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Abstract—Exercise adherence is a key component of digital
behaviour change interventions for the self-management of mus-
culoskeletal pain. Automated monitoring of exercise adherence
requires sensors that can capture patients performing exercises
and Machine Learning (ML) algorithms that can recognise
exercises. In contrast to ambulatory activities that are recognis-
able with a wrist accelerometer data; exercises require multiple
sensor modalities because of the complexity of movements and
the settings involved. Exercise Recognition (ExR) pose many
challenges to ML researchers due to the heterogeneity of the
sensor modalities (e.g. image/video streams, wearables, pressure
mats). We recently published MEx, a benchmark dataset for
ExR, to promote the study of new and transferable HAR
methods to improve ExR and benchmarked the state-of-the-
art ML algorithms on 4 modalities. The results highlighted the
need for fusion methods that unite the individual strengths of
modalities. In this paper, we explore fusion methods with a focus
on attention and propose a novel multi-modal hybrid attention
fusion architecture mHAF for ExR. We achieve the best per-
formance of 96.24% (F1-measure) with a modality combination
of a pressure mat, a depth camera and an accelerometer on
the thigh. mHAF significantly outperforms multiple baselines
and the contribution of architecture components are verified
with an ablation study. The benefits of attention fusion are
clearly demonstrated by visualising attention weights; showing
how mHAF learns feature importance and modality combinations
suited for different exercise classes. We highlight the importance
of improving deployability and minimising obtrusiveness by
exploring the best performing 2 and 3 modality combinations.

Index Terms—Attention, Heterogeneous Multi-Modal Fusion,
Exercise Recognition

I. INTRODUCTION

Currently, adherence monitoring in digital behaviour change
interventions for the self-management of musculoskeletal con-
ditions rely on self-reported exercises which often leads to
incorrect or inconsistent reporting. As a result, reasoning
algorithms that rely on self-reported exercises for recom-
mending interventions become ineffective causing the users
to lose trust. Automated Exercise Recognition (ExR) and
performance assessment with sensors have been a research
challenge dedicated to addressing this issue.

ExR and Exercise Performance Assessment are the main
functional requirements that are needed to automate self-
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reporting. Activity recognition through sensor data or Human
Activity Recognition (HAR) is a well-established area in Ar-
tificial Intelligence and Machine Learning (ML) research [1],
[2]. ExR is viewed as a sub-domain, which involves the
interpretation of sensor data like in HAR but must also
consider multi-modal sensors. Nevertheless, the advancements
in HAR are yet to be realised for ExR. Looking at recent
literature we recognise ExR is mostly attempted with early ML
algorithms that use manual feature extraction methods [3]–[5].

The proprietary nature of applications with bespoke sensor
setups, data and algorithms are seen as the main barrier to
furthering research and development in ExR. We recently
published the Multi-modal Sensor Exercise Dataset MEx 1

addressing these challenges. Our previous work [6] presented
MEx as a dataset for bench-marking ExR algorithms and
HAR algorithms in general, evaluating each modality for
the ExR task. Not surprisingly single modality based models
were found to be inadequate for ExR, given the complexity
of movements in exercises. Accordingly in this paper we
explore Fusion [7] and Attention [8] algorithms to reason with
heterogeneous multi-modal sensors for ExR.

We are keen on advancing research in ExR by introducing
novel algorithms while highlighting the need for developing
ExR systems that are unobtrusive and easy to deploy in the
real-world. In addition, the limitations of obtaining training
data for ExR calls for algorithms that use minimal sensor con-
figurations and only require a comparatively smaller amount
of training data (i.e. less train-able parameters). To this end,
we propose a novel hybrid attention fusion architecture mHAF
for ExR.
We summarise the key contributions made in this paper below:

• We propose a novel hybrid attention fusion architecture
mHAF for heterogeneous multi-modal sensor fusion in
the ExR task, benched-marked with the MEx Dataset;

• We verify the contribution of architecture components
with an ablation study and visualise the capacity of
the architecture to learn feature importance and modal-
ity combinations that are optimal for different exercise
classes; and,

1 [6], Publicly available at https://archive.ics.uci.edu/ml/datasets/MEx
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• We identify the best 2, 3 and 4 modality combinations to
cater to user preferences and unobtrusive deployment in
a digital behaviour change intervention.

