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Abstract—In this paper, a modified version of maximum
correntropy criterion (MCC) with application in online regression
(or adaptive filtering) is proposed. It is well known that informa-
tion theoretic criteria such as error correntropy criterion (ECC)
and error entropy criterion (EEC) have the advantage of better
performance in supervised learning problems like regression and
adaptive filtering when the error between system output and
labels (sometimes called desired signals) contains outliers and/or
does not follow a Gaussian distribution. Specifically, we improve
the existing adaptive maximum correntropy criterion algorithm
(known as AMCC) by simply eliminating major outliers during
learning process. This elimination leads to better steady state
performance than previously known algorithms.

Index Terms—online regression, adaptive filtering, non-
Gaussian noise, impulsive noise, outlier rejection, maximum
correntropy criterion

I. INTRODUCTION

In learning theory, it is widely established that mean square
error (MSE) is not a reliable cost function when the error
either is non-Gaussian or contains outliers (i.e., it has a heavy-
tailed distribution). Although non-Gaussian error seems to be
abnormal based on the central limit theorem, it exists in the
real world due to ambient component noises or imperfect
measurements, and should not be ignored. As an example, we
can point to the existence of impulsive noise in underwater
communications [1]–[5]. In this scenario, limited number of
noise sources is involved because of limitation in frequency
band of operation, and therefore central limit theorem does not
hold anymore and we have to deal with non-Gaussian noise.

Two good and efficient alternatives for MSE criterion in
aforementioned environments, proposed in an information
theoretic sense, are EEC and ECC [6]–[8]. In fact, variance
and correlation are substituted with entropy in EEC and
correntropy in ECC, respectively. Assume we deal with an
adaptive filter (which can be considered as an online regression
problem) in which we try to learn the parameters of a system
continuously as we are receiving new data samples such that
error between system output and labels (or desired signals) is
minimized. All we have are data samples and we do not know
anything about data statistics. The idea behind using ECC
in supervised learning is the fact that correntropy is a local
similarity measure between system output and labels. We only
have data samples to estimate the correntropy. Correntropy
is defined based on the kernel used for Parzen error PDF

estimation, and it can be shown that its estimation from
samples reduces to estimation of error PDF at zero. This
means that maximizing correntropy criterion is equivalent to
maximizing estimated evaluation of error PDF at zero, and the
resultant algorithm is called maximum correntropy criterion
(MCC). Both learning algorithms based on EEC and ECC
(called MEE and MCC, respectively) outperform MSE in the
presence of non-Gaussian noise or outliers, and are known as
robust algorithms for online regression (or adaptive filtering)
in such environments. However, MCC has two significant
advantages over MEE. First, MEE needs to put the error at
the origin after minimizing the error entropy, e.g., by biasing
the system output, while this is not always an easy task to do.
MCC does not need such regularization [7]. Second, in each
adaptation step there is a computational complexity of O(N2)
for MEE while this complexity for MCC is O(N).

MEE and MCC involve kernels in which kernel bandwidth
can be viewed as a free parameter that can be also optimized to
increase learning precision. Interestingly, this free parameter
is much more flexible to be optimized in MCC compared
to MEE. Although MEE and MCC have been compared to
each other in some senses (for instance a new interesting
information theoretic comparison of MEE and MCC criteria
can be found in [9]), this superiority of MCC (i.e., more
flexibly adaptable kernel bandwidth) has not been paid enough
attention. This flexibility in kernel bandwidth adaptation for
MCC emerges from smooth dependency of MCC to the value
of the kernel bandwidth since error PDF estimation does not
matter when we consider MCC (this will become more clear
in the sequel) while in MEE, the kernel bandwidth can not be
selected arbitrarily in the sense that very large or very small
values for kernel bandwidth are prohibited. The reason for this
prohibition is that MEE involves directly entropy estimation,
and consequently Parzen error PDF estimation is involved,
therefore the value of kernel bandwidth should be selected
in a way that it compromises between bias and variance of
Parzen error PDF estimation.

