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Abstract—The t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a widely used technique for dimensionality reduction,
however, its application to large datasets is still an issue. In
this sense, BH-tSNE was proposed, which is a successful ap-
proximation where the Barnes-Hut algorithm is used instead of
computing a step of the t-SNE with quadratic computational
time complexity. Even so, this improvement still has limitations
to process large data volumes (millions of records). Late studies,
such as t-SNE-CUDA, have used GPUs to implement highly
parallel BH-tSNE. In this research, a new GPU BH-tSNE imple-
mentation is proposed using efficient memory access strategies
and recent acceleration techniques. Moreover, the embedding
of multidimensional data points into three-dimensional space
is applied. We examine scalability issues in one of the most
expensive steps of GPU BH-tSNE. Our design allows up to
340% faster execution when compared to the t-SNE-CUDA
implementation.

Index Terms—Dimensionality reduction, Big data, Visualiza-
tion of data, t-SNE, BH-tSNE, Barnes-Hut, Parallel algorithms,
GPGPU

I. INTRODUCTION

Recently different subareas of Artificial Intelligence and
Machine Learning are trying to solve problems containing
large datasets which are difficult to process even in modern
hardware. Applications such as Deep Convolutional Neural
Networks or Deep Reinforcement Learning using these types
of big data commonly create intermediate or final results that
consists of sets of data points in high dimensional space, which
are impossible to interpret and visualize in its original form.

To address this problem, several dimensionality reduction
techniques can be used to approximate the structure of
these high dimensional spaces by two-dimensional or three-
dimensional spaces that can easily be visualized in scatter
plots.

The t-Distributed Stochastic Neighbor Embedding (t-SNE)
[1] is a dimensionality reduction algorithm that was widely
used in machine learning applications due to its efficiency
in discovering natural clusters. However, when projecting a
large set of data into a lower dimensional space to create
an embedded representation from the original data, t-SNE
presents quadratic computational time complexity, which is a
limiting factor for this algorithm. This problem was differently
studied in recent work [2], [3] to investigate the potential
of GPU hardware in order to improve the scalability of
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the algorithm [4]–[7]. The t-SNE-CUDA library1 [4], [5]
utilizes the CUDA language to improve the performance of
the approximated Barnes-Hut t-SNE (BH-tSNE) version [2]
and FIt-SNE [8] in NVIDIA GPU hardware. The library can
accomplish considerable execution speedup, achieving up to
700 times faster execution when compared to other well-
known implementations such as the Scikit-Learn library.

The t-SNE-CUDA approach was already compared to differ-
ent state of the art techniques [5]–[7] but still has potential for
improvements. This iterative method runs thousands of steps
until convergence. Generally, for new dataset visualizations,
it is usual to run the method many times by experimenting
with hyperparameters. In this sense, we present an approach
that reduces the Barnes-Hut t-SNE computational time, saving
considerable time in explorations. Our methods can be used
in the same applications as in t-SNE-CUDA. One of these
applications is the understanding and inspection of the training
process of deep neural networks by visualizing the activation
of intermediate or final layers of the network [5].

In this research, we investigate the optimization of the BH-
tSNE algorithm implemented in t-SNE-CUDA, adapted to
project data into three dimensions, as in Figure 1, while using
different strategies proposed in [9] to prevent poor memory ac-
cess. One of the advantages to project data in three dimensions,
rather than two, is the flexibility to represent objects in space
with more possibilities for visualization and for configurations,
like the disposal of four equidistant points, which is not
possible in two dimensions. The major contributions of this
work are described as follows:
• We have adapted, implemented and investigated the two-

dimensional BH-tSNE projection in t-SNE-CUDA to
generate the embedding in three dimensions (3D).

• Regardless of the extra computational effort in embedding
to 3D, we have applied acceleration techniques to GPU
BH-tSNE algorithm while preserving the quality of the
projections.

• It was possible to achieve an speedup of up to 340% in
one of the most time-consuming steps of GPU BH-tSNE
in 3 million-point datasets, using an Implicit Tree data
layout and Simulated Wide-Warp techniques.

