-synaptic neuron integrates the incoming weighted spike trains. (C) The neuron membrane potential integrates the bias current
and the membrane current. An output spike is generated each time the potential reaches a predefined threshold. Afterwards, the membrane potential is set back
to the initial level. (D) The output neurons, one for each class, generate spike trains. For each neuron, its corresponding spikerate in a predefined time-window
is computed, which is then used as the output prediction for its class.

PARALLEL I/O

PARALLEL I/O

PA
R

A
LL

E
L 

I/O

PA
R

A
LL

E
L 

I/O
LM

T
LM

T
LM

T

FP
IO

NoC

x86 
processor

off-chip
interface

Neuromorphic
core

Fig. 3: Loihi single chip architecture [5].

of Dirac delta functions: σj(t) =
∑

k δ(t− tk) where tk is the
spike time.

The train of spikes is first filtered by a synaptic filter input
response αu(t) and then multiplied by the synaptic weight wij

associated to the synapse that connects neurons ni and nj . The
synaptic response current can then be computed as the sum of
all the weighted and filtered spike trains, with an additional bias
current ubiasi :

uci(t) =
∑
j

wij(αu ∗ σj)(t) + ubiasi

Finally, the synaptic current is integrated by the membrane
potential vci(t).

˙vci(t) = −
1

τv
vci(t) + uci(t)− Vthi

σi(t)

When the membrane potential reaches a threshold Vth, the
neuron spikes. Then, the membrane potential is reset to a
Vrest value and starts increasing again as new input spikes

are received. The time constant τv is responsible for the leaky
behavior of the model [5].

C. DNN-to-SNN Conversion

The DNN-to-SNN conversion approach has shown promising
results in terms of accuracy consistency among the original
DNN and the converted SNN [22]. To reach such results,
the trained parameters of the DNN must be efficiently
converted into the corresponding parameters of the SNN.
This also requires to take into consideration the intrinsic
differences between the two models, and some adjustments
are consequently required to get a correct conversion. During
the training, for each connection among two neurons of the
consecutive layers i and i+1, the weight wi,i+1 is learned.
Moreover, for each neuron of the layer i+1, also the bias bi+1

is derived. In the equivalent SNN model, these parameters need
to be translated into an equivalent value for the spiking neural
model. Specifically referring to the Loihi model, the conversion
works as follows:
• the bias bi+1 is associated to the bias current ubias of the

neuron ni+1.
• wi,i+1 is directly set as the weight of the synapse connecting

neurons ni and ni+1.
Besides the learned parameters, each layer of the DNN

has to be converted to an equivalent spiking version. This
means that each layer will be composed of equivalent spiking
neurons that follow the neuron model adopted by the Loihi
architecture. To apply the DNN-to-SNN conversion, we use the
SNNToolBox (SNN-TB) [22], an open-source conversion tool
that is compatible with Loihi’s Python NxSDK-0.9.5.

The results obtained with the conversion process may not
always be optimal, due to several limitations of the NxSDK API
and specific constraints of the Loihi neurocores. Therefore, in



the following Section III, we present a case study for the DNN-
to-SNN conversion, specifying a set of general guidelines to
follow for achieving a converted SNN that reaches the same
accuracy levels as of the corresponding DNN.

III. A COMPREHENSIVE ANALYSIS ON THE DNN-TO-SNN
CONVERSION SETUP

A. Evaluation Metrics for the Conversion Quality

The conversion process requires a series of preliminary
considerations for a successful conversion. First of all, the Loihi
architecture uses limited precision synaptic weights, defined
within the interval [-256,255]. On the other hand, the trained
DNN uses full precision weights. Therefore, a preliminary
quantization of the DNN-trained weights is crucial to get a
precise converted SNN. In this quantization step, the distribution
of the input weights has a major role in the outcome of the
conversion. That is, the input weights has to be clipped into the
Loihi quantized range, therefore a tight weight distribution can
be mapped to the quantized interval without relevant errors. On
the other hand, the presence of outliers in the original weights
distribution can be the main source of an inprecise conversion.
This is due to the fact that very high weights are clipped to fit
into the quantized interval, leading to possible inconsistencies
between the pre- and post-quantization weight distributions. To
decrease strong outliers in the final trained weights, the L2
regularization, applied both on activations and kernels during
the training, helps to keep weights into a limited range.

