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Abstract—This paper introduces a method for offshore oil slick
detection. At present, Synthetic Aperture Radar (SAR) is an
image acquisition technology useful for oil slick detection in all
weather conditions. It is used to carry out the detection, with
notable limitations under certain conditions (surfaces, weather
conditions). Manual SAR images analysis is expensive and, given
the increasing amount of data collected from available sen-
sors, automation becomes mandatory. To achieve this objective,
instance object detection relying on deep neural networks is
interesting to adapt to the data variability. Relying on such an
approach, this article explores the capabilities of generalizing
the detection of slicks on large datasets using the Mask-RCNN
model. A detailed performance analysis is established in two
complementary directions: (i) the impact of the SAR image
characteristics(sensor, geographical areas, lookalike presence),
(ii) the impact of the neural network architecture, transferred
capabilities and training procedures. The main findings of this
analysis show that Mask-RCNN features promising performance
for pollution detection.

Index Terms—Oil slicks, Offshore detection, SAR images, Deep
learning.

I. INTRODUCTION

In the offshore domain, several major challenges have been
identified for the successful detection of oil slicks. The first
one is related to the speed of the image acquisition process,
as obtaining quick information is decisive in case of events
as oil spillages to react as fast as possible. Recent satellite
launches, however? are improving the ability to acquire images
by providing global coverage and 24-hour acquisition capability.
On the other hand, the growing amount of data generated by the
satellites images is leading us to a second challenge concerning
the ability to process all the acquired images in an effective
and efficient manner. A third challenge deals with accurate
identification of the oil slicks, successfully differentiating them
from the other phenomena on the sea surface [3]. Finally,
the fourth challenge is searching for precision in oil slick
localization in very large images [1]. In working to solve this
challenges, SAR images have proven to be reliable for the
detection of oil slicks [7] by providing high resolution images in
a wide range of weather conditions. Nevertheless, the detection

and segmentation of offshore oil slicks are generally carried
out by human image interpreters, who spend hours processing
the images to find such anomalies. The task is difficult since
oil slick has high variability in terms of shape and size and
could be easily confused with similar dark structures (lookalike)
coming from algae, waves, etc [22]. This paper is organized as
follows: Section 2 summarizes the related literature. Section
3 presents an introduction of the deep learning approach,
Section 4 describes the considered SAR data collection and
the performance evaluation metrics. Section 5 presents the
experimental design and section 6 discussed the obtained results
and draws the main conclusions and future research.

II. RELATIVE WORKS TO THE OIL SLICK DETECTION

Offshore oil slick detection has been a challenge for
several years. This is mainly carried out using either passive
(optical/infrared sensors) or active (microwave sensors) remote
sensing sensors. Among these sensors, active sensors have ad-
vantages in their ability to operate day and night, independently
of the sunlight, unlike optical sensors. SAR Sensors constitute a
powerful tool for detecting hydrocarbons on the sea surface due
to the sensitivity of microwave signals to the surface roughness
[31] [38]. Most of the electromagnetic energy is reflected by
rough surfaces such as clean water disturbed by the wind.
However, the oil slick locally dampens the roughness of the
sea surface, thus decreasing the radar scattering. As a result,
dark spots are formed which contrast with the brightness of the
surrounding slick free sea [3]. Such phenomena should then
allow the automatic detection of the oil slick. However, many
lookalikes can occur above the sea surface and appear on radar
images as dark spots, in the same way as areas covered by oil.
[7] [35] proposes an interesting hierarchy of these distractors
which is illustrated in Fig.1.

Furthermore, oil slicks are small targets in large images that
remain scarce. Oil slicks indeed cover less than 1% of the
image pixels as shown in the pixel Table I. These values are
calculated on a typical sample of data, they reveal the imbalance
between the slick pixels and the sea and lookalike pixels. Such
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Fig. 1: Main offshore dark patches seen in SAR images, from [35].

detection is therefore harder than multimedia object detection
benchmarks such as Cityscapes [10] and Coco [19], which
more frequently present medium and large objects compared
to the input image.