Adaptation of kernel bandwidth as an extra step in learning
process has been already considered in the literature [10]–
[17]. For instance, in [10] and [11] Kullback-Leibler (KL)
divergence between the true and estimated error distribution is
minimized as a second cost function in the overall adaptation
problem. However, this approach will not be very efficient
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(for instance when the initial weight vector is far from the
optimal weight vector, it can not improve the convergence
speed [18]). In another work [12], the author tried to adapt
the kernel bandwidth for MCC based on the shape of error
distribution which is measured by its kurtosis. However, a
satisfying estimation of the shape of error distribution is not
a straightforward task to do. Authors in another paper [13]
tried to propose a simple algorithm for kernel bandwidth
adaptation that involves no extra free parameters. In this
algorithm, the kernel bandwidth in each iteration is updated
based on instantaneous error and changed to a predetermined
kernel bandwidth in order to avoid divergence when the
updated kernel bandwidth is smaller than this predetermined
value. Although this approach converges faster than previous
algorithms, it almost keeps their steady-state behavior. The
same authors modified their method in [14] in which they used
another kernel bandwidth update rule. Although it is still based
on instantaneous error and predetermined kernel bandwidth,
the new update rule helps the method not only to converge
faster but also to achieve a slightly lower steady state excess
mean square error (EMSE) than that of MCC. Authors in
[15] changed the Gaussian kernel used in the MCC definition
and developed a new algorithm to update kernel bandwidth
which converges faster than previous algorithms, and even
can achieve a lower steady state misalignment especially in
the environment where impulsive noise is considerably likely.
Although the structure of their algorithm is very similar to
previous gradient based algorithms, it is computationally more
expensive compared to them. Recently, we proposed a hybrid
method in [17] which achieves both fast convergence and low
steady state misalignment, however many parameters are left
to be predetermined. In addition, this approach is very sensitive
to step size variation.

In this paper, we consider linear adaptive filtering (or online
linear regression problem) used in various signal process-
ing applications such as communication channel estimation,
noise cancellation, system identification, etc. [19]. We modify
AMCC algorithm in [14] by stopping the learning process
in each step whenever we face a major outlier. This method
results in significant decrease in steady state misalignment at
the cost of some extra computations in order to check whether
an error sample is a major outlier or not in each iteration.

The remainder of the paper is organized as follows. In
Section II, we give a brief review on correntropy as an
objective function. In Section III, our method is proposed.
Section IV is devoted to presenting simulation results. Finally,
we conclude the paper in Section V.

Throughout the paper we use the terms adaptive filtering and
online regression interchangeably, and denote random vari-
ables by uppercase letters and their realization by lowercase
ones. In addition, we use boldface letters to show vectors, and
‖ . ‖ denotes 2 norm.

II. CORRENTROPY AS AN OBJECTIVE FUNCTION

Correntropy is defined as,

v (D,Y ) = ED,Y {Gσ (D − Y )} = EE {Gσ (E)} , (1)

in which D and Y are two random variables, E denotes
the error D − Y , Gσ(.) is a kernel function (usually Gaus-
sian kernel) and σ is kernel bandwidth which affects the
shape of the kernel function. As we only have data samples
{dn, yn} , n = 1 · · ·N, (or equivalently {en}, n = 1 · · ·N )
not joint PDF of D and Y (or equivalently not PDF of error
E), we use a sample mean to approximate expectation in
correntropy definition (1), i.e.

v̂ (D,Y ) =
1

N

N∑
n=1

Gσ (dn − yn) =
1

N

N∑
n=1

Gσ (en) , (2)

in which we consider a Gaussian kernel, i.e.,

Gσ (D − Y ) = exp(−‖ D − Y ‖
2

2σ2
).

Equations (1) and (2) suggest that correntropy can be consid-
ered as a similarity measure between two random variables
D and Y . In linear adaptive filtering, D is a random variable
denoting labels (or sometimes called desired signal) and Y
denotes the output of learned linear filter. However, why can
we use correntropy as an objective function to minimize the
error between labels and filter output? The answer is in the
relation between approximations of correntropy in (2) and PDF
of error. To be more clear, note that we can estimate a PDF
based on the samples of that PDF using a non-parametric
method called Parzen windows [20]. Using Parzen windows
for error PDF estimation from N samples, we have:

p̂E (e) =
1

N

N∑
n=1

Gσ (e− en) . (3)

By comparing (2) with (3) we can see v̂ (D,Y ) = p̂E (0).
This means that maximizing the estimate of error PDF at
0 is equivalent to maximizing the estimate of correntropy.
The correntropy maximization algorithm is called MCC in
literature.