A good practice to evaluate the quality of the conversion is to
look at the correlation plots between the DNN layer activations
and the corresponding SNN layer output spikerates. Figure 4
shows three typical correlation plots that can be obtained with
good and bad conversion processes.

DNN activations

S
N

N
 

sp
ik

e
ra

te
s

DNN activations DNN activations

S
N

N
 

sp
ik

e
ra

te
s 

S
N

N
 

sp
ik

e
ra

te
s 

(A) (B) (C)

DNN-to-SNN correlation plots

Fig. 4: Examples of correlation plots between the DNN activations and their
converted SNN spikerates.

The plot 4(a) is an example of a good correlation plot,
where the DNN activations are properly converted into SNN
spikerates, being all the points distributed along the main
diagonal. On the contrary, the plot 4(b) shows a relatively worse
conversion, where the DNN activations and the SNN spikerates
are still distributed along the diagonal, but the distribution of
points is not confined to the desired range. The plot 4(c) is
another example of a bad conversion. However, in this case,
the activations and the spikerates are totally non-correlated.

B. Tunable Conversion Parameters

Many parameters can be tuned during the DNN-to-SNN
conversion process, and a detailed analysis over their effects
on the converted SNN is necessary. These parameters modify
the spiking neuron model, the characteristics of the network and
the experiment duration.

• Reset mode: The reset mode defines the behavior of the
neuron after a spike. As previously said, the neuron spikes
every time when its membrane potential exceeds the threshold
Vth. After the spike, the membrane potential is reset to a value
that depends on the chosen reset mode:
– Hard Reset: The membrane potential is reset to a value

equal to 0 after a neuron spikes. This solution is less
computationally expensive, but relatively less accurate.

– Soft Reset: The membrane potential is reset to a value equal
to the difference between the highest value reached by
the membrane potential and the membrane threshold. This
solution is relatively more accurate, but more expensive
as well when compared to the hard reset, because the
amount of compartments needed to simulate each neuron
is doubled.

• Desired Threshold to Input Ratio (DThIR): As described
in Section II, the weights of the input DNN model has to
be converted to synaptic weights of the SNN. Because of
the limited dynamic range of spiking neurons, the output of
a spiking neuron may saturate due to an excessively high
input, given by some out-of-scale synaptic weights. Hence,
it is necessary to normalize the network and set a constant
ratio between the incoming neuron inputs and its membrane
threshold [6].

• Experiment duration: This parameter defines the number of
time-steps for which the network receives the same image as
an input, i.e., the inference time. A longer duration gives the
network more time to output its prediction, but it increases
the latency of the system.
The development of the DNN architecture has to be realized

using the python Keras API [4], which is one of the API
supported by Intel NxSDK. Currently, not all the Keras
layers are supported by the Loihi’s Python NxSDK. The only
supported layers are the one in Table I. This limitation has to
be taken into consideration during the development of a DNN
architecture.

TABLE I: Layers supported by NxSDK.
Dense Flatten Reshape Padding

AvgPooling2D DepthwiseConv2D Conv1D Conv2D

C. DNN Training

To study the behavior of the conversion, a small network has
been used for evaluating the process. Such a network, that we
will refer to as cNet, is a convolutional neural network that
contains only convolutional layers and a final dense layer. Its
structure is reported in Table II.

TABLE II: cNet architecture for the MNIST dataset.
Layer features Kernel stride Output Shape Activation
Input 1 28x28x1 ReLU

Conv2D 16 4x4 2 13x13x16 ReLU
Conv2D 32 3x3 1 11x11x32 ReLU
Conv2D 64 3x3 2 5x5x64 ReLU
Conv2D 10 4x4 1 2x2x10 ReLU
Flatten 40
Dense 10 SoftMax

To achieve a better conversion process, both activation and
weight L2 Reguralization are applied on the network layers. In
both cases, the value is set to 1 ·10−4. The use of regularization
during training is preferable for preventing the divergence of the



parameter distribution and for avoiding the information loss due
to the quantization process of the parameters, as discussed in
Section III-A.

The datasets on which the analyses have been performed are
the MNIST [14] and CIFAR10 [13]. For each input image, the
intensity values are normalized between 0 and 1. Both networks
are developed in Keras, using TensorFlow [1] as the backend.
The training is performed with the following policies:

• learning rate decay: initially set to 0.001, it is halved
after 15 consecutive epochs without validation accuracy
improvements, until it reaches a final value of 5 · 10−7.

• Adam optimizer [12].
• Small data augmentations, with width and height shifts of

0.1, and 10° rotations.