TABLE I: The distribution between oil slicks and clean water samples
in the considered dataset: on the left at the image cropping level, on
the right at the pixel level.

Area Number of crops Number of pixels

Slick 8879 ∼2*107

Sea and lookalike 423 ∼3*109

Consequently, oil slick detection is a challenge due to
numerous factors, such as the little information associated
with them, the possibility of confusion with the background,
the higher accuracy requirement for location and the large
size of the image [1]. The state of the art regarding oil slick
detection can be summarized in Table II. A distinction is made
between semi-automatic and fully automatic approaches, which
are reviewed in the following.

TABLE II: Survey on oil slick detection approaches.

Conventional approach Semi Automatic
Partial integration of deep learning

Fully end to end deep learning Full Automatic
Transfer learning

A. Semi-Automatic Approaches

Such approaches are summarized in four steps. Detection
and isolation of all dark formations that are present in the
image. This is accomplished mainly through thresholding
and segmentation processing [36] [17]. The second step
concerns the extraction of the characteristics of the dark regions,
mainly their geometrical parameters as well as their physical
behaviors (e.g. mean backscatter value, polarimetry) [4] [7]
and contextual data (e.g. distance to ships) [30]. The third step
is the classification or differentiation of the extracted values
as slick (spill, seep) or lookalike. A variety of classifiers have
been used, i.e. statistical approach by probability calculation,
fuzzy logic, etc. [29] [6], [3]. The fourth step examines an
assessment against predefined values commonly known as
annotation/ground truth/label, which establishes a classification
between man-made oil slicks and lookalike phenomena. These
values are generally determined through phenomenological
considerations (empirical research) and statistical assessments
[11]. Conventional approaches exhibit poor generalization
behaviors, remaining accurate only in specific configurations
(sensor, wind speed, frequency band, etc.). The main issues
are related to the confusion between slick and lookalikes and
the classification between oil slicks types.

To overcome these limitations, learning-based approaches
such as deep neural networks are integrated into one of the
above steps. This integration can be at the step of detection,
features extraction, or classification of the offshore oil slicks.
Several works [33] investigate the use of the capabilities of
Convolutional Neural Networks (CNNs) in many steps of
the classical detection process that outperform conventional
approaches. For example, a text classifier based on a neural
network algorithm is used for the detection of dark features
by [21]. The work of [14] employs a stacked auto-encoder
(SAE), and use a Deep Belief Network (DBN) to optimize
the polarimetric feature sets. A key discovery of this paper is
that even given an insufficient amount of data samples, deep
learning allows achieving better performance than traditional
algorithms by initializing its weights in a region near its
local minimum with Stacked auto-encoders. Moreover, deep
learning algorithms have very strong capabilities for exploring
the complex correlation between features and obtain very
promising fitting results on complicated data. [8] reports that
oil slick classification achieved by deep networks outperformed
both support vector machine (SVM) and traditional Artificial
Neural Networks (ANN) with similar parameters. These studies
consequently confirm the general trend towards successful deep
learning, which is mainly related to the availability of large
annotated databases to efficiently learn features from the data,
as explained in [2].

B. Fully Automatic Approaches

Another category of approaches proposes to solve the task
with a deep neural architecture trained end to end. However,
because of the lack of training data, transfer learning is
generally considered and therefore reuses neural structures
trained for another task and data that share some common



features with the target context. Recent works on oil slick
detection and segmentation outperform previous ones [25]
[9]. This is in line with initial observations in the multimedia
field which show the interest of transfer based approaches
when not much data is available in the target domain and to
reduce computation costs [5], [28]. Furthermore, [37] shows
that initializing a network with transferred features from almost
any number of layers can produce a boost to a generalization
that persists even after fine-tuning to the target dataset. In
this work, we consider transfer and domain adaptation of the
Mask-RCNN, instance detection, and segmentation model [15]
described in the next section. The full benefit will be derived
from the huge annotated SAR sea surface datasets captured
by different SAR sensors in different geographic areas. The
diversity of the available data is large and rich enough to study
the impact of the data behaviors and the learning strategies
on detection and segmentation performance as well as the
generalizability of the trained model.

