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Abstract—In this paper, we design, develop and evaluate an
in-home lower body rehabilitation system based on a novel
lightweight human pose estimation model. To achieve that,
we first create a lower body rehabilitation dataset of 500,000
images with each image annotated with the ground truth joint
point locations. The dataset consists of 31 different types of
lower body rehabilitation activities from twenty volunteers. After
that, we design a lightweight but powerful neural network
model, which runs on a smartphone, to estimate human pose.
Furthermore, we develop a series of principles for evaluating
in-home rehabilitation activities of patients in terms of the
range of motion and duration of activities. For the concern of
privacy, all the data collected from patients are encrypted, stored
and processed locally on patients’ own smartphones. Only the
sanitized evaluation reports are uploaded and shared with the
patients’ primary doctors. Our model achieves 70.8 in AP score
on the COCO val2017 set with only 4.7M parameters and 1.0
GFLOPs. Using our system, patients can perform lower body
rehabilitation activities at home and obtain evaluation report
without the presence of physical therapists. We believe our system
can greatly facilitate in-home rehabilitation and reduce the cost
for patients.

Index Terms—in-home lower body rehabilitation system, hu-
man pose estimation

I. INTRODUCTION

Nowadays, physical therapies play a critical role in reha-
bilitation for post-operation patients and patients with a wide
variety of diseases. However, physical therapies can be very
expensive and inconvenient. A physical therapy session usually
costs from $50 to $350 or more in the U.S. and a complete
physical therapy process typically requires 2 to 3 sessions
at the clinical centers per week for months and even years.
As a result, physical therapies can be unaffordable for many
patients especially for those not covered by medical insurance.
To reduce in-clinic visits, in-home computer-assisted physical
therapy solutions have attracted extensive attention. However,
in-home rehabilitation can still be costly because it requires the
presence of therapists for supervision and evaluation. Another

important challenge is that the in-home environment is often
computing resource constrained and thus calls for a compu-
tationally inexpensive system such as a mobile smartphone.
Motivated by these observations, the goal of our research is to
make rehabilitation at home both affordable and portable in a
computing resource poor environment.

In addressing the challenges of human supervision and
evaluation of physical activities, we focus on the intrinsic
problem of a human pose estimation that detects the positions
of human body key joint points (shoulder, elbow, knee, wrists,
etc.) from a single image, a series of images by a single
camera, or multiple images from multiple cameras. In this
paper, we specifically aim at the scenario of using single-
image from a single camera which can lead to low-cost and
effective solutions. The techniques developed for this scenario
will provide an important foundation and insights into more
general multi-camera multi-image cases.

Due to the powerful representational capabilities of Con-
volutional Neural Networks (CNNs), the research on human
pose estimation has witnessed significant advances recently
[7] [8] [10] [11] [12] [13] [26]. For instance, High Resolution
Network (HRNet) [13] leverages multiple resolution branches
throughout the whole network and achieves the state-of-the-
art performance on public datasets, such as COCO Keypoints
Detection Dataset [14] and MPII [15]. However, these state-of-
the-art solutions are too complicated to be deployed on mobile
devices. For example, the number of parameters in HRNet
model and Simple Baseline [12] model are up to 63 million
and 68 million, respectively, rendering them impractical for a
mobile device environment with limited computing resources.
While it is possible to deploy the models as web services on
powerful servers in the cloud, the privacy of patients is at risk
as the original patient images are uploaded, which may violate
strict privacy laws such as HIPAA and GDPR if not carefully
handled. For this concern, we believe that a better solution is
to have the system run locally on mobile devices.
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Fig. 1: Illustration of the three phases of our research. In Phase I, we collect and preprocess data to produce Lower Body
Rehabilitation Dataset. Phase II shows our training process of the proposed Lightweight Pose Estimation Model. After that,
we deploy it in the last phase.

In this paper, we propose a lightweight HRNet. In particular,
we introduce depth-wise and dilated convolutional layers in the
original model to significantly reduce both the parameter size
and computation cost. To further improve the accuracy, we add
attention branches in the proposed model with very little extra
computation operations, which extract additional features by
compressing and recovering the channels of the input feature
map. With these modifications, our model can be deployed in
smartphones and achieve high accuracy.