After training, the values of test accuracy achieved by the
networks are reported in Table III.

TABLE III: Accuracy results of the
DNN models.

Nework Dataset Accuracy
cNet MNIST 98.79%
cNet CIFAR10 78.92%

TABLE IV: Constraints of the
Loihi neurocores.

Neurocore constraints
max compartments 1024
max fan-in axons 4096
max fan-out axons 4096

D. Conversion Process

The trained DNN model is then converted into its equivalent
spiking model via the SNN-TB tool. The conversion requires
four main steps:

• Parsing: The toolbox extracts the relevant informations from
the original model, discarding layers that are not used in
the inference stage (Dropout, BatchNormalization, etc.) and
converting the MaxPooling2D layers that may be present into
AveragePooling2D, which are supported. The parsed model
is the one used as reference for the following conversion.

• Conversion: An NxSDK-compatible spiking model is
obtained, applying a normalization process that adapts the
weights and biases to the limited dynamic range of the
spiking neurons, satisfying the selected value of DThIR.

• Partition: The conversion process requires to find a valid
partition of the neural network on the Loihi chip. Some
constraints have to be respected in order to have a valid
partition. These constraints, reported in Table IV, are related
to the synaptic fan-in and fan-out of each neurocore, and
the maximum number of neurons that can be mapped onto a
single neurocore.

• Mapping: The partition is mapped onto the Loihi chip, and
the model is now ready to be used in the SNN deployment.

E. Experimental Setup

The tool flow is depicted in Figure 5. All the experiments
are executed on the Intel Neuromorphic Research Cloud (NRC)
server, using one of the avaible Loihi partitions. The reported
experiments are executed on the Nahuku32 board, which
comprises 32 Loihi chips. As described in section III-B, the
three main parameters that have been analyzed for a fine tuning
conversion are the reset mode, DThIR, and experiment duration.
Different experiments have been done to evaluate the effects of
these parameters on the final SNN accuracy.

define
network
model

train
model

Keras Loihi

DNN domain

run
model

evaluate
results

SNN domain

set 
conversion
parameters

parse 
&

convert

DNN-to-SNN conversion

SNN-ToolBox

find valid
partition
and map

Fig. 5: Tool flow of our experimental process.

F. Results Varying the DThIR

In this experiment, we evaluate the conversion results varying
the DThIR. The experiment duration is set to 256 time-steps that
is a reasonable choice for both the soft and the hard reset, as we
will discuss later. The tested DThIR levels are 21, 23 and 25.
Selecting higher levels is usually not a good solution because
the membrane potential threshold may get too large. The results
are reported in Figure 6(a).

21 23 25
DThIR

61,38

98,58 97,45

31,81 30,58

32 64 128

98,51

97,70

256 512 1024

21 23 25

29,03

98,70 98,60 98,70

21 23 25 21 23 25

32 64 128

61,69
73,15

256 512 1024

24,31

77,10 77,30 77,40

83,56
98,64

24,77

98,58 98,66 97,74

49,25
64,63

14,45

67,20 66,83 66,47

98,70

98,70

72,4077,10

44,30

61,4067,20

DThIR

timesteps

32 64 128 256 512 1024 32 64 128 256 512 1024

D T h I R  A N A LY S I S

timesteps

timesteps

timesteps

SOFT  RESET
HARD RESET

M N I S T

E X P E R I M E N T  D U R A T I O N  A N A LY S I S

( A )

( B )
C I F A R 1 0M N I S T

C I F A R 1 0

Fig. 6: The legend is commong for all the plots. cNet, results on MNIST and
CIFAR10, varying (a) the DThIR and (b) the experiment duration.

Analysis for MNIST: In both cases of soft reset and hard
reset, the SNN accuracy is equal to the DNN accuracy value for
DThIR = 21 and 23. However, when the parameter is increased
to 25, the accuracy drops in both soft and hard reset cases.

Analysis for CIFAR10: Also in this case the highest
accuracy is reached for DThIR=21, for both the hard and the
soft reset. However, the accuracy starts reducing when the
DThIR is set to 23, and gets to a minimum when the DThIR
is increased to 25.

As a consequence of these results, a value of DThIR = 21 is
chosen for the following further analysis.

G. Results Varying the Duration and Reset Mode

This analysis tries to find a good compromise between
experiment duration and reset mode. By choosing a longer
duration, we expect to get more precise results, paying in terms
of output latency. Moreover, the soft reset is expected to provide
higher accuracy. The results are reported in Figure 6(b).