III. OIL SLICK SEGMENTATION : MASK-RCNN

MaskRCNN is an instance segmentation method that com-
bines object detection, classification. It goes one step further
than classical semantic segmentation methods such as Fc-
DenseNet [16] which are limited to pixel-level classification
without differentiating between object instances. Mask-RCNN
relies on a multi-stage convolutional network and inherits from
the R-CNN series: R-CNN, Fast R-CNN, and Faster R-CNN
[27]. It also competes with single-stage networks as YOLO
[26] for the detection of large objects. But when detecting
small objects, single-stage frameworks are generally much
less efficient than two-stage frameworks [20]. This model is
illustrated in Fig.2, can be summarized in three stages. The first
step is a feature extraction step performed by a basic neural
network that is usually pre-trained for an image classification
task. Providing rich and transferable features that feed the
higher stages. A second step is the Region Proposal Network
(RPN) that generates areas of interest at different image scales.
The final step is a multi-headed neural network that predicts
the class of the object, refines the bounding box, and generates
the associated object mask, as shown in Fig.3. This architecture
is of real interest since it manages the extreme foreground-
vs-background class imbalance through the selection process
introduced by the RPN model. Therefore, it is well suited to
the task of detecting and segmenting rare oil slicks. In the
following section, we will briefly describe the main components
of Mask-RCNN architecture.

A. Backbone Architecture and Region Proposal Network

The backbone is a Feature Pyramid Network (FPN). It
extracts rich semantic features at all scale levels, combining
low-resolution semantically strong features with high-resolution
semantically weak features via a top-down pathway and lateral
connections. The multi-scale description capability is especially
important as the slicks have the property of having different
sizes and shapes. This fact typically raises a huge challenge
for deep learning that is only slightly invariant to scale. For

Fig. 2: Mask-RCNN architecture schema, from [39]

the multimedia object detection challenge, Mask-RCNN relies
on a backbone that is pre-trained on a classification problem.
It is not possible, however, to provide such pre-training on
SAR data at this time.

B. Head Architecture

We then propose to consider transfer learning relying on a
multimedia pre-trained backbone, regardless of the difference
between RGB and SAR images. The first layers of a deep
neural network extract generic features that can be adapted to
a variety of image analysis problems [37]. However, due to the
discrepancy between multimedia RGB images and SAR images,
a domain adaptation is required to fine-tune the backbone to our
problem at a low learning rate. We rely on ResNet (50 or 101)
backbones that improved the original version of Mask-RCNN
[32]. Besides, ResNet is also recognized as a good choice in a
variety of transfer case studies [32]. This raises the question:
can we rely on a pre-trained network to transfer learned features
from one domain to another and perform domain adaptation
to obtain relevant features and perform accurate detection?

IV. SAR DATA SETS DESCRIPTION AND PERFORMANCE
ASSESSMENT

In the present work, we consider Synthetic Aperture Radar
(SAR) data from both Envisat and Sentinel-1 sensors. Some
of the main SAR characteristics are the following: it relies
on electromagnetic scattering, it provides high-resolution and
large-sized data and it is altered by speckle noise [35]. These
characteristics make it challenging to interpret SAR images
and detect the oil targets, consuming a lot of manual work [4].
However, the huge amount of annotated data collected along
time can be used to train an automatic detector in a supervised
way.



(a) Input Envisat image

(b) Resulting bounding box and associated masks and classes.

Fig. 3: Example of application of the Mask-RCNN approach on an
Envisat SAR image(2002).