It is well known that for environments with Gaussian noise,
MSE gives the optimum solution [21]. However, in non-
Gaussian environments we need higher-order statistics [6] and
this is why corrnetropy outperforms MSE in such environ-
ments. Indeed, we can use Taylor expansion of Gaussian kernel
in (1) and see that correntropy contains even-order moments
of the error not only second-order moment as MSE [14], [22],
i.e. (1) can be written as follows:

v (D,Y ) =
1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!
ED,Y

{
(D − Y )

2n
}
.

Moreover, to see how correntropy outperforms MSE in pres-
ence of outliers, it suffices to take a careful look at (2). Outliers
are abnormally large error samples resulted from impulsive
noise. As seen in (2), error samples are given a weight by
the Gaussian kernel where error samples with smaller values
have larger weights and consequently larger contribution in
objective function utilized in adaptation. On the other hand,
large error samples, or outliers, are given small weights and
are filtered out by Gaussian kernel.



In filtering out the outliers, kernel bandwidth σ has a
significant role. In fact, kernel bandwidth determines the
magnitude of weight that should be assigned to a specific error
sample. Generally, it affects the convergence rate and steady
state misalignment, therefore a proper method for adaptation
of σ will increase adaptive filtering efficiency.

Throughout the paper we try to learn the parameters of
a linear adaptive filter. As mentioned earlier, dn denotes
label (or desired signal) at time instant n. Note that dn
is corrupted with measurement noise. Furthermore, xn =[
xn, xn−1, · · · , xn−L+1

]T
is the input vector at time instant

n with length L where L denotes the size of adaptive filter
as well. We choose linear model for adaptive filter, therefore
the output of this filter is yn = xTnwn−1 where wn−1 is filter
parameter estimated at time instant n−1. Error sample at time
n is obtained as en = dn − xTnwn−1.

Correntropy is a bounded function [22]. We use gradient
ascent method to maximize correntropy. For simplicity, we
consider stochastic gradient ascent in which we drop the
expectation operator in (1) and only use the current error
sample to approximate the correntropy. Therefore we have
following online objective function:

JMCC (wn−1) = Gσ
(
dn − xTnwn−1

)
= Gσ (en) . (4)

Then, gradient ascent algorithm is as follows:

wn = wn−1 + µ∇JMCC (wn−1)

= wn−1 +
µ

σ2
exp

(
−e2n
2σ2

)
enxn, (5)

where µ is step size and ∇JMCC (wn−1) denotes the gradient
of online objective function (4) with respect to wn−1.

In next section, we propose a method that achieves a lower
steady state misalignment compared to previous algorithms.

III. PROPOSED METHOD

As mentioned earlier, we modify AMCC algorithm to
achieve lower steady state misalignment. Therefore, we briefly
review AMCC algorithm first, then move forward to explain-
ing the modification.

A. AMCC Algorithm

Consider linear adaptive filtering in an environment with
impulsive noise. Kernel bandwidth σn at each iteration is
obtained such that (5) approaches to its optimum weight value
faster. To this end, kernel bandwidth σn should maximize
following term of (5) in each iteration:

h
(
σ2
)
=

1

σ2
exp

(
− e2n
2σ2

)
. (6)

Note that at each iteration n, error sample en has already
been determined before updating kernel bandwidth, therefore

Fig. 1. Plot of the function h
(
σ2

)
for different values of en.

we only need to take derivative of (6) with respect to σ2. We
have:

∂h
(
σ2
)

∂ (σ2)
=

− 1

σ4
exp

(
− e2n
2σ2

)
+

(
e2n

2 (σ2)
3

)
exp

(
− e2n
2σ2

)
= 0

=⇒ σ2
n =

{en2
2
,∞
}
.