Rest of the paper is organised as follows. In Section II we
present the recent research in ExR. In Section III we formalise
the problem of ExR with heterogeneous multi-modal sensors
and in Section IV we present our novel hybrid attention fusion
architecture mHAF. Section V presents the evaluation method-
ology and the results. Our conclusions appear in Section VI
with plans for future work.

II. RELATED WORK

Research in Exercise Recognition (ExR) spans a number
of application areas such as callisthenics, weight exercises,
yoga and sports. Inertial Measurement Units (IMUs) are the
most widely used data stream in literature [9]–[12], but some
have explored sensors such as Pressure mats [4], [13], Channel
State Information [3] and Electrocardiograms [5]. ExR is often
viewed as the classification of many discrete labels given
sensor data streams. Often these recognition algorithms use a
manual feature extraction pipeline followed by a classification
algorithm such as k-NN [3], [13], Random Forest [9], Decision
Trees [4] or HMM [5].

While Deep Learning methods (CNN and LSTM) are the
state-of-the-art in Human Activity Recognition (HAR) [14],
[15], literature suggests that they are rarely considered with
ExR [6], [10]. For instance, authors of [10] use a recurrent
architecture to recognise shoulder rehabilitation exercises with
wrist-worn IMU data streams and achieve 88.9% accuracy;
their dataset is not publicly available and their methods cannot
be transferred to other exercise domains due to lack of sensors
that capture movements from other body parts except the
wrist. In contrast, the public available dataset MEx [6] recently
reported single sensor performance on physiotherapy exercise
recognition using four sensors; two accelerometers placed on
the wrist and the thigh, a pressure mat and a depth camera
achieving F1-measure 63.35%, 90.15%, 74.08% and 87.20%
respectively. These results highlight that a single sensor is
inadequate to recognise a wide range of exercises with high
precision. Accordingly, we recognise the need for multi-modal
learning strategies to achieve higher performance in recogni-
tion tasks. This calls for fusion architectures and methods such
as attention [8], to combine heterogeneous multi-modal sensor
data.

Fusion algorithms are explored at different feature represen-
tation levels, mainly Early, Mid and Late levels. Early-fusion is
the concatenation of raw features and learning a shared feature
representation for all modalities. [15]. With mid-fusion and
late-fusion, each modality learns a feature representation indi-
vidually and are later concatenated; mid-fusion additionally
learns a shared feature representation. While homogeneous
sensor modalities find shared feature representations learned
in early and mid-fusion advantages, we argue that it can be
detrimental for the fusion of heterogeneous sensor modalities.

Fig. 1. 7 exercises in the MEx dataset

III. PROBLEM DEFINITION

We formalise the problem of heterogeneous multi-modal
sensor fusion for Exercise Recognition (ExR) with the MEx
dataset here. The sensor-rich dataset Mex [6] contains 7
exercises that have been selected by a physiotherapist for the
self-management of chronic musculoskeletal pain (Figure 1).
MEx contains data recorded with 4 sensor modalities, from 30
participants, and each participant performed all 7 exercises,
each one for the duration of 60 seconds (maximum). It is
noteworthy that this dataset is smaller in comparison to other
deep learning datasets in computer vision, text or HAR. Table I
summaries the data type of each sensor modality.

TABLE I
SENSOR MODALITIES

Modality Frequency Raw features(m)

Depth Camara(DC) 15Hz 240× 320

Thigh Accelerometer(ACT) 100Hz (x, y, z)

Wrist Accelerometer(ACW) 100Hz (x, y, z)

Pressure Mat(PM) 15Hz 16× 32

We assume, there exists a modality combination S of k
modalities and a deep neural network θ that is optimised to
recognise exercises in a multi-modal setting. Let M represent
the time-series data from a sensor modality where each time-
stamp is associated with the set of raw features m.

S = {M1,M2, ...,Mk} (1)

Mi = [m1,m2, ...,mt, ...] (2)

The classifier θ predicts the exercise class when the input is
the set of modalities S within the window of n timestamps.

y = θ(S[t,t+n]) (3)

Selecting the θ architecture involve three main design as-
pects: firstly, how to represent individual sensor modalities;
secondly, when to aggregate multiple modalities and create
shared representations and; lastly, how to attend to features
of such representations using an attention mechanism. Fur-
thermore, as with any Deep Learning architecture, the amount
of train-able parameters in θ is constrained by the amount
of training data available to avoid under-fitting. In the next



Fig. 2. Exercise recognition with heterogeneous multi-modal sensors

section, we detail our approach to achieving heterogeneous
multi-modal sensor fusion for ExR while considering above
design aspects and constrains.

