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Abstract—Despite all the progress made in biomedical field,
the Electrocardiogram (ECG) is still one of the most commonly
used signal in medical examinations. Over the years, the problem
of ECG classification has been approached in many different
ways, most of which rely on the extraction of features from the
signal in the form of temporal or morphological characteristics.
Although feature engineering can led to adequately good results,
it mostly relies on human ability and experience in selecting
the correct feature set. In the last decade, a growing class of
techniques based on Convolutional Neural Network (CNN) has
been proposed in opposition to feature engineering. The efficiency
and accuracy of CNN-based approaches is indisputable, however
their ability in extracting and using temporal features from raw
signal is poorly understood. The main objective of this work was
to uncover the differences and the relationships between CNN
feature maps and human-curated temporal features, towards a
deeper understanding of neural-based approaches for ECG. In
fact, the proposed study succeeded in finding a similarity between
the output stage of the first layers of a deep 1D-CNN with
several temporal features, demonstrating that not only that the
engineered features effectively works in ECG classification tasks,
but also that CNN can improve those features by elaborating
them towards an higher level of abstraction.

Index Terms—1-D CNN, cross-correlation, deep learning, ECG
classification, MLP, temporal feature analysis

I. INTRODUCTION

With the advancement in technology in the last decade,
the widespread of Internet-Of-Things (IOT) and wearable
devices has been constantly increasing. The ubiquity of this
kind of devices make them particularly useful for medical
purposes, especially for monitoring and prevention. However,
the tremendous amount of medical data that a wearable can
produce has no use unless is analyzed by a physician. There is
still the necessity of an automated system capable of analyzing
this data.

Fig. 1. Example of an healthy ECG [1].

Despite all the progress made in biomedical field, the
Electrocardiogram (ECG) is still one of the most commonly
used signal in medical examinations. The ECG signal is an
electrical signal resulting from the various phases of the heart’s
muscular activation. Fig. 1 reports an healthy ECG, which
presents a single heartbeat with its four important segments (P,
QRS, T, U), each correlated to one of the four principal stages
of activity of a cardiac cycle: isovolumic relaxation, inflow,
isovolumic contraction, ejection. Significant deviation from the
rhythmic repetition of this patterns are called arrhythmia and
are important because they are an indication of an abnormal
heart activity. Since cardiac arrhythmia is one of the most
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common cause of death, normal and abnormal ECG signal
automatic classification is raising more and more interest in
the scientific community.

In the years the problem of ECG classification has been
approached in many different ways. Most of them rely on the
extraction of features from the signal in the form of temporal
or morphological characteristics (feature engineering). The
consequential analysis of those extracted features lead to the
classification of the signal. For example: in [2] morphological
and temporal features are evaluated for R-peak recognition,
while in [3] a temporal analysis is used to recognize ventric-
ular fibrillation and ventricular tachycardia. Although feature
engineering can led to adequately good results, it relies too
much on the proper extraction of the various feature and the
assumption that the selected characteristics are the most rep-
resentative to efficiently classify the original signal. Moreover,
selecting the correct feature set requires an in-depth knowledge
of the signal and the environment in which it is acquired.

Another commonly used approach, which not rely on hand-
engineered features, is machine learning. In machine learning
the algorithm is not explicitly designed to perform a specific
task, e.g. classify different heart-beat, but instead is taught
to perform the task by observing data examples. A growing
class of techniques based on machine learning is the Convo-
lutional Neural Network (CNN). CNN, as opposed to feature
engineering, can automatically select and extract features and
hidden patterns from its input data. By mimicking the brain
functions, CNN consists of multiple layers, each of which
owns a small subset of neurons to process portions of the input
data. The results of each layer is composed of multiple features
extracted from its input, resulting in increasingly abstracted
features extracted with growing layers. Therefore, CNN not
only can automatically select features from the signal, but they
can also find more complicated ones by extracting features
from the selected features, and so on. The main downside of
this approach is the loss of control on the algorithm as most,
if not all, neural networks are considered black boxes since
they use too much data with very high levels of abstraction.
There are already dozens of biomedical related studies in
literature utilizing CNN with very promising results in various
area of application. For example CNNs are applied to the
Electroencephalogram (EEG) signal in ?? in order to classify
dementia stages; and in ?? to detect the intention to move in
patients with motor difficulties.

