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Abstract—The missing data issue is often found in real-world
datasets and it is usually handled with imputation strategies that
replace the missing values with new data. Recently, generative
models such as Variational Autoencoders have been applied
for this imputation task. However, they were always used to
perform the entire imputation, which has presented limited
results when comparing to other state-of-the-art methods. In this
work, a new approach called Variational Autoencoder Filter for
Bayesian Ridge Imputation is introduced. It uses a Variational
Autoencoder at the beginning of the imputation pipeline to filter
the instances that are later fitted to a Bayesian ridge regression
used to predict the new values. The approach was compared
to four state-of-the-art imputation methods using 10 datasets
from the healthcare context covering clinical trials, all injected
with missing values under different rates. The proposed approach
significantly outperformed the remaining methods in all settings,
achieving an overall improvement between 26% and 67%.

Index Terms—missing data, variational autoencoder, bayesian
ridge, data imputation, healthcare data

I. INTRODUCTION

Missing data affects most real-world datasets and it can
compromise their many uses. As an example, most machine
learning models can not be trained with data containing
missing values, and the ones that can usually suffer decreases
in their performance. The missing values can be categorized
into three mechanisms according to its relation with the data
[1], [2]:

• Missing Completely At Random (MCAR), where the
missing values are not related to any features;

• Missing At Random (MAR), where the missing values
are related to the features available on the dataset;

• Missing Not At Random (MNAR), where the missing val-
ues are related with themselves or with other unobserved
features.

This missing data issue is usually handled in a preprocessing
stage through imputation strategies that generate new plausible
values to replace the ones that are missing. Different strategies
may present different results for the three missing mechanisms,
although in general the results tend to be better for MCAR and
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MAR [3], [4]. However, in most real-world contexts the mech-
anism most frequently found is MNAR (e.g., healthcare data),
being therefore imperative to improve the imputation results
for this missing data type. State-of-the-art approaches for the
imputation task include methods such as Multiple Imputation
by Chained Equations (MICE), K-Nearest Neighbors (KNN)
and specific types of neural networks like the Autoencoders
(AE) [5].

A standard AE is a neural network that learns a compressed
representation of the data through an unsupervised process,
being for that reason widely used for dimensionality reduction.
Among its variants, the Denoising Autoencoder (DAE) has
been used for missing data imputation. This last one works
as a standard AE that learns from a noisy version of the
data, being the missing values the noise in this context [6].
However, a recent trend is the use of generative models for the
imputation task, particularly Variational Autoencoders (VAE).
The VAE is just another AE variant that learns the multi-
dimensional parameters of the probability distribution from
the input data, namely the mean and variance of a Gaussian
function. By sampling from these Gaussian parameters, the
model is able to generate new instances following the same
distribution, having for that reason generative capabilities [7].
VAEs have been used to address missing data by performing
the entire imputation. However, the results are limited and lack
significance when comparing to other state-of-the-art methods,
with stronger evidence in structured data [8], [9].

In this work a new approach called Variational Autoencoder
Filter for Bayesian Ridge Imputation (VAE-BRIDGE) is intro-
duced, and it comprises two main parts:

• A VAE is used in the initial steps of the imputation
pipeline to filter the instances that will be considered for
the generation of new values (therefore performing a kind
of instance selection);

• The final imputation is performed by a Bayesian ridge
regression fitted with the filtered instances.

The approach is compared with other state-of-the-art methods
in an experiment that uses 10 public datasets from clinical
trials that were injected with missing values under the MNAR
mechanism. This data context and mechanism were used be-
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cause healthcare studies suffer frequently from missing values,
and these ones are usually under the MNAR assumptions.
Moreover, four different missing rates were considered in the
study (10%, 20%, 30% and 40%). The results from the ex-
periment show that the VAE-BRIDGE approach outperformed
all the remaining state-of-the-art methods with an overall
improvement of 26% and 67% comparing to the second best
and worst methods of each dataset, respectively. These results
were proved to have a statistically significant of 5% through
the Three-Way ANOVA and post-hoc Tukey’s HSD tests. To
the best of the authors’ knowledge, the proposed approach is
novel in the missing data field since VAEs were never used
for this purpose.

