
Convolutional Neural Network with Inception
Blocks for Image Compression Artifact Reduction

Purbaditya Bhattacharya
Department of Signal Processing and Communication

Helmut Schmidt University
Hamburg, Germany
bhattacp@hsu-hh.de

Udo Zölzer
Department of Signal Processing and Communication

Helmut Schmidt University
Hamburg, Germany
zoelzer@hsu-hh.de

Abstract—A convolutional neural network is proposed for the
reduction of artifacts introduced by JPEG compression. In this
work the existing DnCNN architecture has been considered as
the basis network and it is extended by introducing inception
blocks on top of a normal convolution block consisting of convo-
lution, rectified linear unit and batch-normalization layers. Each
inception block contains parallel convolution blocks with vari-
ous dilation factors, essentially performing Atrous convolution.
Compression artifacts result in multiple image neighborhoods
or blocks having similar or redundant information. In spatial
domain the Atrous convolution introduces a larger receptive
field while ignoring redundant neighboring pixels due to the
dilation, thus helping in a better reconstruction. The proposed
network is trained on a small dataset as used by the basis
network. Evaluation of this network on the standard test datasets
shows a substantial quantitative and qualitative improvement,
particularly for higher compression rates.

Index Terms—Convolutional neural network, compression ar-
tifact reduction, image processing

I. INTRODUCTION

Compression standards like JPEG performs fast lossy com-
pression of an image which attempts to reduce its size while
retaining its perceptual quality. Such kind of compression is
very useful in order to save bandwidth and storage space.
However, large compression ratios introduce undesired image
artifacts, which make the image perceptually degraded. Such
artifacts primarily include block artifacts, undesired blurring
and ringing around the edges. Additionally subsequent image
processing or computer vision tasks including image super-
resolution, deblurring, object detection and segmentation or
contour detection among others, perform relatively poorly
when executed on a compressed image. Although there are
improved compression standards like JPEG2000, WebP or
HEVC-MSP, they are relatively slower compared to JPEG
encoding and decoding process and are yet to be used widely.
Image compression and decompression approaches with the
help of machine learning and convolutional neural networks
also exist in abundance but are usually computationally expen-
sive. Hence an alternate approach is the use of a convolutional
neural network as a post-processing tool to a decompressed
image, in order to reduce compression artifacts and improve
the image quality.

In the JPEG compression standard the image is usually di-
vided into 8×8 pixel blocks and discrete cosine transformation

(DCT) is applied on each block. In the following step the
transform coefficients are quantized based on a standard quan-
tization table resulting in a substantial loss of high frequency
information thus blurring the image. Different quantizations
in adjacent blocks also occur leading to discontinuities along
the block edges, hence producing blocking artifacts during
image reconstruction. Ringing effects along the object edges is
also a result of the coarse quantization of the high-frequency
components.

Classical approaches for image deblocking or blocking
artifact removal include the application of image filtering
and block overlap methods [1], adaptive [2], [3] and optimal
filtering [4] methods, filtering methods in spectral or cepstral
domain [5], [6], and method based on wavelet transform [7].
Subsequently, data driven learning based approaches based
on sparse coding and dictionary learning [8], [9] showed
improved performances. Recent approaches tend mostly to-
wards the application of deep learning because of its improved
performances in solving many computer vision problems.
Convolutional neural networks (CNN) have been developed
for many image enhancement problems e.g., denoising [10],
[11], [12] and super-resolution of color [13], [14], [15] and
infra-red images [16], [17] as well as compression artifact
removal [10], [15], [18], [19]. Most of the CNN models learn
an end-to-end mapping between a low quality image and the
corresponding high-quality desired image. The AR-CNN [18]
network is one of the earlier neural network model which
proposed a shallow end-to-end model for image deblocking
and achieved improved results. Its network architecture con-
sists of layers to extract feature maps of different depths,
where the features are initially compressed, enhanced, and then
expanded subsequently to reconstruct the final high quality
image. The CAS-CNN network [19] has introduced an archi-
tecture which extracts and enhances the features from multiple
resolutions of the low-quality image or feature maps before
recombining them to construct the high-quality image. The
aforementioned network also has a multi-stage supervision
and is trained multiple times before the final inference. The
DnCNN network [10] introduced batch-normalization layers in
a deep residual network with consistent feature map depths.
The batch-normalization layers along with a gradient clipping
approach have helped in a fast minimization and convergence

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

of the training objective, yielding improved image quality. In
[15], MemNet is introduced which employs a large number of
densely connected gated recurrent units for improved image
restoration purposes. A very deep multi-resolution network
(MWCNN) has been introduced in [20] consisting of multi-
level wavelet decomposition of the feature maps. It has been
trained with a large number of images and has shown a very
good image restoration performance.