A. Data Acquisition

The methodologies and the results presented in the following
are based on a database of about two thousand SAR images
collected between the years 2002 and 2019 from the European
Space Agency (ESA) missions: Envisat and Sentinel-1. These
images are acquired in several areas along the acquisition pe-
riod, mainly near Africa, which represents various geographical
and meteorological contexts. Table III summarizes the SAR
data used, their spatial resolution, and the acquisition period.

TABLE III: SAR Sensors.

Sensor Pixel Spacing(m) Acquisition Period

Envisat 75 2002-2019
Sentinel-1 10 2002-2019

Fig.4 illustrates the pixel value distributions difference
between slick and the other areas, for both Envisat and Sentinel-
1 data. These curves are computed on interpreted SAR images
from Envisat and Sentinel-1 images from 4 study areas. Fig.4(a)
shows the histograms of two SAR images containing slicks
(Envisat (left) and Sentinel (right)). We can observe that the
shape of Envisat’s pixel histogram (in red) is different from
that of Sentinel-1 (blue). Besides, as shown in Fig.4 (b,c) when
comparing the histograms of slick and not slick pixels for both
sensors, one observes that the distributions are different. One

could then expect that a model dedicated to a given sensor
is not directly applied to the images produced by the other
sensor.

(a) Histogram of Envisat(left)/Sentinel-1(right) slick image.

(b) Slick pixels histogram Envisat(left)/Sentinel-1(right).

(c) Slick free pixels histogram Envisat(left)/Sentinel-1(right).

Fig. 4: Difference between the histogram of Envisat and Sentinel-1.

B. Human Experts Annotations

The remote sensing specialists at Total company have
provided manual detection of the oil slicks, where each slick
is labeled. These operators are experts, trained on the task
and can make the difference between natural oil slicks, spills
and lookalikes based on the visual identification of dark areas.
The slick assessment is based on SAR images and external
information used as a support during the analysis such as wind
speed and nearby oil rigs and ships. Fig.5 shows an association
of SAR data with an example of slick annotation of image
interpreters. The red annotations present seeps and the blue
one’s present spills. Note that lookalikes can be seen but are
not annotated by experts.

C. Datasets Pre-Processing

From raw SAR images to SAR images provided to human
experts or machine learning algorithms, processing flow is
established and illustrated in figure 6. The related sub processes
are summarized as follows:

Pre-processing is a necessary step of pre-processing applied
to the raw N1 images. Pre-processing consists of transforma-
tions of low-level SAR data to improve the qualitative and
quantitative interpretation of image components. Integrated into
a standardized pipeline, it includes geometric, radiometric and
atmospheric corrections, as well as intensity level correction.
The geo-referencing step comes afterward, it is an important



Fig. 5: Example of manual annotation of image interpreters on an
Envisat SAR 2002 image, oil seeps (red) and oil spill (blue)

Fig. 6: Flowchart for SAR data pre-processing

step that realizes the correspondence with the requirements of
GIS (geo-referenced information systems) [12].

Ground Truth (GT) Integration: aims to associate each
SAR image with the corresponding human expert slick anno-
tations to serve both the training and validation steps. A class
label is associated with each pixel in the SAR image and all
instances of the slick are differentiated.

Training and Validation Datasets Splitting: involves pre-
cise data selection. Two strategies are tested, the first is to select
N geographic areas (called studies) for the training and M others

for the validation dataset. The second consists in mixing the
geographical areas in the two sets of training and validation (but
avoiding the corresponding image redundancies). The objective
is to understand the impact of geographic variability on the
generalizability of the model. Note that ground and coastal
areas are removed thus avoiding ground patterns learning.