The remainder of the paper is organized in the following
way: Section II presents related work of missing data imputa-
tion; Section III presents the background concepts needed for
this work; Section IV describes the VAE-BRIDGE approach
here proposed; Section V describes the experiment and the
obtained results; and Section VI shows the conclusions and
future directions of this work.

II. RELATED WORK

The use of VAEs to address missing data imputation is
rather recent, and just a couple of works have yet used this
method. McCoy et al. [8] conducted an experiment where
the imputation of missing values was performed using a
VAE, together with the mean of the feature and the Principal
Component Analysis (PCA) method. Both the VAE and PCA
were used with a multiple imputation strategy, where they
would make predictions iteratively until the reconstruction
error was below a given threshold. The Root Mean Squared
Error (RMSE) was used as the reconstruction metric. The
methods were applied to a synthetic nonlinear dataset and
to a simulated milling circuit dataset, with missing rates of
20% and 90% (the missing mechanisms were not specified).
The VAE outperformed the remaining methods in all settings,
although achieving RMSE differences of less than 0.1 when
compared to the mean imputation in the simulated dataset.

Boquet et al. [9] proposed a method that uses a VAE
for imputation and connects its output directly to a standard
neural network for regression, aiming to solve the missing
data issue before performing traffic forecasting. The VAE is
compared with a standard AE and the PCA method, but the
imputation is not assessed directly. Instead, only the forecast
error is evaluated through the RMSE metric and the Mean
Absolute Percentage Error (MAPE). The experiments used
real traffic data from the freeway Performance Measurement
System of the California Department of Transportation, and
missing values under the MNAR and MCAR mechanisms
were injected (the last one with rates of 10%, 20% and 40%).
The forecasting results when the VAE was used outperformed
the remaining methods, with improvements of at least 40%
for MNAR and 17% for MCAR.

When considering strategies to perform instance filtering
with the goal of improving the imputation results, no works

were yet developed using VAEs. Tsai and Chang [10] pub-
lished an experiment where the DROP3 algorithm was used
to perform instance selection before and after the missing
values were imputed with the KNN algorithm (four different
workflows were tested). However, the instance selection is
not related with the imputation procedure and does not aim
to improve it. In fact, the results are assessed only through
the impact of the entire workflow on the accuracy of two
classifiers (Support Vector Machine and KNN). The exper-
iment was conducted on 29 public datasets from different
contexts, covering all attribute types. The results show that the
improvements were limited, with differences of less than 1%
in several settings, and with KNN presenting the best accuracy
for numerical and mixed datasets. Huang et al. [11] presented
a very similar study, with only a few differences: the instance
selection is made by two methods (DROP3 e IB3) and is
always performed before the imputation. Moreover, only the
KNN classifier is considered. The experiment used eight public
datasets from the medical context, containing once again all
attribute types. The accuracy results of the KNN classifier were
in general better when the instance selection was used, with
the improvements varying between less than 1% and 18%.

In conclusion, only a couple of works have yet used VAEs
to solve the missing data problem, and both present issues:
the imputation was not properly assessed since the baseline
methods used for comparison were not state-of-the-art [8] or
the imputation error was not even measured [9]. Moreover, the
use of VAEs for filtering purposes prior to the final imputation
was never done, which is one of the main novel aspects from
this work.

III. BACKGROUND

The VAE-BRIDGE approach here proposed is based on
two existing concepts: Variational Autoencoders and Bayesian
ridge regressions. Both methods are described in the following
sections.

A. Variational Autoencoder

A VAE is a type of Autoencoder that has generative capabil-
ities. While a standard AE learns a compressed representation
of the input data, the VAE is able to learn the parameters of
a Gaussian distribution which describes the data. Therefore,
both variants present similar characteristics with a few key
differences [7]:
• The latent space of an AE is the output of a regular hidden

layer, usually with less units than the input layer, which
makes this model useful for dimensionality reduction. On
the other hand, a VAE latent space is the multidimen-
sional parameters of a Gaussian distribution (mean and
variance), which are then used to generate new samples
with the same characteristics (see Figure 1);

• While the AE loss function is only the reconstruction
error, the VAE adds another term for regularization (see
Equation 1, where q(z|X) is the encoder output, p(X|z)
is the decoder output, X is the input data and z represents
the new samples from the learned distribution). The



reconstruction error is needed for the model to learn
how to reconstruct the data, and can be, for example,
the Mean Squared Error. The regularizer is the Kullback-
Leibler divergence between the encoder and decoder
distributions, and is needed to ensure the latent space is
correctly structured (i.e., similar input data should have
similar latent space representations).
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Fig. 1. General architecture of a Variational Autoencoder.