A particular, quite interesting, class of convolutional neural
network is the 1D-CNN, which takes as input data a single
stream (i.e signal), e.g. ECG, and slides a kernel along it in
search of particular patterns. In literature there are already
some heart-beat classification studies based on 1D-CNN; for
example in [4] and [5] the networks are trained for the classi-
fication of 4 and 5 different arrhythmia respectively; while in
[6] there is a direct comparison between 2D-CNN (commonly
used for image processing) and 1D-CNN in classifying 5
classes of heart-beat; finally in [7] a very deep 1D-CNN is
used to recognize heart-beat amongst 14 different classes.

In this paper we propose a simple 1D-CNN architecture

applied to the MIT-BIH database [8] for a complete ECG
arrhythmia classification. However, the main goal of this work
is the interpretation of the behavior of the neural network
by means of comparison with a more traditional feature
engineering approach. The features extracted from the two
methodologies are compared using cross-correlation analysis
to assess similarities. This will help to better understand if
the features extracted from the network are somehow related
to those hand-picked, and consequently if those are actually
useful for ECG arrhythmia classification.

The paper is organized as follows: Section II contain a gen-
eral explanation of the methodologies used for the experiments
described in the paper. In Section III there is an in-depth
description of the particular 1D-CNN network architecture
chosen. Section IV illustrates the results of the comparison
between the two studied approaches obtained with the cross-
correlation analysis. Moreover, Section V describes a direct
comparison of the results of the two approaches obtained using
a subset of the original database, and a smaller 1D-CNN to
reflect the smaller dataset. Finally, Sections VI contains the
conclusions and possible future development of this work.

II. PROPOSED APPROACH

A. Input Dataset

The MIT-BIH database from PhysioNet [9] is considered the
gold standard when dealing with ECGs. It contains data from
48 different patients in the form of two lead (L2 and V1) ECG
recordings of 30 minutes. Its approximate 109000 heart-beats
are distributed in 16 different classes and each of them has
been manually labeled by two professional cardiologists. The
first step in the preparation of the dataset was to parse each
record and split it into smaller segments (1-2 seconds) around
the QRS complexes. The original database was acquired at
360 samples/s, so the chosen segment corresponds to 500
samples. Data augmentation was performed by means of 10%
overlapping among segments. Segments were statistically nor-
malized and labeled appropriately. Finally, a random 90% of
the resulting dataset was used for training while the remaining
10% as validation dataset.

B. 1-D CNN

In Convolutional Neural Networks (CNN) a filter - com-
monly called kernel - is convoluted (sled) through data in order
to learn particular patterns. These patterns extracted grow in
complexity along with the depth of the network. Namely,
deeper networks extracts more elaborate features.

In Fig. 2 there is an example of a 1D-CNN where a kernel
of width 3 is passed across an input vector of length 10,
producing an output of dimension 8.

The process of convolution starts by superimposing the
kernel with part of the input, then, the corresponding elements
are multiplied and their results summed with each other
forming a new element of the output vector. After that, the
kernel is moved and the process is repeated for all the elements
of the input matrix, excluding those in the edges where there
is no enough data to superimpose the whole kernel. It is



Fig. 2. Example of 1D Convolution Neural Network.

important to note that because of how the convolution works,
the output matrix is smaller than the input one depending on
the size of the kernel.

C. Temporal features extraction

An alternative approach for ECG automatic classification
is based on feature engineering [10]–[12]. As explained in
[13], this strategy exploits domain experts, e.g. physicians, to
extract the relevant information from data and, then, fed it to
a neural network. For example, in [14], several features were
extracted from surgeon hand motion recording to determine
his skill level during surgical training.

In a previous study [15] of the authors, the proposed dataset
manifold have been analyzed and different feature engineering
techniques have been used to train a multi-layer perceptron
(MLP), and tested on their classification performances. Table
I summarizes the fifteen features that yielded the best results
based on the temporal evolution of each record of the ECG
dataset.

Here is how the different features are evaluated:
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TABLE I
TEMPORAL FEATURE EXTRACTED FROM THE ECG AND THEIR MEANING.

Feature # Feature type
F1 Mean
F2 Max value
F3 Root Mean Square (RMS)
F4 Square Mean Root (SMR)
F5 Standard deviation
F6 Variance
F7 Shape factor (using RMS)
F8 Shape factor (using SMR)
F9 Crest factor
F10 Latitude factor
F11 Impulse factor
F12 Skewness
F13 Kurtosis
F14 Normalized 5th central moment
F15 Normalized 6th central moment
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where N is the total number of the elements of the vector
X , whilst xi is the ith element.