The rest of this work is organized as follows: Section II
presents previous research and contributions related to the t-
SNE algorithm and its implementation in GPU. Section III

1https://github.com/CannyLab/tsne-cuda

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



discusses the fundamentals necessary to understand the t-SNE,
which will be extended in Section IV to explain the BH-
tSNE approximation. We discuss the details of t-SNE-CUDA
in Section V and propose our improvements in Section VI.
Finally, the methods and experiments used in this study are
described in Section VII, with results presented and discussed
in Section VIII, followed by conclusions in Section IX.

(a) Amazon Electronics (b) Lucid Inception

(c) MNIST (d) CIFAR

Fig. 1: 3-dimensional embedding generated for different
datasets. Each color represent a class for the original instance.

II. RELATED WORK

Despite its efficiency in representing high dimensional data
points into two or three dimensions, t-SNE [1] suffers from
poor scalability when applied to large datasets due to its
quadratic time complexity. Since its proposal, many works
improve t-SNE efficiency with approximate methods and other
methodologies that allow computing the embedding in time
O(N) or O(N logN).

Currently, Barnes-Hut t-SNE [2], or BH-tSNE, is one of
the most well-known implementations of t-SNE whose com-
putational complexity is O(N logN). This technique uses
Barnes-Hut method [10] to approximate a step in t-SNE called
Repulsive Forces Computation which is, in the general case,
the bottleneck in execution time. The Barnes-Hut algorithm
is an approximate method controlled by a parameter θ, which
specifies the trade-off between accuracy and time consump-
tion.

Recently, much work has been devoted in proposing
methodologies and techniques that efficiently implements the
algorithms based on t-SNE with Graphics Processing Units
(GPU) [4]–[7]. The utilization of this highly parallel, many-
core, hardware enables the use of t-SNE with millions of
data. Chan, et al. [4], [5] propose the t-SNE-CUDA, which

brings about BH-tSNE in GPU using a modified version of
the Barnes-Hut algorithm that was based on the Burtscher
and Pingali implementation [11] and allows two-dimensional
visualization of the entire ImageNet dataset [12]. Further, t-
SNE-CUDA uses FAISS [13] library to compute a K-Nearest
Neighbors (KNN) graph in the first step of the algorithm.

Pezzotti, et al. [6] propose an approximation of t-SNE in
GPU by rewriting the gradient cost that the original t-SNE
specified. The authors discuss and implement a GPU algorithm
that has linear time execution complexity and does not depend
on CUDA. The experiments discussed by the authors of the
GPGPU version presents better preservation of quality in
comparison to the implementation in Chan, et al. [4], [5], but
cannot surpass t-SNE-CUDA in computational time.

Fu, et al. [7] suggest a technique called AtSNE based on
t-SNE, and use GPU to project the data preserving the global
structure. The authors discuss the BH-tSNE problems and its
limitations like the inefficiency of Barnes-Hut algorithm in
GPU. The t-SNE-CUDA [4] implementation was based on the
Barnes-Hut algorithm from Burtscher and Pingali [11].

Despite the existence of different works that approximate
t-SNE with a linear complexity algorithm like GPGPU t-SNE
[5], [6], there is still a need to explore Barnes-Hut t-SNE due to
its competitive performance in computational time. Different
approaches can be used to improve BH-tSNE, such as the
Implicit Tree structure and Simulated Wide-Warp presented
by Zola, et al. [9] that mitigates the inefficient GPU memory
access existing in common Barnes-Hut implementation.

III. T-SNE

The t-Distributed Stochastic Neighbor Embedding [1] is a
technique for dimensionality reduction that aims to preserve
the local neighborhood of every projected data point. The
preservation of neighborhood can be done by minimizing the
difference between two probability distributions that describes
the probability of each pair of data points being neighbors in
the higher dimension (HD) and in the lower dimension (LD).

The t-SNE method considers a dissimilarity metric dij
between each pair of data points in the HD defined in (1).
The dissimilarity is used to compute (2) where pij is the
probability of each point j being neighbor to a point i in
a Gaussian distribution, centered in i. The standard deviation
σ is calculated with a parameter called Perplexity, specified
by the user, that represents the number of effective nearest
neighbors around each point.

The t-SNE method differs from Stochastic Neighbor Em-
bedding (SNE) [14] by assuming a t-distribution with one
degree of freedom, described in (3), for the probabilities of the
neighborhood in the LD instead of a Gaussian distribution as
in HD. This assumption leads t-SNE to prevent the “crowding
problem” where weak attractions between dissimilar data in
HD force the data in LD to become agglutinated [1].