The network proposed in this work assumes the DnCNN
network as a basis and replaces a selected number of in-
termediate layers with inception blocks. The inception block
or module has been introduced in [21] which consists of
multiple parallel convolution layers with varying filter sizes in
order to extract features across different neighborhood sizes
or receptive fields. In the proposed network such inception
blocks are used with filters having different dilation factors
and depths. The dilated filters perform Atrous convolutions
and thereby compute the filter responses at various higher
resolution without increasing the number of learnable filter
parameters. Such an approach results in an improvement of
the deblocking and restoration performance when compared
to that of the basis network. Multiple experiments have been
conducted with the proposed network architecture having
varying network depth and feature map depths, and their
performances are evaluated.

II. PROPOSED MODEL

The CNN model is an end-to-end structure containing a
cascade of alternating inception blocks and normal convolution
blocks, where these 2 blocks always appear as a pair until the
penultimate network layer. Initially the RGB images from the
dataset are converted to YCbCr images and the Y channel,
which is the luminance component, is extracted. The Y chan-
nel is then resampled by multiple down and upsampling factors
to enlarge the amount of training images. The low quality
images are generated by compressing them with different
factors by the JPEG compression algorithm. In the next step
overlapping patches of size 48 × 48 are cropped from the low
and high quality images. The low quality patches are used as
inputs to the model while the original patches are used as the
ground truth examples. The following section describes the
proposed network architecture and the training of the model.

A. Network architecture

As mentioned earlier, the proposed network is a cascaded
structure primarily consisting of convolution, activation and
batch-normalization layers. The network architecture is illus-
trated in Fig. 1. It is a cascade of several inception and
convolution blocks, the convolution block being similar to
the one used in DnCNN. The convolution block consists
of a convolution layer (Conv) having a filter of dimension
3×3×Dinp, where Dinp will denote the depth of the input
feature maps or input image. The number of such filter tensors
in the convolution layer determines the depth of the output
feature map. Each coefficient in the filter tensor is randomly
initialized in order to get a decorrelated set of filters and

they are gradually adapted during the optimization process.
The convolutional layer usually performs a cross-correlation
operation between the filters and the input feature maps. This
layer is followed by the batch-normalization layer (BN) which
is given by

yi = γ

(
xi − µB√
σ2
B + ε

)
+ β, (1)

where xi and yi represent an input and output element of
the layer respectively, µB and σ2

B represent the mini-batch
mean and variance respectively, and γ and β represent two
learnable parameters. This layer initially normalizes the input
feature maps over a mini-batch in order to reduce the internal
covariance shift [22] between input feature maps from dif-
ferent layers. The layer is also parameterized by a scaling
factor and a shifting factor which are also adapted during the
optimization process. Batch-normalization makes the training
method more stable allowing higher learning rates and with a
proper initialization it helps the network converge faster. The
batch-normalization layer is followed by a rectified linear unit
(ReLU) which is given by

yi = max(0, xi), (2)

where xi and yi denote an input and output element of
the ReLU layer respectively. This activation layer makes the
output feature map sparse resulting in faster computation and
prevents the vanishing gradient problem which usually occurs
when exponential or quadratic activation functions with large
saturation regions are used instead.

The inception layer contains parallel convolution blocks
having different filter settings. As shown in Fig. 1 it contains
5 parallel convolutional blocks. The filters used in the convo-
lutional blocks have the same number of learnable coefficients
but have different dilation factors, resulting in dilated filters. A
dilated filter upsamples the filter by inserting zeros in between
the coefficients thus increasing the filter’s receptive field. The
dilated filters perform Atrous convolution which has been used
before in stationary or non-subsampled wavelet transforms
as an alternative to discrete wavelet transform, where the
passband features are downsampled instead. Therefore this
operation is an alternative for a downsampling operation of
features. Hence, the proposed network draws similarities with
the previously mentioned networks like CAS-CNN [19], and
MWCNN [20], which perform feature map downsampling. In
a compressed image there are certain regions or neighbor-
hoods where the information is very redundant and a small
filter kernel cannot extract and construct sufficiently good
features from such neighborhoods. Hence dilated filters help
in aggregating multi-scale context which benefits the final
reconstruction of the image. The first convolution block inside
the inception block uses a standard 3×3 filter in its convolution
layer and produces an output feature tensor with the same
depth Din as the input feature tensor. The other convolution
blocks use 3×3 filters with dilation factors of 1, 2, 4, and
6 respectively while the depth of the output feature maps
from those convolution blocks are Din