We also address in this paper the limitations of available
datasets. Current public datasets for human pose estimation
tasks such as Leeds Sports Poses (LSP) [1], MPII [15] and
COCO Keypoints Detection [14], etc., are all designed for
general purposes. Activities recorded in these datasets are very
different from the rehabilitation activities. Moreover, we find
that the ground truth locations of the body key joint points
can be inaccurate in these datasets. For example, in COCO
Keypoints Detection dataset, the shoulder location may be
distributed across the whole shoulder part, which is unac-
ceptable for the fine-grained activity evaluation and analysis
required for rehabilitation assessment. To this end, we create
a new dataset of lower body rehabilitation exercises using a
3D capture system. A total of 31 different types of rehabil-
itation activities from twenty volunteers are collected under
the guidance of a physical therapist. After raw videos and
annotations are collected, we review and refine the keypoint
positions to ensure accurate annotations for each frame. To the
best of our knowledge, this is the first rehabilitation activities
key points detection and evaluation dataset. Experiments show
that the models trained on our dataset can achieve excellent
performance.

We implement our models in a prototype system, which
consists of three major components: a mobile application
(with a built-in lightweight HRNet model) for patients, a
mobile application for doctors, and a web server to share data

between patients and their primary doctors. The application
for patients is the key part of our system, collecting images
of rehabilitation activities by the patients and processing them
locally. Only the final analysis reports are uploaded to the
server and shared with doctors. After reviewing the reports,
doctors can provide feedback and arrange new rehabilitation
plans for their patients, which are carried out in the application
for doctors and sent to patients through the web server.

In summary, our main contributions in this paper include:
• We create the first lower body rehabilitation human key

points detection dataset, which focuses on the recogni-
tion of lower body rehabilitation exercises, and helps to
improve the neural network model performance for pose
estimation on rehabilitation activities.

• We propose a lightweight human pose estimation model
that runs on a smartphone smoothly without sacrificing
much in accuracy.

• We design an in-home lower body rehabilitation system
that allows patients to carry out rehabilitation by them-
selves at home through a smartphone. Evaluation reports
for rehabilitation activities of a patient are sent to his/her
primary doctors so that they can follow up on the patient’s
progress and arrange new rehabilitation activity plans.

II. RELATED WORK

A. Lower body rehabilitation

The past decade has seen the rapid development of lower
body rehabilitation in many cases. After knee arthroplasty,
ambulation recovery is the primary concern for lower body
rehabilitation patients. This requires a series of knee exercises
that enable patients to improve the range of motion easily and
carry out activities of daily life [20].

Along with the growth in clinical rehabilitation, however,
there are increasing concerns over the cost and efficiency.
The main challenge faced by clinical rehabilitation is that



the recovery usually calls for a long-term intensive exercise
program, which is time-consuming, expensive, and difficult.
Motivated by this, several studies have been conducted on in-
home rehabilitation. For instance, [21] tracks patients’ move-
ments via video capture virtual reality technology to reduce
the cost while increasing efficiency. To further enhance pa-
tient engagement, [22] shows that well-designed video games
such as motion-controlled video games could be an effective
supplement to traditional physical therapy.

B. Human pose estimation

Human pose estimation remains one of the hottest research
topic for decades. Before the advent of CNN, people have
devised a variety of features to detect body key joint points in
images [3] [4] [5]. After the AlexNet [6] won the ImageNet
challenge in 2012, CNNs have been widely used in human
pose estimation [7] [8] [9] [10] [11] [12] [13] [26]. For exam-
ple, [26] proposes a Cascade Pyramid Networks to combine
feature information from multiple scale representation maps.
HRNet [13] keeps a high resolution feature representation
branch through the whole architecture. The high resolution
features will be augmented with lower resolution features.
Benefiting from multiple resolution features, HRNet achieves
the state-of-the-art performance in major public datasets, such
as COCO keypoint detection dataset [14], MPII [15], and
PoseTrack [16].