In t-SNE, the Kullback-Leibler divergence is used to mea-
sure the difference between the distribution probability of
the neighborhood of a specific data point in HD and its
correspondent in LD, noted as Pi and Qi in (4). This measure



can be used to estimate a cost function that describes how
well the projected data point in LD represent the data point
in the HD using (5). Analytically, as demonstrated by Van
der Maaten and Hinton [1], it is possible to estimate the error
contribution of each data point relative to the cost function.
This contribution is represented in (6), and can be used to
“move” the points in the LD in order to reduce the Kullback-
Leibler divergence.

Stochastic Gradient Descent (SGD) is a widely used al-
gorithm for search for minimum and local minima in convex
and non-convex differentiable functions [15]. Equation (6) can
be used to minimize the cost function in (5) by iteratively
updating the points in LD with SGD, which is the technique
applied in the t-SNE Algorithm 1 [1].

d2ij =
‖xi − xj‖2

2σ2
i

(1)

pij =
exp(−d2ij)∑
k 6=i exp(−d2ik)

(2)

qij =

(
1 + ‖yi − yj‖2

)−1
∑
k 6=l

(
1 + ‖yk − yl‖2

)−1 (3)

KL (Pi‖Qi) =
∑
j

pij log
pij
qij

(4)

C =
∑
i

KL (Pi‖Qi) =
∑
i

∑
j

pij log
pij
qij

(5)

δC

δyi
= 4

∑
j

(pij − qij) (yi − yj)
(
1 + ‖yi − yj‖2

)−1
(6)

The algorithm that implements t-SNE accepts the original
set of points S with high dimensionality as parameter and
other arguments that control the convergence of the algorithm.
The step size (or learning rate) η is used to multiply the
“movement” of each point in the lower dimension using its
impact in (6). Also, the momentum αt at each iteration t is
used to prevent poor local minima in the optimization using
the movement from the previous iteration.

Initially, the algorithm computes the pij of each pair of
points using the Perplexity specified in parameters. This step
can be executed only once at the beginning of the algorithm.
Then, an initial random projection is created, usually generated
using a Gaussian distribution, and the SGD is executed until
the KL Divergence achieves a small value or a maximum
number of steps is reached.

A. t-SNE projection quality

Since the t-SNE aims to reduce the dimensionality of a
higher dimensional space by preserving the local neighbor-
hood of each original point, different metrics can be used
to compute the projection quality. One of these metrics is
the rescaled average K-ary neighborhood preservation [16]
presented in (8), where the average represents the intersection

Algorithm 1 t-SNE

Input: HD points S ∈ RD, Step size η, Momentum α, LD
size D′, Maximum iterations max ite, Perplexity Perpl

Output: LD points S′ ∈ RD′

1: Calculate pij for each pair of points in S using perplexity
Perpl (Equation 2)

2: Y0 ← initial random projection( )
3: Y1 ← Y0
4: t← 2
5: repeat
6: Calculate qij for each pair of points in S′ (Equation 3)
7: Calculate the gradient ∂C

∂yi
for each point yi ∈ Yt

(Equation 6)
8: Yt+1 ← Yt = Yt + η δCδY + αt (Yt − Yt−1)
9: t← t+ 1

10: until Convergence or t > max ite
11: return Yt

of the K neighbors νKi of each point of index i in the HD
space and nKi the K neighborhood in LD space.

This metric is represented in (7), where the total of points
N and the neighborhood size K are used to normalize the
metric, which will be rescaled in (8). Therefore, the RNX(K)
metric grows with the preservation of the K closest points by
the projection of HD points into a LD space. Note that this
metric has value equal to 1 when the neighbors of every points
was successfully preserved.

QNX(K) =
1

KN

N∑
i=1

∣∣νKi ∩ nKi ∣∣ (7)

RNX(K) =
(N − 1)QNX(K)−K

N − 1−K
(8)

IV. BARNES-HUT T-SNE
One major contribution for t-SNE implementations was the

Barnes-Hut t-SNE (BH-tSNE) proposed by Van der Maaten
[2]. The work proposes an approximate algorithm that imple-
ments t-SNE with complexity O(N logN) by using a KNN
algorithm to approximate the computation of pij and Barnes-
Hut algorithm to approximate qij . This is done by rewriting (6)
as a sum of two terms, Fattr (10) and Frep (11), representing
forces that must be respectively applied to approximate points
that are distant in LD and close in HD, and to separate points
that are close in LD and distant in HD, as in (12).