Analysis for MNIST: Looking at the results achieved on the
MNIST dataset, a test accuracy of 98.70% (i.e., only 0.09%
lower than the one obtained with the DNN model) is reached
in the soft reset case, when the experiment duration is longer
than 64 time-steps. On the other hand, it takes at least 128 time-
steps for the hard reset case to reach the same level of accuracy.



Moreover, the accuracy reached by both the soft and the hard
reset remains stable also for longer experiment duration.

Analysis for CIFAR10: The results for the CIFAR10 dataset
clearly show that for the hard reset case the DNN accuracy of
78.92% is never reached. The maximum accuracy is 67.20%
when the experiment gets longer than 256 time-steps. On the
other hand, the soft reset shows better results than the hard reset,
despite not achieving the same results as the corresponding
DNN. An accuracy of 77.10% is reached with 256 time-steps,
slowly growing to 77.40% with a longer experiment of 1024
time-steps.

For an experiment duration of 256 time-steps, the average
time for executing a single inference step of image classification
and the Loihi chip usage are reported in Table V. Looking at
the number of occupied neurocores, for both the MNIST and
CIFAR10 cases, the soft reset makes use of more cores.

TABLE V: Accuracy results of the DNN models.
Reset Mode Dataset Classification time Neurocores

soft MNIST 8.312 ms 27
hard MNIST 6.464 ms 20
soft CIFAR10 21.371 ms 37
hard CIFAR10 26.159 ms 29

For better understanding the reason why the soft reset
achieves better results than the hard reset conversion, we
compare the correlation plots of the converted layers. Figure 7
shows the correlation plots of the first 4 layers, both for the
soft reset and the hard reset versions, and on both datasets. In
each of the 4 presented cases, an experiment duration of 256
time-steps is applied, as well as a DThIR equal to 21.

At a first glance, it is immediately clear that the correlation
plots of the soft reset conversion are far more compliant with
the expected behavior when compared to the hard reset results,
both for the MNIST and CIFAR10 datasets. Looking at the
MNIST - soft reset experiment, the correlation plot of the first
layer shows a perfect conglomeration of activations (x axis)
vs. spikerates (y axis), along the main diagonal. This means
that the conversion of the layer is working as desired, having
all the SNN neurons spiking with a rate equivalent to their
corresponding DNN activations. The same principle is adopted
for the following layers.

Looking at the MNIST - hard reset experiment, the
correlation plots show a relatively worse conversion result.
Starting from the first layer, the points are distributed with a
overlapped-staircase behavior. The same happens in the second
layer, where it is also present a dilatation of the agglomerate
of points along the x-axis. However, both in the 3rd and 4th

layers correlation plots, the points are sufficiently compacted
along the diagonal, and in fact the final accuracy achieved by
this SNN is similar to the DNN accuracy.

Regarding the CIFAR10 analysis, the soft reset gives good
correlation plots, even if the points form a thicker agglomerate
w.r.t. the MNIST case. On the other hand, the hard reset
gives worse results. The correlation between activations and
spikerates is relatively less evident, with a general behavior
that follows the one of MNIST case, but more emphasized. The
analyses reported in these plots justify the 10% accuracy drop
obtained using the hard reset conversion, as seen in Figure 6.

Overall, the results obtained for the CIFAR10 dataset are
worse than the ones obtained on the MNIST, both for the

soft and the hard reset. This can be addressed to the higher
complexity of the CIFAR10, which represents a challenging
dataset to work with.
H. Results Discussion

Overall, the use of the soft reset mode gives higher accuracy
results, because of the lower information loss that occurs during
the conversion, as clearly shown by the correlation plots in
Figure 7. A good choice for the experiment duration seems
to be ≥ 256 time-steps. A shorter experiment may lead to an
accuracy loss, as shown for the CIFAR10 dataset. On the other
hand, using more than 512 time-steps does not lead to a higher
level of accuracy, as shown in both the MNIST and CIFAR10
analyses. Finally, a DThIR value equal to 21 seems to be the
best choice to reduce the loss during the conversion.