C. Human body key points detection dataset

The COCO Keypoint Detection Dataset [14] has gone
through different versions since its creation. The latest popular
version was published in 2017. It contains more than 57K, 5K
and 20K images for training, validation, and test respectively.
The MPII Human Pose dataset [15] contains 25K images with
more than 40K subjects, in which there are 28K subjects for
training, and the rest for testing. The extended LSP dataset [1]
consists of 11K training images from sports activities and 1K
images for testing. All images in these datasets are collected
from real-world scenarios across a wide range of activities.
However, these activities are very different from rehabilitation
exercises. The Human3.6M dataset [17] provides more than
3.6M images with labeled key points generated indoor by a
motion tracking system from several volunteers. However, this
dataset only covers several special daily activities, which are
also different from rehabilitation activities.

III. OUR METHOD

A. System description

Our system is based on the latest deep learning algorithms
tailored for human pose estimation. It can identify and track
the movement of human joint points captured in live video or
stored video files, without requiring any wearable accessories
on the human body. Given the coordinates of the joints, we
can calculate the angle of the target joints and evaluate the
activities of the patients. As shown in Fig. 1, our research is
mainly divided into three phases. In the first phase, we collect
and preprocess data to construct Lower Body Rehabilitation

(a)

(b)

(c)

Fig. 2: (a) Motion Lab environment. (b) Cameras placement.
(c) Motion tracking system screenshot.

Dataset. Following this, we train the proposed Lightweight
Pose Estimation Model and then deploy it in the third phase.
Our prototype system can be deployed on a mobile plat-
form as a Health Insurance Portability and Accountability
Act (HIPPA)-compliant app, allowing greatest flexibility in
location and time of physical therapy rehabilitation exercises.

B. Lower body rehabilitation dataset

In the research for the rehabilitation assessment, it is neces-
sary to build a specific dataset for lower body rehabilitation.
First of all, we collect data in a motion lab, which consists of
nine high-performance cameras and an optical motion tracking
system (Fig. 2). Each camera covers a wide angle of 70 degrees
view with a resolution of 1.7 MP, offering an expansive camera
coverage with a capture rate of 360 FPS [2]. The optical
motion capture system is equipped with the tracker’s industry-
leading 3D reconstruction and rigid body solution. As shown
in Fig. 3, we attach reflective markers on the human body
joints axes. The nine cameras are placed around the human
body, eight of which continuously track the movement of
markers in ”Object Mode”. In such a way, these eight cameras
record raw 2D video frames, which are then processed by
Motive software to generate 3D coordinates of each marker.



Fig. 3: Marker Position

The remaining camera is placed in front of the human body at
a height of 60 inches, perpendicular to the plane of interest,
and is responsible for recording the frontal RGB video of the
target. As a result, we obtain the ground truth 2D/3D locations
of all the markers through the motion tracking system.

The main challenge faced during the data collection is the
shift of markers on the body due to movement of limbs.
Proper marker placement is vital for the quality of motion
data because each marker on a tracked subject is used as
indicators for both position and orientation. For the purpose of
mounting marker on skin, we adopt the rigid plastic marker
base to reinforce the stability of marker. Another challenge
is the motion tracking software does not label the tracked
markers automatically. Therefore we have to manually label
each detected marker with an accurate keypoint frame by
frame in the videos. With the motion tracking system, we are
able to label markers through several consecutive time frames.

C. Clinical requirements of lower body rehabilitation exer-
cises

In our data collection process and later evaluation, we take
into consideration the clinical requirements of lower body
rehabilitation as advised by a licensed physical therapist. This
is because (1) we aim to ensure that the exercise performed
by volunteers meet the standard of rehabilitation purposes; and
(2) the assessment on the rehabilitation exercise images relies

Activity Name Activity Type
Supine Ankle Pumps

Supine

Small Range Straight Leg Raise
Supine Alternating Small Range Straight Leg Raise
Supine Short Arc Quad
Supine Bridge
Supine Hip Abduction
Supine Knee to Chest with Leg Straight
Supine Heel Slides
Normal Range Straight Leg Raise
VMO Straight Leg Raise
Sidelying Hip Abduction
Mini Squat with Counter Support