2 , Din

4 , Din

8 , and Din

8

48

48

48

48

2D

48

48

D

48

48
(without BN)

Inception
Block

(with BN)
Conv
Block

(without BN)
Conv
Block

Conv

Feature
Map

48

48

D

D

Conv + BN

Concat

2D
Conv + BN

Conv + BN

Conv + BN

Conv + BN

ReLU

Inception Block (with BN)

3x3xDxD, d0

2D

2D

Conv

D

ReLUBatch Norm (BN)

D
Conv Block (with BN)

+

Input Output

Network Architecture

3x3xDxD/2, d1

3x3xDxD/4, d2

3x3xDxD/8, d4

3x3xDxD/8, d6

3x3x2DxD

3x3xDx1

Inception
+

Conv
Blocks (with BN)

dn : Dilation with n zeros

Fig. 1: Architecture of the proposed CNN (Arch1) with inception blocks, containing filter-banks of different dilation factors,
and normal convolution blocks.

respectively. It is noteworthy to mention that, the dilation
factor, in this context, refers to the amount of zeros inserted
between two consecutive coefficients. Each convolution layer
is followed by a batch-normalization layer. The feature maps
from the parallel convolution blocks are concatenated to create
a feature tensor of depth 2×Din which is an input to the ReLU
layer.

Initially an image patch serves as the input to the first in-
ception block which does not contain any batch-normalization
layer and the generated feature maps are used as the input to a
convolution block, also without any batch-normalization layer.
This is followed by the cascaded inception-convolution block
pairs with batch-normalization, as described previously. After
the last convolution block layer there is only one convolution
layer which reconstructs a residual image patch. The input im-
age patch is added to this residual patch via a skip connection,
thus yielding a residual network. The predicted image patch
acts as an input to the loss layer where the error is calculated
with respect to the ground truth patch. Experiments have been
conducted with multiple inception-convolution block pairs as

long as improvements in test images could be quantitatively
and qualitatively observed.

B. Objective Function

The objective of the training process is to minimize the
mean squared error (MSE) between the high quality ground
truth patches and the estimated patches. The CNN is trained
iteratively to minimize the loss function in order to find an
optimal solution for the free or trainable parameters of the
convolutional and batch-normalization layers. The objective
function can be formulated as

θ∗ = argmin
θ

Ey,ŷ [L2(y, ŷ)] , (3)

where

ŷ = F (θ, x), (4)

L2(y, ŷ) =
1

N
||y − ŷ||22. (5)

In the above set of equations, θ∗ denotes the optimal
solution of the free or trainable parameters denoted by θ, and

Ey,ŷ[·] denotes the expected value of the cost function. F (θ, x)
denotes the CNN function parameterized by θ with x being
its input and ŷ being the predicted output. L2 denotes the
MSE function, and y denotes the ground truth. In addition
to the MSE function, a L2 regularization of the prediction is
also done with a very small influence factor. Apart from the
L2 loss, L1 loss and a combination of both losses are also
experimented without any noticeable improvement in the final
results.

C. Hyperparameter Setup and Experiments

The network is trained separately for compression ratios
of 10, 20, and 30 to generate three models. A batch of 128
image patches is used per iteration and the image patches
are flipped randomly during data augmentation. The network
parameters are initialized with the initialization given by
[23]. In order to update the weights, the adaptive momentum
(Adam) optimization [24] is used, with its default hyper-
parameter settings. An initial learning rate of 0.001 is selected
during training and the learning rate is divided by a factor of 10
every 20 epochs. Gradient clipping [25] is also done during
training for fast convergence and the absolute value of the
clipping threshold is set to 0.005. The networks are trained for
60 epochs, although it usually converges and becomes stable
after 40 epochs. It has been observed that a higher learning rate
usually results in a poorer performance compared to the used
learning rate. A weight decay of 0.0001 is used for parameter
regularization. Due to memory constraints, 2 sub-batches have
been used to process the overall batch of 128 examples per
iteration. The learning rate factor for the bias is lower than
the weight in the first and the last convolution layers and no
bias has been trained in the intermediate blocks.