Furthermore, the conversion results are also strongly
influenced by the DNN architecture, as well as by the DNN
training policies. To have a deeper evaluation of the conversion
process, several other DNN models have been trained and
converted. These models vary in terms of size, number of layers,
and layers characteristics. Not always the conversion process
has shown successful results, even applying the soft reset.
The problems generally arise when the DNN layers are too
wide, making the conversion infeasible, because the neurocore
constraints are violated. Therefore, when it comes to build
very large SNNs, it is suggested to use depthwise separable
convolutional layers that require less core occupation than the
traditional ones. However, a comprehensive analysis concerning
these DNN characteristics is not easily practicable, and it is
considered beyond the scope of this article.

IV. PRE-PROCESSING METHODS FOR THE DVSGESTURE
DATASET

The IBM DvsGesture dataset [2] is a fully event-based
gesture recognition dataset. Each gesture is recorded with a
DVS128 camera, providing a total of 1342 samples divided
in 122 trials. In each trial, 1 subject executes the 11 different
gestures in sequence. A total of 29 subjects under 3 different
light conditions form the whole dataset. Each gesture has an
average duration of 6 seconds, and is composed of a collection
of all the events (positive and negative) that have been recorded
by the DVS camera. A positive (or negative) event is recorded
every time a positive (or negative) variation of light is detected.

Event-based data are ideal when used as an input to the
SNNs, thanks to their intrinsic asynchronous and spiking
behavior. However, in the context of our research, we are
training a network in the DNN domain, and only at the second
stage we convert it into the SNN domain. This forces us to
find an alternative representation of the input data, being the
DNN not trainable on pure sequences of events. A valid solution
can be to train the DNN with a series of frames obtained by
collecting the incoming events. However, some choices have to
be made to achieve a good conversion into frames, that is:
• Choose the amount of events to collect into a single frame.
• Select the size of the frame and its number of channels.
• Set a policy for positive and negative events accumulation.
A. Events Accumulation

As reported in [21], there are two accumulation approaches:
• Time-based accumulation: all events that occur in a fixed time

window are accumulated in a single frame.



S
O

F
T

R
E

S
E

T
H

A
R

D
R

E
S

E
T

C I F A R 1 0

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

M N I S T
Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Layer 4

      

Layer 4

Layer 4

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

ANN activations

DNN activations DNN activations DNN activations

DNN activationsDNN activations DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

S
N

N
 

sp
ik

e
ra

te
s[

H
z]

DNN activations

Layer 4

Fig. 7: Correlation plots for the first 4 layers of cNet after its conversion to the corresponding SNN model. The first column shows the results on the MNIST
dataset, whereas the second column presents the results for the CIFAR10 dataset.

• Quantitative-based accumulation: a fixed number of
consecutive events are accumulated in a single frame.
The former solution ensures that the timing information

within frames is respected. On the other hand, the latter solution
guarantees that each frame will have the same amount of
information. However, this may not be a good choice when
it comes to gesture recordings. In fact, the number of events
generated by a gesture in a fixed time window also depends
on the type of the gesture itself. Not all the gestures generate
the same amount of events per second. Therefore, using a
quantitative approach, the number of the generated frames
generated depends on the number of events produced by the
gesture. Gestures with the same time length may lead to a
different amount of frames, having different event rates.

As a consequence, the final dataset will result in an
imbalance, having a diverse amount of frames per classes,
both in the train and test sets. In order to balance the
dataset, one may reduce the amount of frames per gesture
to a number that is equal for all classes, but this would
come out in a drastic reduction of the used information
from the original event-based recordings. Hence, based on
these considerations, the time-based accumulation is preferable,
because it guarantees a balanced dataset. Therefore, the results
relative to the quantitative-based accumulation are not discussed
in the following section.
B. Time Window Size

The amount of events per seconds varies not only from
gesture to gesture, but also between different trials of the
same gesture. A mean number of 98 events/ms is estimated
by evaluating the original dataset over all the available gestures
of all the different trials. This information is a relevant starting
point in the choice of the time window size that each frame has
to cover. In this research, the time windows of 60ms, 150ms,
235ms and 300ms are explored. Choosing a time window of
less than 60ms would bring it to an insufficient amount of
events collected per frame, thus preventing from having a proper
classification. On the other hand, an accumulation time of more
than 300ms would lead to a total of less than 3 frames per
second, that we consider as the minimum for a real-world
application.

A single frame may also have more than one channel, each
of them covering a subset of the complete time window. For
example, a frame covering a window of 300ms can have 3

channels, where each channel covers a sub-windows of 100ms.
This solution allows to get frames in which the temporal
information is preserved, since the channels cover consecutive
time sections.