Standing

Standing March with Counter Support
Standing Hip Abduction
Standing Hip Adduction
Standing Hip Flexion with Chair Support
Standing Marching
Standing Hip Extension
Step Up
Step Down
Lateral Step Ups
Seated Ankle Circles

Seated

Seated Ankle Pumps
Seated Active Assistive Knee Extension and Flex-
ion Foot on Floor
Sit to Stand
Squat with Chair Touch
Seated Long Arc Quad
Seated March
Seated Hip Flexion
Seated Knee Flexion Extension AROM
Seated Heel Raise

TABLE I: Rehabilitation Activities in our study. It contains
three main categories: Supine(11 exercises), Standing(10 ex-
ercises), and Seated(10 exercises).

on the clinical guidelines and common practice with respect
to quantitative metrics such as range of motion and angle of
limbs.

Under the guidance of a licensed physical therapist, we
select the most common and widely adopted 31 therapeutic
exercises (Table I) in our study. These exercises can be di-
vided into 3 categories: Supine, Standing, and Seated. During
data collection, we strictly follow the standards provided by
therapists. Some details are described as follows.

For the speed of motion, all exercises are recommended to
be performed slowly which is rule number one for a home
exercise program, especially in the early stage of recovery.
In a newly operated total knee replacement, the knee Range
of Motion (ROM) is usually limited. This is particularly true
for patients after the knee replacement operation. Take Seated
Heel Raise as an example, patients only need to lift the heel
off the ground to be considered as completed.

For the range of motion, note that in Table I, actions can
be very similar to each other. For instance, Small Range
Straight Leg Raise requires a 30 to 45 degrees raise of legs
while Normal Range Straight Leg Raise normally asks for
raising leg from 45 to 75 degrees. Meanwhile, for these two
actions, it is important to point the toes up in the exercising
leg. The inactive leg must be bent on the bed to protect the
patient’s lower back. Such quantitative metrics are counted
during rehabilitation activity evaluation.
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Fig. 4: Illustrating the details used in our proposed model.

For the activity type of standing and sitting, the upper body
usually needs to be kept upright. This can be assisted by
supporting objects. For example, in the activity of Sit to Stand
and Seated Hip Flexion, patients can support their trunks by
holding a chair with their hands to keep their bodies stable. In
addition, another rule is that a patient should move his/her hip,
knee and ankle joints in normal alignment. This rule applies to
Supine Heel Slides, Sidelying Hip Abduction, Seated Active
Assistive Knee Extension and Flexion Foot on Floor, Standing
Hip Flexion with Chair Support, Seated Long Arc Quad, and
Seated Knee Flexion Extension AROM, etc.

The range of motion angles and the body position are
important indicators to a physical therapist to evaluate the
compliance and effectiveness of rehabilitation exercises. We
strive to pay attention to these metrics and requirements during
the data collection process where volunteers are trained and
instructed to perform in the motion lab. Our goal is to use such
a dataset to train neural network models which can be utilized
to recognize the keypoints and calculate range of motion and
assess compliance to body position requirements.

In the data collection process, each volunteer performs

feature
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samp.
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samp.

Attention
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Fig. 5: Illustrating the architecture of the proposed model. It
keeps the multiple resolution subnetworks, down samplings
and up samplings from the original HRNet. But the deep
convolutional blocks are replaced by the attention EESP blocks
in Fig. 4(e). Better viewed in color.

31 activities that lead to about 53 videos recorded (some
require both left and right camera views), and the duration
of each video is approximately 25 seconds. Generally, for
each volunteer, it takes about 2 hours to collect satisfactory
movement data as the volunteers need to be trained. After
collecting raw 2D/3D data of each person, it takes about 10
hours to complete the post-processing which requires extensive
time to label the keypoints in video frames based on marker
locations.

D. Lightweight human pose estimation model

We make effort to design a neural network model that is
both accurate and lightweight in computation. MobileNet [18]
is the most widely adopted deep convolutional neural network
backbone for computer vision applications deployed on mobile
devices. In [28], the authors implement a real-time human
pose estimation model running on CPU based on MobileNetv1
[18], however, with moderate performance. Meanwhile, other
deep CNN backbones for pose estimation, such as Hourglass
[8], ResNet [12] and HRNet [13], have achieved great per-
formance. In particular, HRNet leverages multiple resolution
branches, which keeps the high resolution branch over the
whole network, and gradually adds a lower resolution branch
in each following stage. At the end of each stage, the feature
maps from all other lower resolution branches are merged to
the high resolution branch. Through this procedure, the HRNet
has excellent representation capability. Nevertheless, HRNet
network is too complicated to be deployed on mobile devices.