Different network configurations are experimented with dur-
ing the work. The experiments are primarily done by varying
the network depth, i.e, the number of inception-convolution
block pairs with batch-normalization as well as the number
of filters in the convolution layers. Networks are built with
2, 4, and 8 pair of inception-convolution block pairs to study
the impact of the network depth on the CNN outcome. Their
performances on test datasets are shown in Table. I shows
the qualitative results on the benchmark dataset Classic5 and
LIVE1 [26] for different network depths of the CNN Arch1
as shown in Fig. 1. The tabulated values indicate an average
improvement of 0.06 dB when the number of inception and

TABLE I: Average PSNR (dB) and SSIM values for a quality
factor of 10 on the Classic5 and LIVE1 dataset tested with
CNNs (Arch1) of different depths.

Classic5 LIVE1
No. of inception and PSNR SSIM PSNR SSIM

conv block (with BN) pairs (dB) (dB)

2 29.46 0.805 29.28 0.814
4 29.53 0.808 29.33 0.816
8 29.56 0.809 29.35 0.817

10 20 30 40 50

28.6

28.8

29

29.2

29.4

Epoch

PS
N

R
(d

B
)

8 4 2

(a) Performance over Network (Arch1) Depth

10 20 30 40 50

28

28.5

29

Epoch
PS

N
R

(d
B

)

Arch1 Arch2

(b) Performance over Feature Depth

Fig. 2: Performance of the CNN on combined dataset of Clas-
sic5 and LIVE1 for (a) for 2, 4, and 8 inception-convolution
block pairs (with BN) for quality factor 10 and (b) for 8
inception-convolution block pairs (with BN) but with different
feature map depths, where Arch1 refers to the CNN with
depth 128 and Arch2 refers to the CNN with depth 64 after
each inception block.

convolution block pair increases from 2 to 4. Further extension
of the network shows a reduction in the average quantitative
improvement which may be attributed to the overfitting of
the network to insufficient augmentation of the small dataset.
Referring to Fig. 1, the depth of the output feature tensors
from the inception block is usually twice as large (2×D) as
the depth of the input feature tensor (D). We refer to this
network as Arch1.

Another similar network is also built where the output
feature map depth after the inception block remains the same
as the input feature map depth (D) and we refer to it as Arch2.
In this network the feature map depth in the hidden layers
remain the same. This is done by modifying the convolution
layers inside the inception blocks, where the number of filters
in each convolution layer is halved. The original and this
modified network are also evaluated and their performances
are compared. Fig. 2 shows the average network performance
per epoch, on test images from benchmark datasets Classic5
[5] and the LIVE1 [26] , in terms of peak-signal-to-noise ratio
or PSNR (dB), for the first 50 epochs. It can be noted from
the plots that PSNR rapidly increases in the first few epochs

TABLE II: Average PSNR (dB) / PSNR-B (dB) [30] / SSIM (rounded to 3 decimals) for quality factors 10, 20, and 30 on
Classic5 and LIVE1 datasets by different CNNs.

Dataset Quality JPEG ARCNN DnCNN CNN (Ours)

Classic5
10 27.82 / 25.21 / 0.760 29.03 / 28.76 / 0.793 29.40 / 29.14 / 0.803 29.59 / 29.21 / 0.810

20 30.12 / 27.50 / 0.834 31.15 / 30.60 / 0.852 31.63 / 31.20 / 0.861 31.83 / 31.38 / 0.865

30 31.48 / 28.94 / 0.867 32.51 / 31.99 / 0.881 32.91 / 32.39 / 0.886 33.12 / 32.48 / 0.890

LIVE1
10 27.77 / 25.36 / 0.773 28.98 / 28.74 / 0.810 29.20 / 28.96 / 0.813 29.39 / 29.06 / 0.819

20 30.07 / 27.61 / 0.851 31.29 / 30.85 / 0.873 31.59 / 31.16 / 0.880 31.81 / 31.36 / 0.885

30 31.41 / 28.97 / 0.899 32.68 / 32.26 / 0.904 32.98 / 32.46 / 0.909 33.20 / 32.64 / 0.913

and then vary slowly. It can also be seen in Fig. 2 (a), that
after 4 inception-convolution block pairs the improvement in
test performance is negligible and hence the PSNR curves
are very close to one another. Table I also shows a small
improvement from 4 inception-convolution block pairs to 8.
Fig. 2 (b) also shows a marginal improvement in performance
for Arch1 compared to Arch2. Experiments are also done
with different combination of dilation factors as well. The
choice of reducing the number of filters for higher dilation
factors is taken because larger number of filters led to higher
computational load without any significant improvement in
reconstruction quality. Dilation factors of more than 6 did not
lead to any further improvement.