Image Crops Sampling: the last step is to create image
crops based on the large SAR images. Being aware that a
neural network has a limited field of view and requires a large
amount of memory, the size of the crop must be larger than
the receiving field while still allowing the model to fit into
a given processing device, typically a GPU with 16 Gb of
local memory. Besides, the selected crops must present the
diversity of data to the network while maintaining a certain
balance between classes. Then, crop selection is based on
random region sampling in large images. These crops are then
checked by filters. All the crops containing a given ratio of
slick pixels are preserved while only a few free slick crops
are selected if they contain probable lookalikes. Since these
areas are not annotated but have a higher variance of pixel
values than the other free areas, their selection is based on
a minimum SAR pixel variance filter. Since these areas are
not annotated but have a higher variance of pixel values than
the other free areas, their selection is based on a minimum
SAR pixel variance. A random selection is then applied to
limit their quantity compared to slicks crop in the dataset.
Data augmentation is performed in order to artificially increase
the variability of the data. It consists of random horizontal
and vertical flips [34] and noise addition. This noise is a null
Gaussian mean, it effectively distorts the characteristics of
high-frequency elements. Learning the latter can generate an
over-fitting [23].

D. Performance Metrics

We consider a task of object instance detection and seg-
mentation. Given our slick instance-level annotated datasets,
we rely on the classical metrics in the domain. The notation
of the metrics used for the evaluation is as follows : False
Positive (FP), False Negative (FN), True Positive (TP) and
True Negative (TN). The following metrics are calculated :
• Intersection-over-Union (IoU): measures the compliance

between the masks positioning and size.
IoU(Y, Ŷ ) = TP

TP+FN+FP = Area of Overlap
Area of Union , where Y is

the prediction and Ŷ is the Ground truth (GT). The IoU
can also serve as a good indicator for segmentation, but it
cannot tell us how good are the obtained detection results.
We consider that the slick is detected even with a low IoU
score (partial detection).

• The pixel confusion matrix.

V. EXPERIMENTAL DESIGN

Our experiment plan has two main objectives, where the
first is to study the impact of the training/validation dataset
selection strategy. And the second is to study the network
architecture, hyperparameters and learning strategies.



A. Selection strategy of training/validation datasets

The last two steps of the data processing shown in Fig. 6
are set to study the impact of the following parameters :

• Selection of SAR data sensors : Envisat and Sentinel-1
have different sensors behaviors such as the resolution
and pixel value distributions.

• Selection of data acquisition areas : each area represents
different geographical and meteorological contexts. The
characteristics of the slick are directly affected by meteo-
rological conditions [13].

• Control on the introduction of lookalike phenomena :
either avoid them or introduce a given amount in the
training data set.

B. Network and Architecture Parameters

We consider the following parameters:
• Network Architecture : we experiment with the Mask-

RCNN model different backbone architectures (feature
map extractors): ResNet with either 50 or 101 layers.

• Loss Function : an extreme imbalance between foreground
(slick) and background (sea) classes during training is
observed as shown in Table I. To down-weight the easy
examples and to focus the training on the hard negatives,
we use the focal loss [18] instead of the Cross-Entropy(CE)
for the mask loss computation. A modulating factor is
added to the CE loss where integer λ is defined as 2 in
the experiment.

L(pt) = −αt(1− pt)
λlog(pt) (1)

where pt is the predicted probability of the class. The role
of the parameters αt and λ is to down-weight the easy
examples and thus focus the optimization on the hard
negatives [18]. When λ = 0, the focal loss is equivalent
to the EC. Increasing λ also increases the effect of the
modulation factor. In our case, we’ve set it at 2.

VI. RESULTS AND DISCUSSION

Fig.7 illustrates the results of the detection on various SAR
images including the presence of various lookalike phenomena.
The model considered: relies on the Resnet-101 backbone and
trained on data from mixed study areas (training/validation),
it is trained on Envisat data with the addition of lookalike
samples. In these images, the SAR information is displayed
in red, the expert annotation (GT) in blue and the prediction
in green. The GT overlay associated with good prediction is
shown in light blue. Visual inspection shows that only a few
lookalikes are detected as slicks (the green color highlights
pixels predicted as slick but are not slick i.e. False alarms).
Most of the slicks are partially detected, highlighting issues
related to slick boundaries; either the detected slick is outside
GT or is not entirely detected. Almost all the slicks are detected
with a classification score higher than 0.9. Tab.IV shows the
confusion matrix of the image in the upper right corner of
Fig.7. It shows that 1063 pixels are detected as a slick and
they are slick pixels(light blue color), 281 pixels are detected
as slick and they are sea pixels, 1187 sea pixels are detected

as slick (green color). The subsequent values are mainly the
result of erroneous predictions on the slick boundaries.