To benefit from the advantage of the HRNet and the
MobileNet, we adopt HRNet as the backbone and leverage
the modules in MobileNetv1 to simplify the original network.
Specifically, the depth-wise separable convolution was first
proposed in MobileNet [18], which is one of the most common
choices in lightweight deep CNN models recently. The process
of the standard convolution is showed in Fig. 4(a). While the
two steps of the depth-wise separable convolution are showed



Fig. 6: MotionPal User Interfaces (left to right: Assign Exer-
cise Action, Preview Exercise Video, Perform Exercise Action)

in Fig. 4(b). The computation cost for the standard convolution
in Fig. 4(a) is calculated by (assuming padding is used):

DK ×DK ×M ×N ×DF ×DF (1)

where DK ×DK is the kernel size, DF ×DF is the feature
map size, M is the number of input channels and N is the
number of output channels. In contrast, the computation cost
for the depth-wise separable convolution in Fig. 4(b) is:

DK ×DK ×M ×DF ×DF +M ×N ×DF ×DF (2)

Comparing these two, we get a reduction in computation of:

DK ×DK ×M ×DF ×DF +M ×N ×DF ×DF

DK ×DK ×M ×N ×DF ×DF

=
1

N
+

1

D2
K

(3)

In this paper, we use 3x3 filters in depth-wise separable con-
volution which saves about 90% of the computation compared
to the standard convolution.

The attention mechanism has demonstrated salient advan-
tages in the computer vision community [24]. In this paper,
we design a special channel attention module as illustrated
in Fig. 4(c). In this module, the feature map’s channels are
compressed to a quarter of the original size before they are
recovered to the original number of channels, which generates
attention-aware features. All these operations are implemented
by 1x1 convolutional layers.

We also leverage the dilated convolution [23] for its spatial
features extraction capability, which is a technical improve-
ment over the standard convolution to extract feature informa-
tion from a wider area of the input with the same computation
cost. In Fig. 4(d), the bottom block shows the process of the
dilated convolution with a rate of 2 compared with the standard
convolution at the top.

Combining the modules above, we obtain a novel Attention
EESP (Extremely Efficient Spatial Pyramid of Depth-wise
Dilated Separable Convolutions [19]) block that not only uses
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Fig. 7: MotionPal Application Architecture

much fewer parameters and computation operations than those
in the original HRNet architecture but also processes excellent
representation capability. The original EESP unit splits the
standard convolution to several branches and chooses depth-
wise separable convolutions to reduce most of the computa-
tional cost. Meanwhile, it adopts the dilated convolutions to
improve the feature representation capability. We redesign the
EESP unit by adding a channel attention branch. Fig. 4(e)
shows the architecture of our attention EESP block. As shown
in Fig. 4(c), the convolutional filters used in our attention
branch are of 1x1 size, which has a computational cost of:

2 × C × C

4
×DF ×DF +

C

4
× C

4
×DF ×DF

=
9

16
× C × C ×DF ×DF

(4)

where DF × DF is the feature map size and C is the input
channel. The cost is much smaller than that of the standard
convolution in Equation (1).

Fig. 5 shows the architecture of our model. The red arrows
represent our attention EESP blocks as shown in Fig. 4(e), and
the rest are the same as in HRNet.

E. MotionPal Application

Leveraging the refined neural network model, we have
designed an application MotionPal on a mobile platform
to perform the rehabilitation motion capture and analysis
functionalities without any wearable accessories (Fig. 7). It
executes our novel deep learning algorithm and provides
insights into the design of a new scenario of in-home rehabili-
tation. More importantly, because we introduced different roles
and interfaces for therapists and patients, MotionPal provides
a bridge between therapists and patients for evaluating the
rehabilitation outcomes.