In the original proposal, the KNN is computed using a
vantage point tree in O(uN logN) time, where u represents
the Perplexity. KNN produces the b3uc closest neighbors for
each point in HD, considering pij = 0 for every pair of points
that are not neighbors. This assumption does not compromise
the results of t-SNE because distant points, and consequently
not neighbors, already have similarities pij close to 0.

A. Barnes-Hut Algorithm

The Barnes-Hut algorithm [10] is an approximate method
for N-Body simulation, where N different bodies (particles)



constantly interact applying forces between each other. The
idea is to reduce the quadratic nature of the common algorithm
by approximating weak interactions between distant clusters
using an m-ary Tree to create different partitions of bodies.
The 3-dimensional three is an Octree where leaf nodes are real
bodies, and internal nodes summarize octant (cells) informa-
tion such as centroid position, the cell radius, total contained
mass, and other relevant information on each sub-tree.

Once the tree is built, it is traversed in preorder while
computing forces applied to each body. Algorithm 2 shows the
traversal and forces calculations steps, where an approximation
can be made by checking if the descendant nodes of each cen-
troid are too distant from the reference body. This verification
is done by using (13) where θ ∈ [0, 1] is a threshold that
controls the approximation. Note that the relationship defined
in (13) will tend to be satisfied when the distance between
a query point yi and a centroid ycell increases and the radius
rcell, related to ycell, decreases. When the equation is satisfied,
the algorithm estimates the interaction forces between yi and
all ycell descendants by using ycell center of mass.

Z =
∑
k 6=l

(
1 + ‖yk − yl‖2

)−1
(9)

Fattr =
∑
j 6=i

pijqijZ (yi − yj) (10)

Frep = −
∑
j 6=i

q2ijZ (yi − yj) (11)

∂C

∂yi
= 4 (Fattr + Frep) (12)

rcell

‖yi − ycell‖2
< θ (13)

This approximation gives the algorithm a computational
time complexity O(N logN), controlled by θ. Note that when
θ = 0 the approximation gives the exact quadratic algorithm,
justifying the use of high values for θ (usually 0.5) to reduce
the computational time of the algorithm considering a trade-off
between accuracy and execution time.

B. t-SNE repulsive forces

The repulsive forces applied to each point in LD represented
in (11) can be interpreted as an N-Body simulation problem.
Using the Barnes-Hut Algorithm to approximate the repulsive
forces by manipulating (3) to compute the interaction between
different nodes, the repulsive forces computed in each step of
the stochastic optimization can be made in O(N logN) com-
putational time, and consequently determining the complexity
of t-SNE algorithm [2]. Note that the Z term presented in (9),
used in the repulsive and attractive forces, can be computed
only once during the tree traversal by ignoring distant points.

V. T-SNE-CUDA

Chan, et al. [4] proposed t-SNE-CUDA, and a subsequent
improved version [5] which implements BH-tSNE algorithm
using GPU and CUDA primitives. FIt-SNE [3] was also
implemented in GPU. In t-SNE-CUDA, the FAISS library [13]
is used to compute an approximate KNN of HD points with
GPU parallelism in linear computational time complexity [5].

Algorithm 2 Recursive Barnes-Hut Tree traversal

Input: Body yi, m-aryTree, Current node yj , Threshold θ
Output: Forces vector with average forces applied into yi

1: C ← children(yj)
2: Forces ← ~0
3: for all c ∈ C where yi 6= c do
4: rcell ← radius(cell(c))
5: ycell ← centroid(cell(c))
6: if Equation 13 is not satisfied then
7: Forces← Forces + Algorithm 2(yi, m-aryTree, c, θ)

// Recursive call
8: else
9: // Approximates the interaction with distant cells

10: Forces ← Forces + interaction(ycell, yi)
11: end if
12: end for
13: return Forces

The original implementation2 allows t-SNE-CUDA to create
the projection only to a two-dimensional space. The compu-
tation of attractive forces at each SGD step on this work uses
cuBLAS library to apply a sparse matrix multiplication, which
was improved in [5] using GPU atomic operations.