IV. METHODS

The proposed Exercise Recognition (ExR) system is shown
in Figure 2. There are two sensor modalities installed in the
environment, a pressure mat (PM) and a depth camera (DC);
and two further on-body sensor modalities, accelerometer
sensors located on the wrist (ACW) and the thigh (ACT).
All sensor modalities continuously emit data streams that are
synchronised using timestamps. The objective of the Multi-
modal Hybrid Attention Fusion (mHAF) architecture is to
predict the exercise class using a modality fusion strategy
applied to the pre-processed data streams.

A. Data Pre-processing

We apply the sliding window method with 5 second time
window and 2 second stride (3 seconds of overlap) to all
modality data streams to create data instances. This allows
the system to make a prediction (i.e. exercise class) every
2 seconds in real-time. The following modality specific pre-
processing decisions were made in-line with previous studies
in the literature.
• DC: Reduce the frame rate to 1 frame/second, and reduce

the frame size to 12× 16.
• ACW and ACT: Segment the data stream to 1 second

windows(100 timestamps) and apply Discrete Cosine
Transformation (DCT) on each axis, Select the most
significant 60 DCT coefficients and concatenate all axes
to obtain the feature representation of length 180.

• PM: Reduce the frame rate to 1 frame/second, and reduce
the frame size to 16× 16.

Specifically, the hyper-parameters values for window, overlap,
frame rate and frame size are adapted from the comparative
study published in [6]. The DCT feature transformation is
adapted from literature where it has been shown to signifi-
cantly outperform when using raw features and other feature
transformation methods [6], [16].

B. mHAF Architecture

The mHAF architecture in Figure 3 has three main com-
ponents; Modality specific feature representations, Hybrid
Attention Fusion and Classification. Firstly, the individual
modalities learn independent feature representations with the
most optimal feature representation method identified for each
respective modality. Next, the Hybrid Attention Fusion (HAF)
module learns a shared feature representation by exploiting
two attention approaches, Hard Attention and Soft Attention.
Lastly a softmax layer predicts the exercise class label. mHAF
architecture is trained end to end using the cross-entropy
loss which is minimised towards correctly predicting exercise
classes. Importantly, we want to minimise the number of train-
able parameters in the architecture to encourage convergence
during model training given a relatively small set of training
data.

1) Modality Specific Feature Representations: The hetero-
geneity of sensor modalities calls for feature representations
that are modality specific instead of modality agnostic [6]. Ac-
cordingly, we refer to the benchmark performances published
by the authors of [6] where multiple feature representations
and classifiers are compared for ExR with individual modal-
ities of the MEx dataset. The best performing architecture
with each modality from that study is listed in Table II.
Accordingly, in this paper, we will take forward the 1D-CNN-
LSTM model for DC, ACT and ACW modalities and the 2D-
CNN model for the PM modality. Architecture details of the
two models are presented in Table III.

TABLE II
BEST PERFORMING ARCHITECTURES FOR MODALITIES IN MEX

Sensor F1-measure(%) Architecture

DC 87.20 2D-CNN

ACT 90.15 1D-CNN-LSTM

ACW 63.35 1D-CNN-LSTM

PM 74.08 1D-CNN-LSTM



Fig. 3. mHAF architecture for exercise recognition

TABLE III
ARCHITECTURAL DETAILS FOR 2D-CNN AND 1D-CNN-LSTM, td:TIMEDISTRIBUTEDLAYER, conv(k)n:CONVOLUTIONALLAYER WITH n KERNELS

OF KERNEL SIZE k, maxpool(k):MAXPOOLINGLAYER WITH POOL SIZE k, dense(k):DENSELAYER WITH k UNITS, bn:BATCHNORMALISATION

Model Architecture

2D-CNN conv(3× 3)32→ maxpool(2× 2)→ bn→ conv(3× 3)64→ maxpool(2× 2)→ bn→ flatten

→ dense(1200)→ bn→ dense(600)→ bn→ dense(100)→ bn

1D-CNN-LSTM td− conv(5)32→ maxpool(2)→ bn→ td− conv(5)64→ maxpool(2)→ bn→ td− flatten