MotionPal allows a patient to perform rehab exercise at
home following the instructions and receive an analysis report
based on the trained model. The only preparatory work a
patient has to do is placing the smartphone at the optimal
recording location at a height of 60 inches, as same as the
position of our video mode camera during the data collection
process. The analysis report will be shared with the therapist
responsible for the patient. As shown in Fig. 6, the screenshots
present the main features of MotionPal. A patient client can
use the app to preview the exercise activity video, perform the
exercise activity, review the analysis detail report, and modify



Method Backbone Pretrain Input size #Params GFLOPs AP AP 50 AP 75 APM APL AR
8-stage Hourglass [8] 8-stage Hourglass N 256x192 25.1M 14.3 66.9 - - - - -

CPN [26] ResNet-50 Y 256x192 27.0M 6.20 68.6 - - - - -
SimpleBaseline [12] ResNet-50 Y 256x192 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [12] ResNet-101 Y 256x192 53.0M 12.4 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [12] ResNet-152 Y 256x192 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8

HRNet-W32 [13] HRNet-W32 N 256x192 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9
HRNet-W32 [13] HRNet-W32 Y 256x192 28.5M 7.10 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [13] HRNet-W48 Y 256x192 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4

SimpleBaseline [12] ResNet-152 Y 384x288 68.6M 35.6 74.3 89.6 81.1 70.5 79.7 79.7
HRNet-W48 [13] HRNet-W48 Y 384x288 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2

Lightweight OpenPose [28] MobileNetv1 N 384x288 2.5M 3.6 62.5 87.3 67.8 58.6 68.0 72.3
LPN [29] ResNet-50 N 256x192 2.9M 1.0 69.1 88.1 76.6 65.9 75.7 74.9

Ours HRNet-W32 N 256x192 4.7M 1.0 70.8 91.5 78.3 68.2 74.6 73.8

TABLE II: Comparisons on the COCO validation set. Pretrain = pretrain the backbone on the ImageNet classification task.
Method Backbone #Params GFLOPs AP

SimpleBaseline [12] ResNet-50 34.0M 8.90 87.0
HRNet-W32 [13] HRNet-W32 28.5M 7.10 89.3

Ours HRNet-W32 4.7M 1.0 88.3

TABLE III: Comparisons on our Lower Body Rehabilitation
Activities Keypoint Detection validation set. The input size is
256x192 for all models.

the basic health information. For a therapist, MotionPal allows
him/her to review the patients list, the basic health information,
the detailed analysis report, and the activities progress made
by each patient. Moreover, the therapist is able to assign new
exercise activity to patients.

This application was built to be compliant with the Health
Insurance Portability and Accountability Act (HIPAA), includ-
ing strong password protection and 128-bit encryption. In fact,
as the video capture and analysis are executed locally on the
smartphone and all of the data will be stored in the smartphone
of the user, there is no protected health information (PHI) that
is transferred outside from the device.

IV. EXPERIMENTS

We evaluate our proposed model on both public dataset (i.e.
COCO2017) and our new lower body rehabilitation dataset. In
this way, we can understand the generality and effectiveness
of the model.

A. COCO Keypoint Detection

Dataset. COCO keypoint detection dataset [14] contains
over 200K images and 250K person instances labeled with
17 keypoints. We train our model on COCO train2017 dataset
that consists of 57K images and 150K person instances. We
evaluate our model on the val2017 set with 5000 images.

Evaluation metric. The keypoint evaluation metrics used
by COCO is Object Keypoint Similarity (OKS): OKS =
Σi[exp(−d2i /2s2k2i )δ(vi > 0)]/Σi[δ(vi > 0)]. Here di is
the Euclidean distance between each corresponding ground
truth and detected keypoint, vi is the visibility flag of the
ground truth, s is the object scale, and ki is a per-keypoint
constant that controls falloff. We report standard average
precision and recall scores [25]: AP (AP at OKS=.50:.05:.95,
primary challenge metric), AP 50 (AP at OKS=.50, loose

Method #Params GFLOPs AP
HRNet-W32 [13] 28.5M 7.10 73.4

HRNet-W32 + EESP block 3.2M 0.65 65.9
HRNet-W32 + Attention EESP block s=2 7.8M 1.8 71.2
HRNet-W32 + Attention EESP block s=4 4.7M 1.0 70.8
HRNet-W32 + Attention EESP block s=8 3.8M 0.79 67.9

TABLE IV: Comparisons on the COCO validation set. The
input size is 256x192 for all models.

metric), AP 75 (AP at OKS=.75, strict metric); APM (AP for
medium objects) , APL (AP for large objects); and AR at
OKS=.50:.05:.95.