L(X) = −Ez∼Q(z|X)[log p(X|z)] +KL(q(z|X) ‖ p(z)) (1)

B. Bayesian Ridge Regression

The frequentist approach to perform linear regression is
based on assigning a weight/coefficient to each independent
variable, reflecting therefore their effect on the dependent
variable. An error term is also considered to account for noise
and other external factors. The model is usually fitted through
the Ordinary Least Squares (OLS) approach, which minimizes
the residual sum of squares (see Equation 2, were y is the
dependent variable, w the coefficients and xi one of the M
instances) [12]. In other words, the goal is to minimize the
model error by adjusting the w coefficients.

min

M∑
i=1

(yi − wTxi) (2)

A problem found in this type of regression is overfitting,
particularly when data displays multicollinearity patterns. To
mitigate this issue regularization is often used. A common
strategy is to penalize the size of the w coefficients with a L2
regularizer, creating the so-called ridge regression [12], [13].

A limitation of the OLS method is the w coefficient values
having single point estimates, meaning these values are the
ones most likely to be correct given the training data. How-
ever, the uncertainty surrounding the model results are not
accounted at all.

The Bayesian approach addresses this issue by modeling
the regression with probability distributions instead of single
value estimates. Assuming the use of a Gaussian distribution,
the formulation of the Bayesian regression is presented in
Equation 3 (using the same definitions from Equation 2, with
X being a matrix with all M instances) [12], [13].

y ∼ N (wTX,σ2) (3)

The outcome will therefore be the posterior distribution of
the w coefficients, instead of their exact values. This change
allows the use of priors, which can be helpful if relevant
information about the model is already known. Moreover,
the model uncertainty is accounted for, since the posterior
distribution gives a range of possible w coefficients based on
the data and the prior [12]. This last aspect is particularly
relevant when the amount of instances used to fit the model
is reduced. In fact, when the number of instances increases
the w coefficients converge to the ones obtain from the OLS
method, since the level of uncertainty is decreasing. Moreover,
when the prior also follows a Gaussian distribution, the L2
regularization is implicitly applied, creating the Bayesian ridge
regression concept [12], [14].

One of the most common ways to fit a Bayesian regression
is drawing samples from the posterior distribution to improve
and approximate it, using, for example, Monte Carlo methods.
Another common approach is to use the Maximum A Posterior
(MPA) method [12], [14].

IV. VARIATIONAL AUTOENCODER FILTER FOR BAYESIAN
RIDGE IMPUTATION

The VAE-BRIDGE approach starts by training a VAE with
all data instances that are complete, but excluding the feature
containing missing values (meaning that no pre-imputation
is required). The model will learn the multidimensional pa-
rameters of the Gaussian distribution that represents the data,
which will then be used for filtering purposes. Afterwards,
each instance having missing values is encoded with the
previously trained VAE, and its multidimensional Gaussian
parameters are compared to the ones from each complete
instance. The goal is to obtain the k percent instances that are
described by the most similar Gaussian distributions, following
the formula from Equation 4. This distance is an adaptation
of the euclidean metric to include both Gaussian parameters
(mean and variance).

dp,q =

√√√√ n∑
i=1

(µpi − µqi) +

√√√√ n∑
i=1

(σ2
pi − σ2

qi) (4)

The selected k percent instances are finally used to fit a
Bayesian ridge regression. Any imputation model could be
used in this step, but the Bayesian ridge is known to provide
better long term predictions through regularization strategies
that deal with overfitting (see Section III-B), being for that
reason used by state-of-the-art methods such as MICE [15].
An additional aspect of this regression model is the easiness
to interpret its results, something that is often important in
sensitive contexts (e.g., healthcare). For datasets with more
than two features this regression will be multivariate, with
all the features without missing values being the independent
variables.