Moreover, another solution may be to use overlapped frames,
i.e., the time windows covered by two consecutive frames
are partially overlapped. For example, using an overlap factor
of 2 with frames of 300ms, the frames will cover partially
overlapped ranges. The first frame will be [0ms; 300ms] and
the following frame will cover the range [150ms; 450ms].
There are several advantages in choosing this solution:
• The number of frames generated from the original dataset is

multiplied by the overlap factor, leading to a bigger dataset
that guarantees better training results.

• The frames can cover different time windows, augmenting
the temporal information in the dataset.

• The system’s throughput is multiplied by the overlap factor.
In our experiments, an overlap factor of 2 has been chosen.
Using an overlap factor n > 2 would lead to generating
redundant overlapped frames. On the other hand, a value n < 2
would reduce the benefits of having overlapped frames.

C. Events Polarity

Each event carries the x and y position of the detected event,
as well as the polarity of the event that can be either positive
or negative.
• The first possibility is to accumulate the positive and negative

events in two different channels of the frame, c+ and c−. Both
the channel pixels are initialized at 0, and when a positive
event is detected, the pixel (x, y, c+) is incremented by 1.
On the other hand, a negative event increases the pixel (x,
y, c−) by 1. Finally, the pixel intensities are normalized in
the range [0; 255]. Since the accumulation of opposite signed
events form a trace of the gesture motion over time, this
solution prevents the information loss, because the polarity
information becomes relevant when the gestures differ only
w.r.t. their sense of rotation.

• The second solution (as inspired from the work of [21]) is
to accumulate all negative and positive events on the same
channel, keeping the polarity information. All the pixels are
initialized to a mean value of 128, and are incremented or
decremented by 1, depending on the polarity of the event.



• The third possibility (as inspired from the work of [21]) is
to discard the polarity information and collect all the events
in a single channel, by simply incrementing the pixel (x, y)
every time either a positive or a negative event occurs.
The above-described three solutions have been tested on

the DNN, and based on the accuracy achieved, the following
considerations can be made. Overall, the best solution has
proved to be the third one, in which the polarity is discarded.
The 2-channel accumulation solution has not shown particular
improvements on the final accuracy, when compared to the case
in which the polarity is discarded. At the same time, having
two channels that separately store the polarity comes with a
series of drawbacks, such as, an increase in the size of the
dataset as well as in the dimension of the DNN. Moreover,
the number of neurocores occupied by the converted SNN
is higher than using a single channel, and this also impacts
on the latency of the system. For this reason, the 2-channel
policy can be discarded. Considering the 1-channel polarity
accumulation, the obtained results have shown an accuracy drop
of (' −4%) w.r.t. the discarded polarity case. This solution
leads to having frames with generally a high level of pixel
intensities, being all initialized to a non-zero value, thereby
leading to lower classification results. For these reasons, in
Table VI, only the results achieved without signed polarity
accumulation are reported.

D. Frame Size

Lastly, the dimension of the frame has to be chosen. The
original recordings have a dimension of 128x128. However,
such a dimension may be too large when used as an input to
our converted SNN, leading to a high number of neurocores
required to deploy the SNN on Loihi, as well as increasing the
latency of the prediction. Therefore, we resized the image to a
dimension of 32x32, by applying a preliminary Average Pooling
step. This process is also useful to remove the noisy events from
the original recordings, thereby producing a input frames that
contain only the relevant gesture information. Also a 64x64
size has been evaluated, but the accuracy results obtained by
the DNN did not show any improvement over the 32x32 size.
On the other hand, a size of 16x16 would be too small for
achieving a good recognition by the DNN.
Another solution, which has been proposed by [11] for the
same dataset, is to collect only the events that are inside a
64x64 attention window, which moves and keeps track of the
incoming gestures. Then, the Average Pooling is applied on the
64x64 frame, reducing its size to 32x32.

This solution has been evaluated, but the accuracy results
were (' −5%) lower than the one achieved with the whole
image frame. The reason for such an accuracy drop may be
found in the fact that, by shrinking the input window to the
area where the actual gesture takes place, the gesture itself is
taken out of its contest. In this way, the DNN cannot distinguish
between equivalent gestures executed with opposite arms.