D. Cross-correlation

Given a pair of random variables X and Y with probability
density functions fX and fY , respectively, the probability
density function of their difference X −Y is known as cross-
correlation [16] and it is given by:

fX−Y = fX ? fY (1)

The resulting probability density can be interpreted as a mea-
sure of similarity between the two random variables. For two
random vectors X = (X1, . . . , Xm)T and Y = (Y1, . . . , Yn)T ,
the cross-correlation matrix is defined by:

RXY := E[XYT ] (2)

For this reason, the cross-correlation is also known as sliding
sliding dot product. In order to provide a simple interpretation
of the results, the normalized version of the cross-correlation
has been used:

ρXY =
cov(X,Y)

σXσY
(3)

ranging in [−1, 1], with 1 indicating perfect correlation, 0 no
correlation, and −1 perfect anti-correlation.

E. Feature Maps and Temporal Features Similarity

Cross-correlation has been used as a similarity measure
to compare the feature maps generated by the 1D CNN
with the temporal features extracted from the original dataset.
For each sample (i), for each convolutional filter (j), and
for each temporal feature (k), the cross-correlation has been
computed to estimate the similarity between the feature map
xji = (xji1, . . . , x

j
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k
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For each convolutional filter, the obtained score has been
averaged across all samples in order to estimate the average
similarity between feature maps and temporal representations
(the higher the score, the higher the similarity):
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1

N
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i
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i

(5)

ranging in [−1, 1]. The final score ρj,k has been used to
investigate the abstraction level of temporal features with
respect to the features extracted by the CNN.

III. NET ARCHITECTURE

The proposed network architecture follow a bottom-up
approach in which deeper layers contain increasing number
and dimension of filters. Namely, in each consecutive layer
dimension and number of filters were doubled alternatively.
Therefore, starting with a first layer consisted of 4 filters with
kernel dimension 8, the second layer had 8 filters of dimension

8; the fourth 8 filters of dimension 16, and so on for 10
total convolutional layers (with the last one having 128 filters
with kernel dimension 128). The results are passed through
a fully connected layer and softmax activation that produce a
distribution over the 16 output classes. Furthermore, in order to
reduce the total number of parameters of the network, the final
layers are interleaved with three max-pooling layers. Finally, to
improve the training phase and to avoid over-fitting a dropout
layer was added right before the softmax. Figure 3 represent
the final architecture of the network.

The idea behind this architecture is that the first layers
should be able to extract few less-complicated temporal fea-
tures, while going deeper in the network yields progressively
increasing amount of different more-abstract characteristics.
The goal, confirmed by the results discussed in Section IV, is
to find in the first few layers features somehow correlated to
the ones extracted by the feature engineering approach, so that
the deeper layers can find brand-new types of features.

Fig. 3. Net architecture.

IV. CROSS-CORRELATION ANALYSIS

The transformed dataset based on temporal features has
been analyzed together with the proposed CNN in order to
understand if and how the neural network is able to extract
abstract temporal features from raw signals. For each convolu-
tional filter and temporal feature pair, the average normalized
cross-correlation score has been computed as described in (5).
Table II summarizes the main findings. For each temporal
feature, the minimum and maximum cross-correlation with the
best matching feature map has been reported alongside with
the corresponding filter position. The results clearly show how:



• the CNN was able to automatically extract from raw
signals temporal-like features similar to human-curated
ones

• the neural network extracted such features in the earliest
layers directly from raw signal

Most likely, in deeper layers the networks exploited its own
temporal-like features in order to refine the internal represen-
tation and improve the classification accuracy. The temporal
features displaying the highest cross-correlation were:
• the mean value (F1, ρ = −0.882)
• the max value (F2, ρ = −0.808)
• the root mean square (F3, ρ = 0.875)
• the square mean root (F4, ρ = 0.882)
• the crest factor (F9, ρ = −0.838)

of the raw signal. All of these temporal features have been
extracted in the first layer of the network. Moreover, they can
be clustered according to the most similar feature map they
have been associated with. In fact, both the mean value (F1),
the max value (F2), and the crest factor (F9) are strongly anti-
correlated with the feature map generated by the first filter of
the first layer. On the other hand, both the root mean square
(F3) and the square mean root (F4) are mostly correlated with
the second filter of the first layer. Therefore, these feature
maps can be interpreted as a compact representation of core
waveform characteristics such as:
• how extreme the peaks are with respect to the signal

mean value (first filter of the first layer, associated with
mean value, max value, and crest factor)

• the peak-to-peak amplitude (second filter of the first
layer, associated with root mean square and square mean
root)

V. ECG CLASSIFICATION

The analysis of the previous section has shown how the
temporal features were automatically extracted by the pro-
posed deep network in the first layer. In order to further
investigate the contribution of the 1D-CNN features to the
ECG classification task, a comparison with the MLP used in
[15] has been conducted. Because of the under-representation
of most of the classes of the original MIT-BIH dataset,
only the most significative subset (normal beat, right bundle
branch block beat, premature ventricular contraction, atrial
premature contraction) was employed, while the remaining
were collapsed in a generic label other anomalies.
The MLP has a single hidden layer with forty neurons and five
output units equipped with the soft-max activation function
[17]. Because of the use of the cross-entropy error function
[17], they yield the probability of class membership. Fig.
4 shows the associated confusion matrix. The classification
reached an overall accuracy of 96%.