For a proper generalization of this method the following
aspects must also be considered:



• If the missing data scenario is multivariate (i.e., two or
more features have missing values), the described process
must be repeated individually for each of these features;

• To avoid issues with the domain of the features and
to speed up the VAE training convergence, all features
should be normalized within [0, 1]. Consequently, the
VAE output layer should use sigmoid as the activation
function;

• Categorical features must be transformed to binary ones
through a one-hot encoding process, otherwise the VAE
training procedure and the distance formula from Equa-
tion 4 will not be valid. The imputation of these features
will be a real value within [0, 1] (as the previous point
states), which can be converted to a binary value assum-
ing a fixed threshold (e.g., 0.5).

The complete VAE-BRIDGE approach is summarized in
Figure 2.

Input: complete rows, incomplete rows, k
Output: imputed rows

1: Normalize all data within [0, 1]
2: Apply one-hot encoding to the categorical features
3: for each feature having missing values (mdi) do
4: Train a VAE with complete rows \mdi
5: enc data ← Encode complete rows \mdi with VAE
6: for each instance z in incomplete rows do
7: enc z ← Encode z \mdi with VAE
8: sim z ← Find k similar rows to enc z from

enc data using the distance formula from Eq. 1
9: br ← Fit a Bayesian ridge regression with sim z

10: imputed rows ← Predict missing data in z with br
11: end for
12: end for
13: return imputed rows

Fig. 2. Pseudocode of the VAE-BRIDGE algorithm.

The key aspect of this method is the filtering step based on
the VAE encoding capabilities. By choosing only the k percent
instances that have similar distribution parameters to the one
that is being imputed, the method ensures that noisy data not
relevant for the imputation task is ignored by the Bayesian
ridge regression during the final prediction step. Therefore,
for this reason, different k values will have a major impact
on the approach results. To properly understand this impact
a sensitivity analysis study was conducted. The experiment
used the well-known Breast Cancer Wisconsin dataset, with
missing values under MNAR with different rates (10%, 20%
and 30%). Only this dataset was used given the number of
variables to consider in the study, and the choice was based
on its popularity among the healthcare public datasets. The
focus on the MNAR mechanism is justified by the fact that
most missing values in healthcare are usually under MNAR
assumptions, as previously stated. The results were evaluated
through the Mean Absolute Error (MAE). Figure 3 presents
the conclusions of the study, where each bar shows the average

number of times each k value presented the best MAE results
for the three missing rates. The study considered 10 different
percentages for k (10% to 100%, with 10% steps).
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Fig. 3. Sensitivity analysis of the k parameter. Each bar shows the average
number of times each k value presented the best MAE results for the three
missing rates.

From the obtained results, the k values {20, 30, 40} clearly
outperformed the remaining ones, with k = 20 presenting the
best overall score. Such results not only show the best k values
to be used, but also prove the impact of using only relevant
data for the imputation. In general, when k increases over
the 40% threshold, the results tend to be worse. This can be
explained by the fact that the Bayesian ridge regression is
using more data that is not relevant to the imputation, which
creates additional noise in the fitting process. Using k = 10
also presented bad results since the filter probably discarded
more information than it should, leading to the lost of data that
was in fact relevant. Therefore, the used k value must neither
be too small or too big, with percentages between 20 and
40 showing a good balance for this criteria. Nevertheless, to
have accurate k values this study should be conducted for the
different datasets. However, given the computation complexity
of this task, only the best values obtained for the Wisconsin
dataset (k = {20, 30, 40}) were used for the remaining ones
in the experiments.

V. EXPERIMENTAL RESULTS

To evaluate the quality of the imputation performed by the
VAE-BRIDGE method an experiment was conducted, aiming
to compare it to the following state-of-the-art methods:

• Standard VAE, which performed the entire imputation
[8];

• Denoising Autoencoder (DAE), which is a basic discrim-
inative Autoencoder that learns a compressed represen-



tation of the input data with noise (in this context the
missing values are the noise) [6];

• Multiple Imputation by Chained Equations (MICE),
which uses a multiple imputation approach to fit regres-
sion models using the features with missing values as the
dependent variables [15];

• K-Nearest Neighbors (KNN) Imputation with K = 5,
which finds the five nearest neighbors of an instance
through a distance metric (usually the Euclidean one) and
uses their average values to impute the missing data [16].