E. Dataset Structure

In all the above-discussed pre-processing approaches, the
frames are associated to their corresponding labels, and
accumulated into a train set and a test set. The dimension of the
dataset depends on the chosen pre-processing approaches. Less

frames are generated with longer time-windows, whereas the
amount of frames increases as the time-window covered by each
frame gets shorter. The pre-processing stages are summarized
in Figure 8.

positive
negative

              

time 
12

8

128

incoming events

frame accumulation Average 
Pooling           

channels

EVENTS ACCUMULATION

Fig. 8: DvsGesture pre-processing: the number of frame channels may depend
on the chosen polarity policy or, in a time based accumulation, on the time
length of each channel.

V. ACCURACY RESULTS

All the obtained pre-processed datasets have been tested with
the cNet, the same DNN analyzed in Section III, along with
the same training parameters for the MNIST and CIFAR10
datasets. This choice has been made to ensure that the possible
differences between the DNN and SNN accuracy results depend
on the data pre-processing stage, and are not related to the
network architecture or the training policies. As explained
in Section III-H, if the DNN architecture is modified, the
conversion process may suffer and the resulting SNN may not
show the expected behavior.

The conversion process has been executed applying the
soft reset mode, and an experiment duration of 256 time-
steps, with a DThIR=21, since these are the settings that have
shown the best results for both the MNIST and the CIFAR10
analyses. Given the analysis provided in Section IV, a set of
different frame-converted datasets have been realized. In all
these datasets, the size of the frame is set to 32x32, and the
events polarity is discarded. On the other hand, the converted
datasets differ in the frame accumulation time duration, the
possible use of the temporal overlapping between frames, and
the number of channels per frame. Table VI shows the accuracy
results for the DNN on the different post-processed datasets.

TABLE VI: Pre-processing techniques applied to the original gesture DVS
dataset and relative DNN accuracies. For all the datasets, the frame size is
equal to 32x32 and the polarity inormation is discarded. All the generated
datasets have been tested with the cNet DNN.

Dataset duration(ms) overlap channels DNN accuracy
D1 60 (10 per ch.) 7 6 85.23%
D2 60 (20 per ch.) 7 3 85.44%
D3 150 (50 per ch. ) 7 3 87.89%
D4 235 (78 per ch.) 7 3 88.63%
D5 300 (100 per ch.) 7 3 88.33%
D6 100 7 1 74.14%
D7 235 (78 per ch.) 2 3 88.87%
D8 300 (100 per ch.) 2 3 90.46%

Dataset D1 shows that, choosing a time window of only
60ms gives relatively low accuracy results, similar to the case



of dataset D2, where the time range covered by each channel
is doubled. This can be attributed to a few events accumulated
per channel.

When discussing the datasets D3-5, the time window is
progressively incremented, until a maximum duration of 300ms
is covered. The results show that a good level of accuracy is
reached with a 3-channel frame covering a period of 235ms.

Dataset D6 has been realized to see if using a single channel
frame could be a valid solution. In this case, the accuracy drop
is evident, and this can be addressed to the fact that the single
frame does not contain the temporal information, being all the
events accumulated in a single channel.

When discussing the datasets D7 and D8, an overlap factor
equal to 2 is introduced. The accuracy increases, reaching a
value of 90.46% in dataset D8, which is the best obtained value.

The cNet DNN model trained on dataset D8 is then converted
to its equivalent SNN model representation, and deployed on
the Intel Loihi research platform. The converted SNN model
reaches a test accuracy of 89.64%, which is only 0.82%
lower than the original DNN model representation. Moreover,
the average time for classifying an input frame is 11.43ms.
These results have to be compared with the state-of-the-art
test accuracies achieved in [2] and in [25]. The work in [2]
reaches a test accuracy of 94.59% with a 64x64 frame size,
whereas the accuracy achieved on a 32x32 frame drops down
to 90.78%. This last value is only 1,14% higher than the one
obtained in this research using frames with the same dimension
of 32x32, but it is obtained with a DNN that is much bigger
(i.e., 16 convolutional layers with a lot more feature maps per
layer) w.r.t. the one used in this work (see Table II for our
network configuration). However, we did not consider to employ
such large and deep networks purposely, in order to maintain
a low resource utilization and a low latency for the real-time
embedded implementations.

In [25], the test accuracy reached on a smaller portion of the
original dataset (1.5 seconds per gesture) is 93.64%, that is 4%
higher w.r.t. the one obtained with our methodology. However,
considering the fact that their SNN is designed and trained from
scratch (i.e., not a converted one), they have directly used the
original event-based dataset, avoiding an inevitable information
loss that is related to the pre-processing step.