As described in the original article, the Barnes-Hut steps
are mainly composed by:

• Finding the bounding box of all points: The result of this
step is used to construct initial cells of the Quadtree;

• Construction of the Quadtree;
• Nodes summarization: Computation of the radius, cen-

troid and the number of points of each cell;
• Sorting of points in spatial order (Morton Order);
• Computation of the repulsive forces: Traverses the tree

while evaluating forces for each body (Algorithm 2).

In current NVIDIA GPU architectures, there is a concept
called warp that represents a set of 32 cores executing the same
SIMD (Single Instruction Multiple Data) instruction at a given
time. When cores of the same warp try to follow different paths
in the code, the GPU must necessarily serialize the execution
of some cores. This partially wastes the potential parallel
advantage of GPU SIMD hardware, leading to a problem
called thread divergence. Sorting points in Morton order is
an optional step, but it improves the chances that threads with
close indices in the GPU agree in expanding the same cells
(line 6 of Algorithm 2), and consequently reduces divergence.

2https://github.com/CannyLab/tsne-cuda/tree/bh tsne.



VI. IMPLICIT TREE AND SIMULATED WIDE-WARP

The t-SNE-CUDA Barnes-Hut code is based on the work
of Burtscher and Pingali [11] (BP-BH), with specific forces
calculations modified for the t-SNE method and with dimen-
sionality of N-Body simulation simplified to 2 dimensions.
These implementations are iterative, instead of recursive as
Algorithm 2, and are implemented with a stack data structure
in the traversal. The tree representation is Sparse and uses an
array of integer pointers to child nodes in each non-leaf node.

Zola, et al. [9] presented a GPU implementation of the
Barnes-Hut algorithm that surpasses BP-BH in computational
time by using a different tree representation called Implicit
Tree. Moreover, they proposed Simulated Wide-Warp (SWW),
a technique that creates virtual threads simulating warps with
more threads per core than what is physically supported by
the GPU. These modifications allow BH algorithm to present
better memory access patterns and to acquire more accurate
results with considerable speedup.

A. Implicit Tree

In the Implicit Tree representation, leaf nodes and internal
tree nodes are represented in an unique array, where internal
nodes contain a pointer to the next internal node, assuming a
pre-order traversal. Figure 2 illustrates the difference between
Sparse and Implicit representations. The Implicit representa-
tion needs to store only one pointer in each non-leaf node. This
is an advantage that reduces the needed memory in comparison
to the Sparse representation, where even null nodes need
to be represented. While saving space allowing larger trees
and posing less bandwidth demand on the memory system,
another benefit of the implicit representation is noted when
traversing the tree in the BH algorithm: unlike the Sparse
representation, there is no need to use a stack per thread when
traversing the tree since the skip-link pointers in each internal
node are the only information needed to walk through the
tree. This allows the algorithm to access GPU memory more
consistently, reducing register use, global memory accesses
and execution time.

Ni0

Ni2 D

B C

A Ni1 H

E F G

Ni3

Sparse	Representation
(Based	on	pointers)

Ni0 A Ni1 Ni2 D Ni3 E F G HB C

Implicit	Representation

Fig. 2: Types of tree representation in Barnes-Hut algorithm.
The example illustrates a Quadtree with 8 leaves (in orange).
Internal nodes are represented in purple and null nodes in blue.

B. Simulated Wide-Warp (SWW)

Modern GPU architectures allow a large number of threads
but the actual number of active threads at a given time is
proportional to the number of cores. The Simulated Wide-
Warp technique consists in simulating extra virtual threads by
exploring the large number of GPU registers (current up to
65536). This is done in algorithm by carefully coding specific
loop unroll patterns that are not automatically captured by
current compilers.

The simulation of virtual threads is done inside each physi-
cal thread. Virtual threads allow sharing thread local variables
without additional real memory access. Basically, SWW is
used to optimize forces calculation with minor changes to the
implicit tree traversal steps in algorithm BH. The programmer
must be careful to create specific variables needed by each
virtual thread and not surpass the GPU register limit, otherwise
leading to a problem called register spill where the extra local
variables will be placed in global memory.