The 1D-CNN used to conduct this part of experiments
was constructed following the same methodology described
previously. However, since the classification problem was
intrinsically easier to solve it was used a smaller network
consisting of only four CNN layers followed by a softmax

TABLE II
HIGHEST (AND LOWEST) AVERAGE CROSS-CORRELATION VALUES

MATCHING TEMPORAL FEATURES AND FEATURE MAPS FROM THE CNN.
HIGHEST VALUES HAVE BEEN HIGHLIGHTED.

TEMPORAL FEATURE LAYER FILTER ρ

F1 MAX 1 2 0.497
MIN 1 1 -0.882

F2 MAX 1 2 0.685
MIN 1 1 -0.808

F3 MAX 1 2 0.875
MIN 3 7 -0.236

F4 MAX 1 2 0.882
MIN 6 4 -0.252

F5 MAX 1 2 0.748
MIN 3 7 -0.236

F6 MAX 1 2 0.699
MIN 3 7 -0.246

F7 MAX 1 2 0.553
MIN 7 3 -0.180

F8 MAX 2 6 0.658
MIN 7 6 -0.138

F9 MAX 1 2 0.725
MIN 1 1 -0.838

F10 MAX 1 2 0.701
MIN 1 1 -0.700

F11 MAX 1 2 0.711
MIN 1 1 -0.780

F12 MAX 1 2 0.500
MIN 1 1 -0.553

F13 MAX 1 4 0.655
MIN 2 3 -0.048

F14 MAX 2 8 0.532
MIN 1 1 -0.300

F15 MAX 1 4 0.681
MIN 3 3 -0.014

Fig. 4. MLP confusion matrix



classifier. Fig. 5 shows the architecture of the smaller net,
while Fig. 6 represents its confusion matrix. An overall
accuracy of 99.6% was achieved.

Fig. 5. Second CNN architecture

Fig. 6. 1D-CNN confusion matrix

The comparison between the two architectures on the heart-
beat classification has confirmed the quality of the deep
learning approach, which was able to achieve better results
by extracting the same features engineered with the MLP
approach in the first layers and improving the classification
(4%) with the others automatic extracted characteristics of the
subsequent layers.

Resuming, both networks have been trained and tested on a
subset of the database used for the cross-correlation analysis
and with a smaller number of classes because the goal of
the proposed approach is not the design of the best classifier,
but the impact of the more abstract features extracted by the
CNN with regard to the previously analyzed temporal features.
This approach assumes that the analysis given in the previous
section can be extended to this particular case, which has been

already verified by the deep neural experts that exploit it, for
example, for motivating transfer learning.

VI. CONCLUSIONS

This paper has introduced an original approach, which
works both for the evaluation of the impact of feature engineer-
ing in a classification problem by means of classical (shallow)
neural networks by exploiting the deep convolutional archi-
tecture as a kind of non-linear performance evaluation, and,
on the contrary, as an interpretation of the deep convolutional
layers, by using human-curated features as clues.
In particular, the temporal features have been here taken
into account, because of their good performance in ECG
classification. To this aim, a cross-correlation analysis has been
performed to investigate the similarity between the 1-D CNN
feature maps and hand-engineered temporal features. It has
been deduced that most temporal features are synthesized in
the first convolutional layer, which means that these features
are fundamental for the problem at hand. However, there are
other more abstract features in the subsequent layers that
improve the classification. This analysis has been confirmed
by the experiments. Indeed, MLP, based on temporal features,
yields good results, but CNN is even more accurate. In con-
clusion, this work has both justified the importance of a subset
of temporal features, thanks to the first CNN layer correlation
analysis, and has paved the way of interpreting a convolutional
layer by using certain choices of features. The interpretation
of the behavior of a deep neural network is an open problem
and, probably, their biggest drawback (black box). This paper
is not only original for the approach to the ECG classification
problem, but suggests a new way to understand deep learning.
Future work will address the analysis of other features and
the use of alternative comparison techniques in order to have
an idea of the abstract features created by CNN in the deeper
layers.
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