→ lstm(1200)→ bn→ dense(600)→ bn→ dense(100)→ bn

2) Fusion: We adapt a late-fusion methodology where
we first learn the modality specific feature representations
(θ1, θ2, ..., θk) for individual modalities. Then the output fea-
ture vectors oi (each of size 100 as in Table III) are concate-
nated to form the fusion feature representation z, where xi is
the pre-processed modality input as discussed in Section IV-A.
It is also noteworthy that late-fusion does not introduce any
additional parametric components when compared to mid-
fusion.

oi = θi(xi)

z = concat(o1, o2, ..., ok)
(4)

3) Hybrid Attention Fusion Module: Attention [8] learns
the significance of features for classification during model
training. This is particularly beneficial for achieving compara-
ble performance with a shallow parametric model trained on
a smaller dataset, that otherwise may only have been achieved
using a very deep architecture trained on a larger training
dataset for a longer time. In general an attention module
learns attention weights wa in relation to a feature vector z,
where each attention weight wi

a indicates the importance of
it’s respective feature zi. wa is learnt using a parametric model
θa such that |wa| = |z| and the weights are normalised using
the function norm. The output of the attention module is the
weighted feature representation of z, z′ (Equation 5).

z = concat(o1, o2, ..., ok)

score = θa(z)

wa = norm(score)

z′ = wa × z

(5)

The goals for introducing an attention module for ExR
is two-fold: firstly, to boost multiple features from modali-
ties that together contribute towards classification accuracy;
and secondly, to acutely discriminate between features from
modalities that are noisy from others that are important for the
classification task.

To achieve the former, we introduce a Soft Attention (SA)
module. SA uses the sigmoid function as the norm where
was are less skewed, resulting in a normally weighted feature
representation (Equation 6).

scores = θas(z)

wi
as =

1

1 + exp(−scoreis)
z′s = was × z

(6)

To achieve the latter, we introduce a Hard Attention (HA)
module. HA uses the softmax function as the norm where
the wah are skewed to attend to only one or few features in z
(Equation 7).



scoreh = θah(z)

wi
ah =

exp(scoreih)∑
j exp(score

j
h))

z′h = wah × z

(7)

The HAF module is the concatenation of the two attention
modules, HA and SA (Equation 8), where z′h and z′s are the
outputs from the HA and the SA modules respectively.

z′ = concat(z′h, z
′
s) (8)

We implement the attention at feature granularity level,
where each feature is assigned a weight regardless of the
modality. This is in contrast to modality level where the
attention weights highlight all the features from one modality
and discard all features from other modalities. The reasoning
behind selecting feature level granularity is two-fold; firstly
all features from a single modality are not equally important
for ExR; and secondly, more than one sensor modality will
contribute features towards improved classification.

A single dense layer parametric model with a non-linear
activation is used as the θa (Equation 9) in the implementation
of both HA and SA modules.

score = tanh(wT z + b) (9)

where, w and b are train-able parameters and w ∈ R|z|×|z|
and b ∈ R1×|z| such that |score| = |z|. We select these hyper-
parameters after an exploratory study where we compared
models with increasing number of train-able parameters (i.e.
hidden layers and nodes). θas for SA and θah for HA are the
only parametric component in the mHAF architecture apart
from the modality specific feature representations.

4) Classification: The concatenated output of the HAF
module z′ is further connected to a dense layer with softmax
activation for exercise class prediction.

y = argmax
e∈E

(softmax(wT
c z
′ + bc)) (10)

where, E is the set of exercise classes, wc ∈ R|z′|×|E| and
bc ∈ R1×|E|.

V. PERFORMANCE EVALUATION

Our evaluation of the Exercise Recognition system is three-
fold;

• evaluate mHAF with heterogeneous multi-modal sensors
against multiple baselines and variants of mHAF derived
through model ablation;

• compare different sensor modality combinations to iden-
tify the best performing minimal combinations; and,

• evaluate HAF module’s capabilities to learn feature im-
portance and modality combinations for different exercise
classes by visualising attention weights.

A. Evaluation Methodology

We evaluate mHAF algorithm using Leave-One-Person-
Out (LOPO) methodology. With the MEx dataset, LOPO
creates 30 folds; each fold is trained with 29 user data
and tested with the data from one user. This methodology
emulates a real-life deployment setting where end-user data
is not available during training. For a given experiment, on
average, the training set has 6032 instances and the test set
has 208 instances. The experiments are implemented using
TensorFlow and Keras libraries. The models are optimised
using following parameters; loss is cross-entropy, optimiser
is Adadelta, learning rate is 1.0, batch size is 32 and the
number of epochs is 30. We use batch normalisation as the
regularisation method of the models.