TABLE IV: The confusion matrix in pixels numbers.

Prediction

Slick Sea

Ground Truth
Slick 1063 1187

Sea 281 259613

An analysis of performance is detailed in the sequel. We
focus our attention only on the most relevant results, the
quantitative measures of our analysis are reported in Table
V. Experiments have been carried out on both Envisat and
Sentinel-1 satellite images. A first observation is that absolute
performance levels are different between sensors, due to
the change in their data distributions and their different
characteristics mentioned in Table III. however, to preserve the
readability of the paper, we will limit the presentation of the
results to a specific sensor.

• In general, and as shown in Fig.7, there is an annotation
uncertainty about the slick boundaries at the manual anno-
tation step. Therefore results cannot be expected to reach
maximum performance measure values. A maximum mean
IoU (mIoU) value of 0.65 is obtained in our experiments.
Finding the border of the objects was indeed the most
difficult problem.This manifests itself in missing detection
and misadjusted edge.

• Introducing a given number of lookalikes in the training data
improves the IoU slick by 42%, yielding less over-fitting, as
shown in Table V(Envisat A). The first phenomenon targeted
by the network when over-fitting is lookalikes, which are
much more important than the slick ones. Then, their explicit
addition in the train dataset helps avoid them.

• The use of focal loss instead of CE for the calculation
of mask loss shows a slight improvement, where a 19%
mIoU improvement is reported in Table V(Envisat B). Focal
loss compensates for class imbalance and refines slicks
boundaries.

• Table V(Envisat C) indicates the impact of the slick position
inside the crop. The mIoU improves by 23% in the mIoU
when randomizing crops position. The sea IoU decreases by
19 % in the case of generation of centered slicks with more
false alarms, this may be due to a bias in the RPN module
caused by the systematic centering of the slick.

• The results indicates that the generalization of the test set
is considerably improved when training and validation take
into account mixed images from different study areas as
shown in Table V(Envisat D). The results are better than
in the case where training and validation are carried out on
different studies from different areas.

• Using the deeper ResNet backbone (Resnet-101) architecture
yields better mIoU performance as shown in Table V(Envisat
E). Conclusions are similar to [24].



Fig. 7: Example of a prediction result on Envisat SAR images from
a set of tests, good predictions (light blue), false alarms (green),
non-detections (dark blue).

• The ImageNet pre-trained weights yield a slightly better
result than the Coco pre-trained weights. This may be due
to the variety in the object sizes in the ImageNet dataset as
shown in Table V(Sentinel-1 F).

• Networks trained on Envisat data perform slightly better than
those trained on Sentinel-1 data. This can be observed by
comparing Envisat based measurements with those based on
Sentinel-1 as shown in Table V. However, the sensors areas
and pre-processing are different and Envisat benefit from a
longer experience such that a more dedicated study must be
conducted before drawing more comparison.

• As illustrated in Fig.7, a large slick may be detected as

different slick instances. Different hyper-parameters impact
on this issue, mainly the mask shape size and the RPN
anchor scales. Morphological post-processing can be carried
out to optimize large target detection.