Regarding the Autoencoder-based methods (VAE-BRIDGE,
VAE and DAE), they all used a similar architecture:
• A single hidden layer with 100 units and the ReLU

activation function for the DAE, while the VAEs had two
“parallel” layers (mean and variance) with 100 units and
linear activation;

• The optimization algorithm used was Adam with a learn-
ing rate of 0.001, batches of 64 instances and 200 epochs;

• To avoid overfitting each layer applies the L2 regularizer
with a factor of 0.01;

• The weights of the layers are initialized using the glo-
rot normal approach, which follows a truncated normal
distribution centered on zero;

• The output layer always uses the sigmoid activation
function, as explained in the previous section.

Moreover, the VAE-BRIDGE approach used k =
{20, 30, 40}%, since these were the best overall values ob-
tained from the sensitivity analysis study presented in the
previous section. However, the best results were once again
obtained for k = 20, being therefore the ones presented here.

The experiment considered 10 public datasets from the
healthcare context, covering clinical studies of different
pathologies. The choice of this context lies in the fact that it of-
ten suffers from missing data, which compromises severely the
studies’ results [17]. All datasets were obtained from the UCI
repository (available at https://archive.ics.uci.edu/ml/datasets.
php), and they have different sizes and both continuous and
categorical features, as Table I shows.

TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset # Instances # Features
Continuous Categorical

wisconsin 569 31 0
ctg 2126 21 2

pima 768 9 0
liver 583 10 1

hcv-egy 1385 19 10
parkinsons 195 23 0
bc-coimbra 116 10 0

thoracic-surgery 470 14 3
spine 310 13 0

mammographic-masses 830 2 4

All datasets were complete and were latter injected with
missing values under the MNAR mechanism, using the method
from [18] (the lowest values are set to be missing). This
missing mechanism was used since it is the one more often

found in healthcare contexts, and it is also the one that poses
more challenges for the imputation task [17]. Each feature of
each dataset was iteratively injected with missing data and
imputed, with the imputation quality being assessed through
the Mean Absolute Error (MAE) metric, calculated between
the ground truth and the imputed data. The final MAE of a
dataset is the average MAE of all its features.

The data was normalized within [0, 1] and split in train,
validation and test sets (with 60%-20%-20% proportions) for
all methods except the KNN, since it does not require training.
Four missing rates were considered (10%, 20%, 30% and
40%), with the missing values being pre-imputed with the
mean for the DAE and standard VAE methods. Notice that
the missing values were injected independently for the train,
validation and test sets, in order to ensure the same missing
rate and MNAR assumptions for each one. To mitigate bias
and stochastic behaviors, the experiment was executed five
independent times, with the datasets being shuffled in each run.
Moreover, the average results from the runs were considered
for comparison. A graphical representation of the experimental
setup here described is presented in Figure 4.

The results from the experiment are presented in Table II.
The VAE-BRIDGE approach outperformed all state-of-the-
art methods for every dataset and missing rate. The overall
improvement from the second best and worst methods to VAE-
BRIDGE was 26% and 67%, respectively. The second best
method varied between VAE and MICE depending on the
dataset, while the DAE presented the overall worst results.

To assess the statistical significance of the results, the Three-
Way ANOVA test was applied with a significance level of 5%.
The factors considered were the dataset, the missing rate and
the algorithm, while the dependent variable was the MAE.
This statistical test can only be applied if the data follows a
normal distribution, which was confirmed visually through the
Q-Q plot presented in Figure 5. Moreover, the same analysis
was conducted on the data subgroups. The p-values from the
test are presented in Table III, and they show the results are
statistically significant for the datasets and algorithms (p =
2e − 16). However, no evidence of sensitivity to the missing
rates was found (p = 0.365).

To conclude if the VAE-BRIDGE approach outperformed
the remaining algorithms with a statistical significance of
5%, the post-hoc Tukey’s HSD test was applied for this
particular factor. The p-values from this test are displayed in
Table IV. The VAE-BRIDGE significantly outperformed VAE
(p = 0.006732), DAE (p < 0.000001), MICE (p = 0.000001)
and KNN (p < 0.000001).