Clearly, we have:

h
(
σ2
) ∣∣∣
σ2=

e2n
2

=
2

e2n
exp (−1) > lim

σ2→∞
h
(
σ2
)
= 0,

therefore, σ2
n =

e2n
2 maximizes the function h

(
σ2
)

for a fixed
en. Figure 1 shows how h

(
σ2
)

in (6) varies with σ2 for
different values of en. As seen in Figure 1, the maximum of
function h

(
σ2
)

which obtained at σ2
n =

e2n
2 tends to infinity

as en tends to zero, therefore in order to avoid divergence of
the algorithm (5) when en is getting smaller, adaptive kernel
bandwidth is modified as follows:

σ2
n =

e2n
2

+ σ2
0 , (7)

in which, as explained in [14], kernel bandwidth at iteration n
switches to a predetermined kernel bandwidth σ0 when error
en is small.

Thus far we only talked about an adaptive kernel bandwidth
for MCC that speeds up the convergence rate. From now on
we focus on decreasing steady state misalignment.

B. Modification to AMCC Algorithm
In order to reach a lower steady state misalignment we

employ a filter with variable bandwidth in each iteration to
reject major outliers. In fact, we modify the algorithm (5) as
follows:

wn = wn−1 +
µ

σ2
n

f (en) exp

(
−e2n
2σ2

n

)
enxn, (8)



Fig. 2. Plot of the function f (en) at time instant n.

in which f (en) is the filter and σ2
n is substituted from (7).

However, what are the boundaries that specify major outliers?
In other words, how we can determine the variable bandwidth
of the filter f (en)? We use running quartiles of the error
samples. Generally speaking, median (or generally any quan-
tile) of a data set is a robust quantity of data against outliers,
therefore we can use the concept of outer fences to determine
filter boundaries for major outlier rejection [23], [24]. Figure
2 denotes these boundaries. In this figure, Q1, Q2 and Q3 are
lower quartile (or 25th percentile), median, and upper quartile
(or 75th percentile), respectively. In addition, IQR = Q3−Q1
stands for inter-quartile range, and outer fences are shown by:

lower extreme = Q1 − 3× IQR,
upper extreme = Q3 + 3× IQR.

Note that quartiles are functions of time n which means
these filter extremes vary once new error sample is available,
therefore we have to deal with running quartiles. Running
quartile estimation from data samples has been widely studied
in literature [25]–[29]. In this paper, we simply use order
statistics in which we sort all observation samples at each
time instant n. The complexity of this operation is O (n) and
we need to store all previous data samples, however we could
choose a proper algorithm from aforementioned algorithms in
order to decrease memory or computational requirements. Our
algorithm is proposed in the following.

IV. SIMULATION RESULTS

In this section, our simulation results show how our method
outperforms other methods in term of steady state misalign-
ment. We use the model in [30], [31] and [15] for impulsive
noise environment. We assume that input samples xi are drawn
as xi ∼ N (0, 1). Optimum weight vector of unknown filter
is generated randomly and is a unit vector wopt ∈ RL where
L = 5 denotes the filter length. The desired signal at time
instant n is modeled as,

Algorithm 1 Our Algorithm for Online Linear Regression
Inputs: {xn, dn}
Output: wn

Initialisation : w0 = 0 and σ0
1: for each iteration n do
2: en = dn − xTnwn−1
3: σ2

n =
e2n
2 + σ2

0

4: Sort error samples and find Q1 and Q3

5: IQR = Q3 −Q1

6: Lower Extreme =Q1 − 3× IQR
7: Upper Extreme =Q3 + 3× IQR
8: if (Lower Extreme ≤ en ≤ Upper Extreme) then
9: f (en) = 1

10: else
11: f (en) = 0
12: end if
13:

wn = wn−1 +
µ

σ2
n

f (en) exp

(
−e2n
2σ2

n

)
enxn

14: end for
15: return wn

dn = xTnwopt + νn + ηn,

where νn ∼ N
(
0, σ2

ν,n

)
and ηn are white Gaussian and

impulsive measurement noises, respectively. We assume that
there is 30dB signal to white Gaussian measurement noise
ratio where this signal to noise ratio (SNR) is calculated as
follows:

SNR = 10 log10

E
{[

xTnwopt
]2}

σ2
ν,n

 .