III. EVALUATION

The proposed network is trained with a dataset originally
referred in [27] and used by DnCNN. It is a part of the
Berkley segmentation database [28] and contains 400 images
of size 180 px×180 px. The dataset is initially augmented and
multiple patches from these images are extracted with a certain
overlap in order to create the final training database. The low
quality compressed images are produced by the MATLAB
JPEG coder. The training is performed in the MatConvNet
[29] environment on a machine with Nvidia Titan Xp graphical
processing unit. The final network consists of 12 inception-
convolution block pairs, since no significant improvement
is observed in the performance with a deeper architecture.
For testing the performance of the network Classic5 and the
LIVE1 datasets are used. The Classic5 dataset contains a set
of 5 grayscale images widely used as benchmark images for
various computer vision and image processing applications.
LIVE1 dataset contains 29 color images, from which the
Y-channel is extracted to do the evaluation. For qualitative
evaluation, PSNR and the structural similarity index metric
(SSIM) is used. Along with these standard metrics a third
metric introduced in [30], called PSNR-B is also used for
evaluation. This objective metric introduces a factor which
is proportional to any kind of blocking artifacts within an
image and is more aligned towards subjective perception. For
image compression the standard Matlab JPEG codec is used
where different compression ratios are achieved by selecting
an image quality factor metric between 0 and 100. Here, a

quality factor of 0 indicates maximum compression and a
quality factor of 100 indicates no compression. As an example,
a quality factor of 10 yields nearly 94 % average compression
in terms of size or data saving, and a quality factor of 20
results in nearly 90 % average compression or data saving on
the LIVE1 dataset. In this work, experiments are performed
for quality factors of 10, 20, and 30 respectively.

The test results are compared with the basis DnCNN,
which is the primary objective of the proposed work, and
with ARCNN, which has the hourglass model of feature
depth transitions as in Arch1 described before. However, the
test results are close or comparable to some state-of-the-art
CNNs. It is also necessary to mention that the evaluation is
performed exactly as it is done by the basis DnCNN network.
This evaluation probably differs marginally in some networks
including the network in [19], based on their published results.
Table II summarizes the performance of our method for 3
quality factors and they indicate an improved performance
over DnCNN. Indeed, in Table. I it can be observed that the
shallowest network already performs better in terms of quan-
titative metrics when compared to the basis network and the
results gradually improve with increasing depth. The average
PSNR and average SSIM improves roughly by 1.7 dB and 0.05
respectively w.r.t JPEG , over the two benchmark datasets for
the quality factor (QF) of 10. For QF=20 and QF=30, the
corresponding improvements in PSNR are also about 1.7 dB,
and the improvements in SSIM are about 0.035 and 0.02
respectively. Similar improvements occur with PSNR-B metric
as well.

Some example images are selected from the test dataset and
the cropped sections of the images are shown in this section.
Fig. 3 shows the enhancement results for a quality factor of 10
on an example image from the Classic5 dataset. The image is
cropped and presented for a better visualization of the details.
It can be observed in the images that the reconstruction done
by DnCNN and ARCNN has block artifacts in certain areas of
high texture while the result from our CNN show that the same
regions are relatively smoother in comparison. It is seen that
our method is able to reconstruct the patterns on the scarf and
the pants better than the other methods and remove certain
artifacts. It can also be observed that the result of the deep
network (12 inception-convolution blocks) is relatively better

(a) Ground Truth (PSNR/SSIM) (b) JPEG (25.79/.762)

(c) DnCNN (27.59/0.816) (d) ARCNN (26.92/0.797)

(e) CNN (shallow) (27.73/0.826) (f) CNN (deep) (27.79/0.828)

Fig. 3: An example of an original image, the JPEG image,
and the enhancement results by different CNNs for a quality
factor of 10 (best viewed on a screen).

than the shallow network (4 inception-convolution blocks).
Similar improvements can also be observed in the example

from the LIVE1 dataset shown in Fig. 4, by our method
where the image is less blurry or sharper compared to the
other methods. It also gets rid of a few small artifacts which
are still present in the results of the other methods. It is
however noticeable that certain regions of the image are not
well reconstructed because of large blocks in the JPEG input
image having no information at all.