Macro F1-measure is the selected performance measure
for the experiments as it provides a better representation of
precision and recall compared to accuracy. F1-measure is first
calculated for each label i, and their non-weighted mean is
calculated (Equation 11). For a given experiment, we present
the mean F1-measure averaged over 30 LOPO folds. Weighted
F1-measure is not required in these experiment as the dataset
is class balanced. LOPO evaluation methodology calls for
non-parametric statistical significance test due to not-normally
distributed results. We use the Wilcoxon signed-rank test for
paired samples to evaluate the statistical significance at 95%
confidence.

F1 =
∑
i

2× precisioni × recalli
precisioni + recalli

(11)

B. Comparative Study

We compare mHAF with following baselines.

1) Early Fusion: Raw features from each sensor modality
is flattened, concatenated and a shared feature represen-
tation is learned.

2) Mid Fusion: Modality specific feature representations
are followed by a shared feature representation.

3) mHAF-midHAF: mHAF + a shared feature represen-
tation (2 Dense Layers) between HAF module and the
classification layer.

4) mHAF-noHAF: mHAF without the HAF module.
Modality specific feature representations are concate-
nated for classification.

5) mHAF-noSA: mHAF without the SA module in HAF,
only the HA module

6) mHAF-noHA: mHAF without the HA module in HAF,
only the SA module

The first three baselines evaluate the significance of Modality
specific feature representations and the last three baselines
evaluate the significance of attention modules in the mHAF
architecture (see Figure 3). Therefore this evaluation also act
as an ablation study. We re-purpose the models in Table III as
the modality specific and shared feature representations for the
baselines 1, 2 and 3 by adjusting the layer sizes accordingly.



We do not find appropriate baselines in literature given the
heterogeneity of sensor modalities.

TABLE IV
COMPARATIVE EVALUATION OF MHAF

Algorithm F1-measure(%)

Early Fusion 89.92

Mid Fusion 93.59

mHAF-midHAF 93.89

mHAF-noHAF 94.65

mHAF-noSA 95.25

mHAF-noHA 94.25

mHAF 95.84

Table IV presents the results of the comparative study.
mHAF outperforms the three baselines with shared feature
representations with statistical significance. This confirms our
argument towards using late fusion over early or mid fusion
where multiple modalities learn a shared feature representation
that is degrading for heterogeneous modalities. In addition,
mHAF also outperforms its variants, mHAF-noHAF, mHAF-
noHA and mHAF-noSA verifying the significance of the HAF
module as a whole and the significance of individual modules
HA and SA.

C. Comparison of Sensor Modality Combinations

The objective of this evaluation is to identify the best
performing minimal modality combinations to cater for user
preferences. Using all four modalities can be obtrusive, eco-
nomically infeasible and discouraging to some users. Accord-
ingly, we aim to identify the best 2 modality and 3 modal-
ity combinations in addition to the 4 modality combination
suitable for deployment. We create 10 datasets and their
respective mHAF architectures by combining 2 modalities (6
combinations) and 3 modalities (4 combinations). We follow
the same evaluation methodology and present the F1-measure
for each mHAF architecture.

Table V presents the results for the comparison of modality
combinations. The 3 modality combination ACT, PM and DC
(highlighted in bold text) outperform the 4 modality combi-
nation with statistical significance. We refer to Table II which
indicates that removing the least performing modality helps
to enhance model performance. Closer examination suggests
that sensors that are more prone to noise such as the on-body
wrist accelerometer, is detrimental for fusion.

We further compare the performance between different
modality combinations at exercise class level by visualising
the confusion matrices in Figure 4. The confusion matrices are
averaged over all 30 folds and normalised. Here we observe the
significant difference between the 4 modality mHAF model the
and 3 modality mHAF model can be explained by examining
the performance of exercise class 6. For instance, exercise
class 6 and 7 have the exact same hand movements but
differ in their thigh movements, thus including ACW in the 4
modality setting has adversely contributed to overall fusion

performance. In contrast, including the DC data in the 3
modality mHAF model has significantly improved recognition
of exercises classes 2, 3 and 6 in comparison to the 2 modality
mHAF model.

It can be argued that these modality selections can be
learnt by a deep architecture. Such deep architecture needs to
be “very deep” and have many train-able parameters, which
would typically require a large training dataset. As stated in
Section I, our goal in this exploratory study is to mitigate
this demand on data, and instead maintain the minimalism of
mHAF with a manageable collection of data.