In SWW, the effective number of simulated threads corre-
sponds to the amount of physical warp threads multiplied by a
constant number (WarpWidth) of virtual threads implemented
per physical thread. To lower thread divergence, the tree
traversal in SWW-tSNE must ensure that all threads in a warp
execute the same instruction. This can be ensured if at least one
thread chooses to expand a node. In this case, all threads in the
simulated warp must perform the same expansion, even if (13)
is not satisfied. With this guarantee, the algorithm can perform
faster and return more accurate results. This is also ensured
in t-SNE-CUDA but its efficiency in SWW-tSNE grows with
the width of the virtual warp.

Since the coding of repulsive forces in t-SNE differs from
the computation of gravitational forces in the traditional BH,
the number of registers used per thread also tends to be
different. As such, the impact of SWW to t-SNE algorithm
needs to be verified to access potential speedup and quality
of algorithm convergence for different values of WarpWidth
when processing the standard datasets with diverse sizes.

VII. METHODS

The original implementation of t-SNE-CUDA was modified
to project the input data points of the algorithm into a
tridimensional space, which we will call “Original version”.
We produced a new version of GPU BH-tSNE that performs
the BH step using implicit trees and conducts the tree walking
and forces calculations phase using SWW techniques, wich
we will call SWW-tSNE. Then, different SWW-tSNE versions
were created, increasing WarpWidth in each version, using the
maximum number of threads per block and, consequently, the
maximum number of registers available in the GPU, achieving
up to WarpWidth=4 before the register spill problem occurs. It
is essential to mention that in the experiments of this work we
will consider only the optimization of the Tree Building and
Traversal present in the Barnes-Hut algorithm. Also, note that
the WarpWidth=1 version is equivalent to the Original, to the
extent that it does not simulate larger than physical warps and
the only difference is the Tree structure used by the algorithm.



The computation of the attractive forces in the Original ver-
sion is still using a deprecated implementation with cuBLAS
[4] that was improved in recently works [5] using GPU atomic
operations, which was also implemented in our algorithms.

A. Environment

All experiments reported in this work were performed in
a 3.20GHz i5-4460 processor with 4 CPU cores, 8GB of
processor RAM, and GPU NVIDIA GeForce RTX 2070 with
8GB of GPU RAM, running CUDA 10.1 tools. We used GNU
GCC 4.8, and G++ 4.8 to compile each version of t-SNE.

B. Datasets

In order to observe the behavior of proposed modifications
in t-SNE-CUDA, datasets of different sizes and dimensions
were used, presented in Table I. The MNIST [17] and CIFAR-
10 [18] datasets are widely used in supervised machine
learning research, which consists of a set of 60000 and 50000
records that represent raw image data, both with ten different
classes.

The Lucid Inception dataset represents the data extracted
from the Lucid library3, which provides the activation of
intermediate layers of Convolution Neural Networks (CNN)
models, by collecting the activation of 100000 images from
the ImageNet dataset in the Google Inception V1 CNN archi-
tecture [19].

A similar methodology proposed by Fu, et al. [7] was used
to create the Amazon Electronics dataset. The FastText library
[20] was used to create a 100-dimensional text embedding of
the 1689188 text reviews of electronic products from Amazon
web store4 [21] in which every review also contains an integer
value between 1 and 5 that represents the overall rate of the
review.

The GoogleNews300 dataset5 consist in the 100 dimen-
sional word embedding of 3 million words created with the
Word2Vec [22] model using the Google News text dataset.

TABLE I: Dataset sizes used in experiments.

Dataset name Total of points Total of dimensions
CIFAR 50000 3072
MNIST 60000 784

Lucid Inception 100000 128
Amazon Electronics 1689188 100

GoogleNews300 3000000 300

C. Evaluation

Each version of t-SNE-CUDA was compared using the
datasets described before. The t-SNE was executed for 1000
iterations using the default parameters of t-SNE-CUDA, where
the KNN was limited to compute the 32 nearest neighbors of
each point due to the limited memory size of GPU. For each
dataset, the versions implemented where executed ten times

3https://github.com/tensorflow/lucid
4http://jmcauley.ucsd.edu/data/amazon/
5https://code.google.com/archive/p/word2vec/

in order to achieve more accurate analysis and three times in
the GoogleNews300 dataset due to its size and our limited
resources.

We split the algorithms in five main steps and the computa-
tional time of every step was measured. The algorithms were
split as follows:
• KNN: Computation of the nearest neighbor of each data

point in the high dimensional space. The result is used
to precompute the pij values;

• Attractive Forces: Computation of (10) for each data point
using the pij values;

• Tree Building: Step where all operations necessary to
create the Octree are executed.