Impulsive measurement noise is created as ηn = βnωn where
βn ∼ Bernoulli(p) in which p is probability of success (or
equivalently the probability of existence of impulses in noise)
and ωn ∼ N

(
0, 1000E

{[
xTnwopt

]2})
. We assume p = 0.2

in our simulations. At each time instant n, we obtain wn, and
accordingly we obtain misalignment based on the following
normalized mean-square deviation (NMSD):

misalignmentn = 10 log10

(
‖ wn − wopt ‖2

‖ wopt ‖2

)
.

First, consider (5) in which there is no filter f (en), and σ2
n =

e2n
2 + σ2

0 . Figure 3 shows how using (7) for σ2
n can increase

convergence rate. Figure 4 shows how learning curves of (5)
with σn from (7) vary with different values of predetermined
kernel bandwidth σ0. As seen in this figure, by increasing
predetermined kernel bandwidth σ0 convergence rate always
decreases while steady state misalignment decreases first and
then it increases.

Now, what happens when we employ filter f (en) in (5), i.e.
when we use (8). As illustrated in Figure 5, when we employ
the filter f (en), learning curve always converges slower to



Fig. 3. Learning curves of MCC (5) with fixed σ = 0.25 and with variable
σn from (7) with σ0 = 0.25 (µ = 0.01).

a lower steady state misalignment when we increase prede-
termined kernel bandwidth σ0. Let us discuss the learning
curve behaviour in Figures 4 and 5. As seen in these figures,
by increasing predetermined kernel bandwidth σ0 in (5) and
(8) the gradient ascent whole step size µ

σ2
n

decreases and
both algorithms converge slower. However, the steady state
misalignment behaviour of our algorithm is different with
that of (5). The reason is that when there is no filter f (en),
although we are decreasing whole step size value µ

σ2
n

with
increasing σ0 and we expect to achieve lower steady state
misalignment with iterations, at the same time we are giving
a big weight to outliers (i.e., large error samples) based on the
correntropy definition which can result in higher steady state
misalignment. Therefore there is a tradeoff between these two
factors and once σ0 is large enough the latter factor dominates
the other one. We observe that this issue has been resolved in
our algorithm as shown in Figure 5 in which learning curve
always achieves lower steady state misalignment with increase
in σ0.

Figure 6 illustrates how learning curve of our algorithm
changes with step size µ. As expected, larger step size results
in faster convergence to a higher steady state misalignment.

Finally, Figure 7 shows how our proposed method in section
III outperforms other algorithms from steady state misalign-
ment point of view. These learning curves for 20000 iterations
are obtained by averaging over 10 independent trials. Step size
µ is set to 0.01. As seen, the LMS algorithm diverges to a high
steady state misalignment when impulses occur in the noise
(or equivalently when we have outlier error samples). AMCC
algorithm in [14] outperform LMS when there is impulse in
noise. VKW-MCC in [15] is both faster and achieves a lower
misalignment compared to previous algorithms. Finally, our
algorithm converges to the lowest steady state misalignment
compared to other algorithms.

Note that we could combine our algorithm with a fast
algorithm (e.g., recursive MCC) and propose a hybrid method

Fig. 4. Learning curves of MCC (5) with variable σn from (7) with different
values of σ0 (µ = 0.01).

Fig. 5. Learning curves of our algorithm (8) with different values of σ0
(µ = 0.01).

like [17] in which the overall hybrid algorithm not only
achieves a lower steady state misalignment but also converges
faster.

V. CONCLUSIONS
This paper addresses the problem of online linear regression

(or linear adaptive filtering) which has applications such as
channel estimation. We consider the presence of outliers and
impulsive noise in the environment. Correntropy is well known
as a reliable cost function in such environments. In this paper,
we use error samples running quartiles to find out whether a
new error sample is a major outlier or not. If it is, we stop
learning process (in which we use an existing algorithm called
AMCC) based on that error sample and wait for next error
sample to continue the learning process. Simulation results
show that our algorithm achieves more accurate steady state
performance compared to previous results.



Fig. 6. Learning curves of our algorithm (8) for σ0 = 0.8 and different
values of step size µ.

Fig. 7. Learning curves of different algorithms (µ = 0.01).
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