VI. CONCLUSIONS

In this work a new approach for missing data imputation
called Variational Autoencoder Filter for Bayesian Ridge
Imputation (VAE-BRIDGE) is introduced. It uses a VAE to
filter the instances that are relevant for the imputation, while
a Bayesian ridge regression is fitted with them and predicts the
new values. The method relies on the fact that instances that
are not relevant for the imputation may compromise its results
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Fig. 4. Graphical representation of the experimental setup used in this work.

TABLE II
RESULTS FROM THE EXPERIMENT. THE FIRST TWO COLUMNS IDENTIFY THE DATASET AND THE MISSING RATE PERCENTAGE. THE NEXT FIVE COLUMNS

PRESENT THE MAE VALUES (MEAN AND STANDARD DEVIATION) FOR THE USED METHODS. THE LAST COLUMN SHOWS THE PERCENTAGE
IMPROVEMENT FROM THE BEST METHOD TO THE SECOND BEST. THE BEST RESULTS FOR EACH DATASET AND MISSING RATE ARE BOLDED.

Dataset MR (%) VAE-BRIDGE VAE DAE MICE KNN ↑ %

wisconsin

10 0.019 ± 0.019 0.078 ± 0.037 0.213 ± 0.049 0.03 ± 0.034 0.074 ± 0.037 37%
20 0.017 ± 0.018 0.062 ± 0.028 0.189 ± 0.045 0.028 ± 0.034 0.079 ± 0.037 39%
30 0.017 ± 0.017 0.055 ± 0.023 0.173 ± 0.044 0.029 ± 0.036 0.085 ± 0.038 41%
40 0.017 ± 0.017 0.052 ± 0.021 0.158 ± 0.045 0.032 ± 0.042 0.094 ± 0.037 47%

ctg

10 0.028 ± 0.048 0.051 ± 0.063 0.198 ± 0.149 0.043 ± 0.072 0.06 ± 0.092 35%
20 0.025 ± 0.043 0.042 ± 0.05 0.179 ± 0.133 0.043 ± 0.076 0.065 ± 0.086 40%
30 0.024 ± 0.041 0.037 ± 0.045 0.161 ± 0.106 0.066 ± 0.139 0.091 ± 0.142 35%
40 0.023 ± 0.038 0.035 ± 0.042 0.148 ± 0.09 0.065 ± 0.118 0.094 ± 0.125 34%

pima

10 0.161 ± 0.077 0.176 ± 0.075 0.237 ± 0.078 0.195 ± 0.093 0.177 ± 0.1 9%
20 0.136 ± 0.052 0.142 ± 0.043 0.208 ± 0.065 0.189 ± 0.067 0.174 ± 0.069 4%
30 0.124 ± 0.051 0.127 ± 0.032 0.191 ± 0.069 0.203 ± 0.073 0.188 ± 0.071 2%
40 0.112 ± 0.05 0.117 ± 0.024 0.173 ± 0.074 0.216 ± 0.082 0.199 ± 0.069 4%

liver

10 0.096 ± 0.19 0.158 ± 0.196 0.28 ± 0.223 0.117 ± 0.219 0.131 ± 0.201 18%
20 0.09 ± 0.187 0.139 ± 0.185 0.263 ± 0.225 0.127 ± 0.25 0.145 ± 0.235 29%
30 0.083 ± 0.178 0.123 ± 0.171 0.238 ± 0.203 0.198 ± 0.321 0.218 ± 0.31 33%
40 0.073 ± 0.153 0.108 ± 0.146 0.212 ± 0.171 0.167 ± 0.241 0.189 ± 0.234 32%

hcv-egy

10 0.141 ± 0.202 0.155 ± 0.181 0.347 ± 0.163 0.156 ± 0.224 0.303 ± 0.142 9%
20 0.127 ± 0.181 0.132 ± 0.159 0.333 ± 0.156 0.162 ± 0.229 0.331 ± 0.137 4%
30 0.113 ± 0.16 0.117 ± 0.142 0.319 ± 0.152 0.167 ± 0.234 0.372 ± 0.142 3%
40 0.098 ± 0.138 0.106 ± 0.126 0.303 ± 0.151 0.169 ± 0.237 0.441 ± 0.181 8%