Fig. 5 shows the results for a quality factor of 10 on the
cropped section of another image from the LIVE1 dataset.
This is an example where the relative improvements are very
difficult to perceive in spite of the quantitative improvement.
The image has many patterns on windows and edges, some
of which are smoothly constructed by our method as well
as DnCNN. However, there is a marginal improvement in
sharpness compared to the DnCNN output. It can be observed
further, that many such patterns on the reconstructed images
do not resemble the ones in the original image. Fig. 6 shows
a comparison between the reconstructed images for quality
factors (QF) 10, 20, and 30. From the example images across

(a) Ground Truth (PSNR/SSIM) (b) JPEG (30.49/.769)

(c) DnCNN (31.79/0.811) (d) ARCNN (31.70/0.808)

(e) CNN (shallow) (31.99/0.814) (f) CNN (deep) (32.07/0.817)

Fig. 4: An example of an original image, the JPEG image,
and the enhancement results by different CNNs for a quality
factor of 10 (best viewed on a screen).

the datasets one can conclude that the network is able to
produce visually better results with the additional parallel
convolution blocks with different dilation factors and the
objective measures support the inference. The enhancement
results usually appear comparatively sharp and detailed for
factors of 20 and 30, while some artifacts still remain in the
images for a quality factor of 10. It has also been observed
during the work that deblocking and enhancement perfor-
mance improve in terms of visual quality and artifacts, if the
network depth is increased but the blurriness does not improve
sufficiently. The small dataset used by the basis network is a
limitation towards increasing network depth or width, while
use of the MSE loss can also prevent the improvement of
blurring effect.

(a) Ground Truth (PSNR/SSIM) (b) JPEG (25.08/.763)

(c) DnCNN (26.75/0.807) (d) CNN (deep) (26.99/0.817)

Fig. 5: An example of an original image, the JPEG image,
and the enhancement results by different CNNs for a quality
factor of 10 (best viewed on a screen).

IV. SUMMARY AND CONCLUSION

In this work we propose a convolutional neural network
containing inception blocks with the goal of reducing JPEG
compression artifacts. The network is a cascaded structure
containing an inception block having multiple parallel con-
volution and batch-normalization layers, and a convolution
block, similar to the one used in the DnCNN architecture.
Each convolution layer inside the inception block contains
dilated filters with various dilation factors generating feature
maps of varying depths. The dilated filters increase their
receptive fields by different amount and aggregates multi-
scale features. Additionally, experiments are conducted with
different network depths and number of filter tensors to study
their influence on the overall reconstruction quality. Evaluation
of the proposed network on the benchmark datasets exhibit an
improvement in artifact suppression and reconstruction quality
in comparison to the basis DnCNN network. The performance
also improves with increasing network depth and number of
filters. The small dataset and the redundancy introduced by
the augmentation methods seem to limit performance of the
proposed network. Therefore, a larger dataset can be used in
order to improve network training. The quadratic loss function
used for such kind of problems usually results in a smooth
output image and suppressed high frequency content. Hence,
additional regularizers for edge enhancement or edge focused
objective functions can be used for improving the qualitative
results. The CNN architecture can be extended by introducing
short and long skip connections in between different mod-
ules, since densely connected networks have shown improved

(a) Ground Truth (PSNR/SSIM) (b) CNN (QF10) (28.48/.853)

(c) CNN (QF20) (31.08/0.907) (d) CNN (QF30) (32.58/0.930)

Fig. 6: An example of an original image and the enhancement
results by our CNN for quality factors (QF) 10, 20, and 30
(best viewed on a screen).

performances in multiple regression based computer vision
tasks. In addition to the previous modifications, the number of
inception blocks can also be reduced by replacing them with a
deeper inception block yielding an alternative architecture for
the same task or adding attention modules inside the inception
blocks. Finally, other low level computer vision tasks like
impulsive or salt-and-pepper noise reduction and deblurring
or super-resolution can be addressed by the network since
multi-scale feature aggregation can improve the performance
of those applications as well.

REFERENCES

[1] H. Reeve and J. Lim, “Reduction of blocking effect in image coding,”
ICASSP ’83. IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vol.8, pp. 1212–1215, April 1983.

[2] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 614–619, July 2003.