Training and Testing. We follow most of the default
settings in HRNet [13] including the input size, data augmen-
tation, and the Adam optimizer. But the learning schedule is
different, which sets the initial base rate as 1e-2, and reduces
it to 1e-3, 1e-4, and 1e-5 at the 20th, 170th, and 200th epochs,
respectively. This schedule is chosen because we start the
training from scratch. The training process is terminated within
210 epochs.

To test our model on the validation set, we adopt the
two-stage top-down paradigm: detecting the person instance
using a person detector, and then predicting keypoints. We
use the same person detectors provided by HRNet [13] for
the validation set.

Results on the validation set. We compare the results
of our model and other state-of-the-art methods in Table II.
Our model adopts HRNet-W32 as the backbone. We train the
model from scratch with an input size of 256x192, which
achieves an AP score of 70.8, with 4.7M parameters and
only 1.0G FLOPs. This result outperforms other lightweight
models, such as Lightweight OpenPose [28] and LPN [29].
Especially, our model achieves the best AP 50 score.

B. Lower Body Rehabilitation Activities Keypoint Detection

Dataset and evaluation metric.. Our lower body rehabilita-
tion activities keypoint detection dataset is organized following
the COCO dataset. Our dataset is split into a training set
and a validation set of 500,000 images and 10,000 images,
respectively. And the images in the training set and the
validation set are from different volunteers. The ground truth
results are stored in JSON files in the same structure as in
the COCO dataset. There are 30 keypoints for each person



instance in our dataset, and there is only one person in each
image. All the images are of 720p resolution with the same
size. The evaluation metric used in our dataset is the same as
in the COCO dataset.

Training and Testing. Firstly, we modify the COCO API
codes to process the images in our dataset and calculate the
standard average precision and recall scores. Then we follow
the same input size, data augmentation, Adam optimizer, and
the learning schedule as for the COCO dataset. The input size
is 256x192 for all models in our experiments. And all models
are trained from scratch.

Results on the validation set. We compare the results of
our model and the benchmark methods in Table III. While
the original HRNet-W32 [13] network achieves the best per-
formance with an 89.3 AP score, our model performs slightly
worse with an AP score of 88.3, better than the SimpleBaseline
[12] with ResNet-50. Note that our model size (#Params) is
16% of HRNet-W32 and the complexity (FLOPs) is 14%.

C. Ablation Study

To investigate the effectiveness of our architecture, we carry
out the ablative analysis on the COCO validation set so that
the results can be compared with prior work. We compare the
models with and without different types of attention branches.
In our attention branch, we first compress the number of
channels to c/s, where c is the number of channels in the input
feature map, s is the scale parameter. After a convolutional
layer, the number of channels is recovered to c. Firstly, the
original EESP blocks without attention branches are used to
replace the deep convolutional blocks in the HRNet-W32.
Then, we test our attention EESP block with different scales
for channel attention branches. All these models are trained
from scratch on COCO training set with the input size 256x192
and tested on COCO validation set. As shown in Table IV, all
the models using attention branches achieve better AP scores
than that without attention branches.

V. CONCLUSION

In this paper, we propose a human pose estimation based
lower body rehabilitation system to assistant patients with
lower body rehabilitation activities at home by themselves
only through a smartphone. We also redesign a lightweight
deep CNN model for human pose estimation that runs on
a mobile device smoothly. Experiment results show that our
model, using much fewer parameters and less computation
cost, achieve comparable performance with the state-of-the-
art method.

The future work includes improving the deep CNN model
for mobile devices, extending the rehabilitation detection
dataset to contain more types of rehabilitation activities from
more patients, and increasing the 3D location information of
the human body keypoints for 3D pose estimation.
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