parkinsons

10 0.066 ± 0.089 0.134 ± 0.131 0.284 ± 0.104 0.096 ± 0.145 0.108 ± 0.092 31%
20 0.059 ± 0.078 0.117 ± 0.112 0.254 ± 0.094 0.103 ± 0.162 0.132 ± 0.122 43%
30 0.053 ± 0.068 0.103 ± 0.089 0.231 ± 0.079 0.107 ± 0.156 0.15 ± 0.145 49%
40 0.049 ± 0.06 0.094 ± 0.074 0.21 ± 0.07 0.105 ± 0.133 0.159 ± 0.12 48%

bc-coimbra

10 0.142 ± 0.106 0.188 ± 0.109 0.269 ± 0.069 0.185 ± 0.132 0.172 ± 0.116 17%
20 0.131 ± 0.088 0.16 ± 0.085 0.243 ± 0.054 0.184 ± 0.125 0.183 ± 0.108 18%
30 0.122 ± 0.079 0.15 ± 0.079 0.229 ± 0.047 0.197 ± 0.129 0.197 ± 0.113 19%
40 0.11 ± 0.071 0.141 ± 0.07 0.208 ± 0.041 0.211 ± 0.133 0.212 ± 0.112 22%

thoracic-surgery

10 0.084 ± 0.166 0.114 ± 0.162 0.259 ± 0.211 0.096 ± 0.191 0.122 ± 0.194 13%
20 0.077 ± 0.148 0.099 ± 0.142 0.254 ± 0.208 0.1 ± 0.192 0.139 ± 0.217 22%
30 0.07 ± 0.127 0.087 ± 0.117 0.244 ± 0.191 0.135 ± 0.233 0.159 ± 0.237 20%
40 0.062 ± 0.108 0.079 ± 0.097 0.232 ± 0.171 0.158 ± 0.249 0.178 ± 0.248 22%

spine

10 0.274 ± 0.219 0.326 ± 0.154 0.363 ± 0.137 0.297 ± 0.231 0.359 ± 0.191 8%
20 0.25 ± 0.205 0.289 ± 0.157 0.326 ± 0.14 0.31 ± 0.251 0.362 ± 0.213 13%
30 0.219 ± 0.186 0.251 ± 0.136 0.285 ± 0.134 0.323 ± 0.277 0.368 ± 0.227 13%
40 0.191 ± 0.162 0.218 ± 0.117 0.249 ± 0.12 0.313 ± 0.252 0.36 ± 0.201 12%

mammographic-masses

10 0.025 ± 0.072 0.05 ± 0.064 0.242 ± 0.175 0.056 ± 0.161 0.072 ± 0.154 50%
20 0.022 ± 0.065 0.044 ± 0.058 0.229 ± 0.153 0.045 ± 0.116 0.062 ± 0.111 50%
30 0.02 ± 0.062 0.041 ± 0.059 0.223 ± 0.149 0.042 ± 0.108 0.059 ± 0.1 51%
40 0.02 ± 0.059 0.04 ± 0.059 0.219 ± 0.149 0.045 ± 0.119 0.071 ± 0.113 50%
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Fig. 5. Normal Q-Q plot showing that the data follows a normal distribution.

TABLE III
P-VALUES OF THE THREE-WAY ANOVA TEST.

Factor P-value

Algorithm 2e-16
Missing Rate 0.365

Dataset 2e-16

TABLE IV
P-VALUES OF THE TUKEY’S HSD POST-HOC TEST.

VAE DAE MICE KNN

VAE-BRIDGE 0.006732 0.000000 0.000001 0.000000

by adding unnecessary noise. The approach was compared
with four state-of-the-art methods (standard VAE, DAE, MICE
and KNN) in an experiment with 10 datasets from clinical
trials that were injected with missing values under MNAR
(including 10%, 20%, 30% and 40% missing rates). The VAE-
BRIDGE approach outperformed all the remaining methods,
achieving an overall improvement between 26% and 67%. The
results were validated with a statistical significance of 5%.

In the future new experiments will be conducted to test
the VAE-BRIDGE approach with datasets from other contexts
(some containing pre-existent missing values) and with the
remaining missing data mechanisms (MCAR and MAR),
considering in this last scenario the impact of having different
mechanisms in the train, validation and test sets. Moreover, a
study on the impact of the imputation in classification tasks
will also be conducted.
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