We further extend the comparative study from Section V-B
for the two best 2 and 3 modality combinations to evaluate
mHAF architecture on different modality combinations. The
results are presented in Table VI. The results further validate
the mHAF architecture for the task of ExR with heteroge-
neous multi-modal sensors by significantly outperforming all
baselines.

D. Learning Feature Importance with Attention

The aim of this evaluation was to observe the capability of
the HAF module to learn the feature importance and modality
combinations for effective fusion. To this end, we visualise
the attention weights learned by the HA and SA modules
in the best performing 3 modality mHAF architecture (best
overall) in Figure 5. Each row is an exercise class and the
weights are grouped, sorted and stacked per modality for clear
visualisation. HA weights are on the left and SA weights are
on the right in which a darker colour indicates a higher weight.

It is evident that HA has learned skewed weights to highlight
only a few features, whilst SA has learned a more normally
distributed set of weights. While some exercises classes learn
a combination of all sensor modalities for recognition, there
exist others that learn to choose a subset of sensor modalities.
For instance, exercise 6 has no thigh movement and DC does
not capture the hand movements (see Fig 1). Accordingly.
exercise 6 relies mostly on PM for recognition. Similarly,
exercise 7 includes thigh movement and is captured by the
DC which increased the significance of the ACT and DC
features compared to exercise 6. Exercise 3, is the Pelvic
tilt which is hardly recognisable from the DC and attention
weights have learnt that DC should contribute minimally to-
wards the recognition task in that situation. In summary, these
observations demonstrate the need for maintaining alternative
forms of attention within the fusion architecture.

We also visualised two randomly sampled test instances and
observe the weights of the features learned by the two modules
HA and SA in Figure 6. These visualisations are obtained with
a fixed ordering of the feature set, in order to visualise feature
area of comparable weight assignments by both SA and HA (as
indicated with a dotted box). Here we can observe that SA and
HA consistently learning to attribute the highest importance
to the same features for the recognition task. Furthermore,
there are additional features identified by SA, thus providing
more opportunity for highly accurate modalities like ACT to
contribute to the recognition task. Overall, the compatibility



TABLE V
COMPARISON OF MODALITY COMBINATIONS

ACT and PM ACT and DC ACW and PM ACW and DC PM and DC ACT and ACW

F1-measure(%) 93.54 92.76 84.66 91.25 90.41 86.88

ACT, ACW ACT, ACW ACW, DC ACT, DC ACT, ACW

and PM and DC and PM and PM DC and PM

F1-measure(%) 94.85 94.21 91.47 96.24 95.84

Fig. 4. Confusion matrices for mHAF with the best 2, 3 and 4 modality combinations

TABLE VI
COMPARATIVE EVALUATIONS OF MHAF WITH THE BEST 2 AND 3

MODALITY COMBINATIONS

Algorithm
F1-measure(%)

ACT and PM ACT, PM and DC

Early Fusion 85.33 92.24

Mid Fusion 89.53 92.63

mHAF-midHAF 88.27 93.65

mHAF-noHAF 90.57 93.78

mHAF-noSA 90.75 94.95

mHAF-noHA 90.36 93.45

mHAF 93.54 96.24

between the interpretation of attention weights and the domain
knowledge verify that the mHAF architecture is learning to
intelligently reason with heterogeneous multi-modal sensors
for the ExR task.

VI. CONCLUSION

Exercise Recognition (ExR) is an essential component of
automating digital interventions to effectively provide sup-
port and guidance. Towards achieving automated ExR we
presented a novel hybrid attention fusion algorithm mHAF
that performs ExR by integrating heterogeneous multi-modal
sensors. Our algorithm significantly outperforms several base-
lines and effectively learn to attend to features and learn
modality combinations suited to recognise different exercises.
In addition, an exploratory study discovered 2, 3 and 4
modality combinations suited for deployment, satisfying user

Fig. 5. Visualisation of attention weights

preferences and minimising obtrusiveness. In future, with the
MEx dataset and fusion algorithms, we will further explore
performance assessment of exercises to assist patients with
adherence and provide guidance towards correct exercise exe-
cution. This work is contributing towards the implementation
of an automated exercise recognition and quality assessment
digital behaviour change intervention for self-management of
musculoskeletal conditions.
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