• Tree Conversion: Necessary step to convert the Sparse
tree into an Implicit tree. This step is not needed in the
Original version and can be removed in future SWW-
tSNE implementations by using a direct massively paral-
lel algorithm to construct the Implicit Tree, in this case,
the construction of the sparse tree will also be unneces-
sary in the SWW version, further saving execution time.

• Tree Traversal: The computation of repulsive forces
described in (11) using the Barnes-Hut algorithm by
executing a Traversal in the corresponding Octree for
each data point.

VIII. RESULTS AND DISCUSSION

The usage of Implicit Tree structure and Simulated Wide-
Warp strategies have demonstrated to be well suited to im-
prove the scalability of t-SNE-CUDA without the necessity of
rewriting or approximating the computations of t-SNE.

Table II shows the speedup in the Tree Traversal step in
which it was possible to achieve an execution up to 3 times
faster than the Original version of t-SNE-CUDA to perform
the projection in three dimensions. The Simulated Wide-Warp
technique was not wholly successful in the smaller datasets
compared to the million size datasets, because when the Warp-
Width parameter grows, the number of threads to process the
computation of each point also increases. When the number
of threads surpasses the real number of points to process,
several threads will be idle. Therefore, the technique will not
provide improvement of performance and possibly creating
a computation overhead without benefits. This problem can
be prevented by searching the ideal WarpWidth before the
execution of t-SNE by using the information of the current
GPU architecture and the number of points to be processed.

Considering the most expensive steps of t-SNE-CUDA
observed in the experiments, the KNN is one of the critical
steps once it depends on the dimensionality of the dataset. This
step can be the bottleneck of the algorithm in some cases.

Fortunately, this problem can be addressed by using multiple
GPUs [5] as described by the author of the technique or by
the use of other algorithms to compute the approximated KNN
rather than the FAISS library.

Figure 1 illustrates the result obtained from the execution
of t-SNE-CUDA on the Amazon Electronics dataset, and
Figure 3 shows the time necessary for the execution of the



principal steps of the algorithm. In scenarios where Barnes-Hut
algorithm is improved, the other steps (different from the Tree
Traversal and forces calculations) may become the bottleneck
of execution time.

In order to overcome this problem, a similar effort done in
this work can be made in these steps by exploring the GPU
parallelism. Further, other approximations strategies that do
not harm the quality of the projection result can be explored.

The proposed modifications in SWW-tSNE were imple-
mented in an environment wherein the parameter WarpWidth
of the Simulated Wide-Warp technique was limited to create
a maximum of four virtual threads for each physical thread
before all registers available in the GPU were utilized. One of
the most limiting factors to explore values greater than 4 is the
use of local variables that grows linearly with the WarpWidth
and dimensions of the lower-dimensional space. It is expected
that when the same methodology is used to implement a
2-dimensional projection algorithm in SWW-tSNE, a higher
number of virtual threads could be created, which would allow
even greater speedups than the achieved for three dimensions.

In order to inspect the projection quality and convergence
of each implementation, we analyze the results of each dataset
except GoogleNews300 due to its large size. The convergence
was interpreted as the average magnitude of forces applied to
each point during the iterations of the algorithm, present in
the original t-SNE-CUDA library, which is called “gradient
norm” and the quality as the RNX(32) described in (8).

Table III contains the average and standard deviation of
the RNX(32) in each dataset with different WarpWidth im-
plementations, in which WarpWidth=3 seems to create better
results in smaller datasets and WarpWidth=1 in the Amazon
Electronics dataset. However, the Kruskal-Wallis H test [23]
with a significance level equal to 0.05 indicates that there
is not any statistical difference between different WarpWidth
implementations in each dataset.

Also, this difference does not seem to impact the conver-
gence of the algorithm significantly, which is represented in
Figure 4 that contains the result of one execution of t-SNE in
MNIST dataset for each implementation. The gradient norm
convergence is shown in Figure 4e. In Figure 4, it is possible
to note that the number of iterations is more relevant than the
difference between each version of SWW-tSNE implemented
in this study.