In terms of latency, with our best solution (D8) the total
time needed for a frame classification is 150ms+ 11.42ms =
161.42ms1. This configuration gives a throughput of 6.24
frames-per-second, which is a feasible solution for a real-time
system.

VI. CONCLUSION

In this paper, we have proposed an efficient method for
deploying gesture recognition through a DVS camera on
the Loihi neuromorphic processor. After a careful study of
converting a given artificial Deep Neural Network (DNN) to the
corresponding Spiking Neural Network (SNN) representation,
we devised an efficient pre-processing method for accumulating
the events coming from the DvsGesture dataset. As shown by
our results, this process enables the training in the DNN domain.
Therefore, the well-known training policies and optimizations

1Since the overlap factor is 2, the next frame starts after 150ms, therefore
we considered 150ms per frame.

for DNNs can be employedin this methodology. An efficient
conversion of the trained DNN into the SNN domain enables
the accurate, energy-efficient and real-time processing on a
neuromorphic embedded platform such as the Intel Loihi.

ACKNOWLEDGMENTS

This work has been partially supported by the Doctoral College
Resilient Embedded Systems which is run jointly by TU Wien’s
Faculty of Informatics and FH-Technikum Wien.

REFERENCES
[1] M. Abadi et al. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015.
[2] A. Amir et al. A low power, fully event-based gesture recognition system.

In CVPR, 2017.
[3] M. Bouvier et al. Spiking neural networks hardware implementations and

challenges: A survey. J. Emerg. Technol. Comput. Syst., 2019.
[4] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[5] M. Davies et al. Loihi: A neuromorphic manycore processor with on-chip

learning. 2018.
[6] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer. Fast-

classifying, high-accuracy spiking deep networks through weight and
threshold balancing. In IJCNN, 2015.

[7] S. Furber, F. Galluppi, S. Temple, and L. Plana. The spinnaker project.
2014.

[8] M. A. Hanif et al. Mpna: A massively-parallel neural array accelerator
with dataflow optimization for convolutional neural networks. ArXiv,
abs/1810.12910, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, 2015.

[10] N. Jouppi, C. Young, N. Patil, and D. Patterson. Motivation for and
evaluation of the first tensor processing unit. IEEE Micro, 2018.

[11] J. Kaiser et al. Embodied event-driven random backpropagation. CoRR,
2019.

[12] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 2014.

[13] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, 2009.

[14] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT
Labs [Online], 2, 2010.

[15] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120db 30mw
asynchronous vision sensor that responds to relative intensity change. In
ISSCC, 2006.

[16] A. Marchisio et al. Deep learning for edge computing: Current trends, cross-
layer optimizations, and open research challenges. In ISVLSI, 2019.

[17] A. Marchisio et al. Is spiking secure? a comparative study on the security
vulnerabilities of spiking and deep neural networks. IJCNN, 2020.

[18] P. A. Merolla et al. A million spiking-neuron integrated circuit with a
scalable communication network and interface.

[19] E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization
to spiking neural networks. Signal Processing Magazine, 2019.

[20] M. Pfeiffer and T. Pfeil. Deep learning with spiking neurons: Opportunities
and challenges. Frontiers in Neuroscience, 2018.

[21] B. Rückauer, N. Känzig, S. Liu, T. Delbrück, and Y. Sandamirskaya.
Closing the accuracy gap in an event-based visual recognition task. CoRR,
2019.

[22] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu. Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification. Frontiers in Neuroscience.

[23] M. Shafique et al. An overview of next-generation architectures for machine
learning: Roadmap, opportunities and challenges in the iot era. In DATE,
2018.

[24] M. Shafique et al. Robust machine learning systems: Challenges,current
trends, perspectives, and the road ahead. IEEE Design & Test, 2020.

[25] S. B. Shrestha and G. Orchard. Slayer: Spike layer error reassignment in
time. In NeurIPS. 2018.

[26] G. Srinivasan, P. Panda, and K. Roy. Stdp-based unsupervised feature
learning using convolution-over-time in spiking neural networks for energy-
efficient neuromorphic computing. J. Emerg. Technol. Comput. Syst., 2018.

[27] D. Zambrano and S. M. Bohte. Fast and efficient asynchronous neural
computation with adapting spiking neural networks. CoRR, 2016.

[28] J. J. Zhang et al. Building robust machine learning systems: Current
progress, research challenges, and opportunities. DAC, 2019.