[3] J. Wang, J. Kim, and J. Jeong, “An new deblocking algorithm for DCT
coded images using adaptive spatial filters,” 2009 IEEE International
Conference on Network Infrastructure and Digital Content, pp. 813–
818, November 2009.

[4] K. Daehee, and H. Yo-Sung, “A Method for Blocking Effect Reduction
Based on Optimal Filtering,” Advances in Multimedia Information
Processing - PCM 2004, Springer Berlin Heidelberg, pp. 135–142, 2005.

[5] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise Shape-Adaptive
DCT for High-Quality Denoising and Deblocking of Grayscale and
Color Images,” IEEE Transactions on Image Processing, vol. 16, no.
5, pp. 1395–1411, May 2007.

[6] N. I. Cho, “Reduction of blocking artifacts by cepstral filtering,” Signal
Processing, vol. 81, pp. 633–642, 2001.

[7] A. W-Liew and H. Yan, “Blocking artifacts suppression in block-coded
images using overcomplete wavelet representation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 14, no. 4, pp. 450–
461, April 2004.

[8] Y. Chiou, C. Yeh, L. Kang, C. Lin, and S. Fan-Jiang, “Efficient
image/video deblocking via sparse representation,” 2012 Visual Com-
munications and Image Processing, pp. 1-6, November 2012.

[9] H. Chang, M. K. Ng, and T. Zeng, “Reducing Artifacts in JPEG
Decompression Via a Learned Dictionary,” IEEE Transactions on Signal
Processing, vol. 62, no. 3, pp. 718-728, February 2014.

[10] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: residual learning of deep CNN for image denoising,” in IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, July
2017.

[11] X. Mao, C. Shen, and Y.-B. Yang, “Image Restoration Using Very
Deep Convolutional Encoder-Decoder Networks with Symmetric Skip
Connections,” Advances in Neural Information Processing Systems 29,
Curran Associates, Inc., pp. 2802–2810, 2016.

[12] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-Local Recur-
rent Network for Image Restoration,” Advances in Neural Information
Processing Systems 31, Curran Associates, Inc. pp. 1673–1682, June
2018.

[13] J. Kim, J. K. Lee and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 1646-1654,
2016.

[14] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
Honolulu, HI, pp. 1132-1140, 2017.

[15] Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A Persistent Memory
Network for Image Restoration,” 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 4549–4557, 2017.

[16] P. Bhattacharya, J. Riechen, and U. Zölzer, “Infrared Image Enhance-
ment in Maritime Environment with Convolutional Neural Networks,”
Proceedings of the 13th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (VIS-
APP), SciTePress, vol. 4, pp. 37-46, 2018.

[17] Y. W. K. Zoetgnande, J. Dillenseger, and J. Alirezaie, “Edge focused
super-resolution of thermal images,” 2019 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, July 2019.

[18] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression Artifacts
Reduction by a Deep Convolutional Network,” 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 576-584, December 2015.

[19] L. Cavigelli, P. Hager, and L. Benini, “CAS-CNN: A deep convolutional
neural network for image compression artifact suppression,” 2017 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 752-759 ,
May 2017.

[20] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level Wavelet-
CNN for Image Restoration,” 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 886-895, June
2018.

[21] C. Szegedy et al., “Going deeper with convolutions,” 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1–9, June 2015.

[22] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Proceedings
of the 32nd International Conference on International Conference on
Machine Learning, Lille, France, vol. 37, pp. 448-456, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” 2015
IEEE International Conference on Computer Vision (ICCV), pp. 1026-
1034, December 2015.

[24] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
CoRR, 2014.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” Proceedings of the 30th International Con-
ference on Machine Learning, Atlanta, USA, vol. 28, pp. 1310–1318,
2013.

[26] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik,
“LIVE image quality assessment database release 2,” ,
http://live.ece.utexas.edu/research/quality, 2005.

[27] Y. Chen and T. Pock, “Trainable Nonlinear Reaction Diffusion: A
Flexible Framework for Fast and Effective Image Restoration,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
6, pp. 1256–1272, June 2017.

[28] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th International
Conference of Computer Vision, vol. 2, pp. 416–423, July 2001.

[29] A. Vedaldi and K. Lenc, “MatConvNet –convolutional neural networks
for MATLAB,” Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[30] C. Yim and A. C. Bovik, “Quality Assessment of Deblocked Images,”
IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 88–98,
January 2011.