These results are not expected since the Barnes-Hut must
be more precise with higher values of WarpWidth [9]. This
characteristic can be explained by the fact that soft adjustments
in the approximation of the repulsive forces do not necessarily
impact positively in the algorithm convergence. Since the t-
SNE try to optimize a non-convex function and it is more sus-
ceptible to other parameters like the total number of iterations,
learning rate, and projection initialization. Future works can
explore these characteristics and create better approximations
of Barnes-Hut t-SNE in GPU in order to improve its scalability
without harming the quality of projection or the convergence
of the algorithm.
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Fig. 3: Execution time breakdown of different GPU t-SNE
versions applied to Amazon Electronics dataset. Original rep-
resents the standard t-SNE-CUDA and the other versions rep-
resent our implementations using Implicit Tree data structure
and Simulated Wide-Warp with different WarpWidth sizes.

TABLE II: Average speedup achieved and (standard deviation)
in the Barnes-Hut Tree Traversal in the different versions of
t-SNE-CUDA. WarpWidth is abbreviated as WW.

Dataset name Original WW1 WW2 WW3 WW4

GoogleNews300 1 1.713
(0.001)

2.929
(0.003)

3.261
(0.001)

3.404
(0.015)

Amazon
Electronics 1 1.618

(0.004)
2.703

(0.007)
2.949

(0.014)
3.052

(0.011)

Lucid Inception 1 1.042
(0.013)

1.245
(0.017)

1.535
(0.021)

1.217
(0.020)

MNIST 1 0.973
(0.006)

1.379
(0.023)

1.019
(0.018)

0.803
(0.017)

CIFAR 1 0.965
(0.009)

1.352
(0.019)

0.979
(0.013)

0.768
(0.013)

IX. CONCLUSIONS AND FUTURE WORK

Despite t-SNE-CUDA efficiency and competitiveness
among state-of-the-art t-SNE implementations in GPUs, to the
best of our knowledge, there is no previous work verifying the
impact of Implicit Tree representation and SWW techniques
in GPU t-SNE.

In this research, we have investigated the advantages of
these techniques considering the potential speedup in the
Barnes-Hut step of t-SNE, the quality of the algorithm con-
vergence and scalability to large datasets.

One of the most computationally expensive steps of t-SNE-
CUDA is the calculation of repulsive forces while traversing

TABLE III: Average RNX(32) and (std. deviation) achieved.

Dataset
name WW1 WW2 WW3 WW4

Amazon
Electronics

0.1325429
(0.0013978)

0.1325359
(0.0013952)

0.1325225
(0.0013954)

0.1325358
(0.0013911)

Lucid
Inception

0.1969604
(0.0006278)

0.1969638
(0.0006124)

0.1970092
(0.0006483)

0.1969707
(0.0006336)

MNIST 0.3578996
(0.0010927)

0.3579124
(0.0010830)

0.3579271
(0.0010848)

0.3579073
(0.0011002)

CIFAR 0.1326866
(0.0009716)

0.1327137
(0.0009598)

0.1327733
(0.0009317)

0.1327453
(0.0009426)



(a) WarpWidth=1 (b) WarpWidth=2

(c) WarpWidth=3 (d) WarpWidth=4

(e) Convergence

Fig. 4: Result of the 3-dimensional embedding and conver-
gence generated for MNIST datasets using different versions
and fixed random seed.

the tree in the modified Barnes-Hut phase, which is a memory
bound step. Our current work further contributes to mitigate
memory accesses and reduce execution time. Our experiments
demonstrate that strategies such as the usage of the Implicit
Trees and Simulated Wide-Warp can speedup the tree traversal
and repulsive forces calculations step in up to 340% in 3
million point datasets. We would like to further study the
effectiveness of SWW applied to other steps of t-SNE-CUDA.

Notwithstanding the efficiency observed in the experiments,
only three-dimensional projections were implemented in this
work. However, we are confident that the two-dimensional
embedding can take greater advantage of the Simulated Wide-
Warp technique and achieve better speedups. This is due to
the fact that the SWW calculations in the 2-dimensional tree
utilizes fewer registers and demands less memory bandwidth
due to smaller trees. Further, several aspects can be explored to
improve the scalability of Barnes-Hut t-SNE in GPU without
compromising the quality of the projection, like the fact that
Simulated Wide-Warp enables the communication of different
virtual threads in GPU without a significant overhead, which
can be explored in future investigations.
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