TABLE V: Multi-criteria performance measures on the test dataset
for different configurations

NAME IOU SEA IOU SLICK MIOU
ENVISAT A
With lookalikes 0.84 0.5 0.52
Without lookalikes 0.99 0.35 0.65

ENVISAT B
Focal loss 0.95 0.49 0.62
CE loss 0.83 0.49 0.52

ENVISAT C
Centered slick 0.83 0.49 0.52
Random slick 0.99 0.32 0.64

ENVISAT D
Mixed areas 0.88 0.49 0.56
Not mixed areas 0.73 0.49 0.45

ENVISAT E
ResNet101 0.99 0.35 0.65
ResNet50 0.99 0.02 0.51

SENTINEL-1 F
COCO weights 0.97 0.25 0.56
ImageNet weights 0.97 0.27 0.56

Experimental comparison results are obtained during training with
specific hyper-parameters. Envisat A mixes study areas or restricts

training to specific areas, Envisat B shows the impact of the ResNet
backbone complexity, Envisat C indicates the impact of introducing

lookalikes in the training data, Envisat D compares the effect of
changing the mask loss, Envisat E presents the effect of slick

position within the images and Sentinel-1 E reports the effect of the
pre-trained weights.

VII. CONCLUSION AND FUTURE WORKS

Introducing deep learning in the field of HSE(Health Security
Environment) field is a research trend. In this paper, a specific
effort has been placed to study the deep SAR data instance
segmentation method. We demonstrate that the Mask-RCNN
instance segmentation approach, although primarily designed
with object detection, object localization and segmentation of
natural image instances, can be used to produce a promising
ability for automatic detection of the offshore oil slick, under
different weather conditions and in a variety of locations.

Our future work will focus on three main directions: (1)
Improving the dataset and its efficiency by adding more
useful information such as meteorological information and oil
platforms and pipeline position. (2) A full analysis of model
optimization and limitation of over-fitting and edge problems.
(3) An exploration of the performance not only for detecting
but also characterizing offshore oil slick(seep, spill).
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et al., “Deep learners benefit more from out-of-distribution examples,”
in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, 2011, pp. 164–172.

[6] C. Brekke and A. Solberg, “Classifiers and confidence estimation for oil
spill detection in envisat asar images,” IEEE Geoscience and Remote
Sensing Letters, vol. 5, no. 1, pp. 65–69, 2008.

[7] C. Brekke and A. H. Solberg, “Oil spill detection by satellite remote
sensing,” Remote sensing of environment, vol. 95, no. 1, pp. 1–13, 2005.

[8] G. Chen, Y. Li, G. Sun, and Y. Zhang, “Application of deep networks
to oil spill detection using polarimetric synthetic aperture radar images,”
Applied Sciences, vol. 7, no. 10, p. 968, 2017.

[9] C. S. Chin, J. Si, A. Clare, and M. Ma, “Intelligent image recognition
system for marine fouling using softmax transfer learning and deep
convolutional neural networks,” Complexity, vol. 2017, 2017.

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[11] A. De Maio, G. Ricci, and M. Tesauro, “On cfar detection of oil slicks
on the ocean surface by a multifrequency and/or multipolarization sar,” in
Proceedings of the 2001 IEEE Radar Conference (Cat. No. 01CH37200).
IEEE, 2001, pp. 351–356.

[12] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Marine
pollution bulletin, vol. 83, no. 1, pp. 9–23, 2014.

[13] M. F. Fingas and C. E. Brown, “Review of oil spill remote sensing,”
Spill Science & Technology Bulletin, vol. 4, no. 4, pp. 199–208, 1997.

[14] H. Guo, D. Wu, and J. An, “Discrimination of oil slicks and lookalikes
in polarimetric sar images using cnn,” Sensors, vol. 17, no. 8, p. 1837,
2017.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017,
pp. 2980–2988.

[16] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017 IEEE Conference on. IEEE, 2017, pp. 1175–1183.

[17] T. F. Kanaa, E. Tonye, G. Mercier, V. d. P. Onana, and J. Rudant,
“Multiscale segmentation of oil slick in sar images based on morphological
pyramid,” in ENVISAT and ERS Symposium, Salsburg, Australie, 2004,
pp. 6–10.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[19] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online].
Available: http://arxiv.org/abs/1405.0312

[20] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
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