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Abstract—Medical images are important elements for the
diagnosis of diseases. Computer Aided Diagnostic has evolved
in recent years along with the processing capacity of computers
as well as the emergence of new computational techniques.
Segmentation is a valuable approach for identifying a specific
area in human body images, such as the lungs and heart. This
work proposes an algorithm to segment anatomical structures
using parallel 3D region growing. Experiments using different
Computer Tomography scans show that the proposed approach
can run 150 times faster than the typical sequential region grow-
ing algorithm while providing good results in the identification
of the target region.

Index Terms—segmentation, Compute Unified Device Architec-
ture (CUDA), region growing, Computer Aided Diagnosis (CAD),
Digital Imaging Communications in Medicine (DICOM).

I. INTRODUCTION

Technological evolution has brought several benefits to
medicine and health studies. Improvements in systems, de-
vices and the quality of imaging examinations increase digital
information. This large amount of data contributes to more
accurate studies and diagnoses, as in [1]. In this sense, precise
anatomical localization is crucial for diagnosis as well as for
therapy planning.

Computed Tomography (CT) examinations present slices of
the analyzed object, producing detailed anatomical information
allowing to discriminate pathological from healthy tissue [2].
This provides greater quality and quantity of data and permits
the recognition of structures that would be difficult to perceive
in other methods of examination.

In computed tomography, an X-ray beam is emitted from
different angles around the area of interest, and an image (or
slice) is reconstructed with data processing, showing a cross-
section of tissues and organs. The image can be stored in
DICOM format [3], where pixels are represented in terms of
the mean attenuation of the tissue, in Hounsfield units (HU).
Water has an attenuation of 0 HU, while air have -1000 HU,
bone have typically +400 HU or greater, and metallic implants
are usually +1000 HU [4].

According with Hounsfield [5], CT has some advantages
over conventional X-rays images in the localization of anatom-
ical structures. While X-ray superimpose the absorption values
of many tissues along a ray, CT records X-ray attenuation for
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small volumetric elements independently, providing accurate
localization of objects in depth.

Thus, CT images allow radiologists and other physicians to
identify internal structures and see their shape, size, density
and texture. However, some features of CT images that may be
of great relevance are not perceived by the human eye, making
it necessary to use some specific tools for identification. In
this sense, computational methods of image processing and
artificial intelligence have been used to create more complex
methodologies to help in the diagnosis. These methodologies
are known as Computer Aided Diagnosis (CADs) methods.
Accordingly [6] “diagnosis based on chest CT images, assisted
by computer has been a remarkable and revolutionary step
in the early detection of pulmonary abnormalities”. Works
presented in [7] [8] [9] show surveys about the last recent
applications of CADs methods using CT images to detect lung
diseases.

In this work, we propose a new segmentation method
capable of quickly and efficiently identifying the anatomical
structure in computed tomography images, by growing the re-
gion in parallel and three dimensions using a 26-neighborhood
window. Achieving a performance gain of more than 150
times that of the sequential algorithm. This method allows the
automatic extraction of information about the target region.
The evaluation of the proposed method is carried out based
on its performance in segment chest CT images of rodents.

Fig. 1. 3D reconstruction of airways, and airways and bones of a rodent.
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Fig. 1 shows an example of a three-dimensional recon-
struction of the airways regions of one of the rodents used
in the evaluation of the proposed method. The image was
created using the three-dimensional reconstruction function of
RadiAnt DICOM Viewer software [10].

Lung segmentation can be very useful in the diagnosis of
diseases such as emphysema and pneumonia. The lung areas
can be divided into four types: hypo-aerated, hyper-aerated,
norm-aerated and non-aerated, according to the density of the
material contained in this area. The volume of these areas
can be related to the occurrence of lung diseases, such as
pulmonary emphysema and pneumonia. Figure 2 shows the
respective initial and final HU values of the ranges to hypo-
aerated, hyper-aerated, norm-aerated and non-aerated intervals.

Fig. 2. Hypo-aerated, hyper-aerated, norm-aerated and non-aerated values.

This paper is organized as follows: related works are pre-
sented in Section 2; the proposed region growing method in
Section 3; the results are presented in detail in Section 4; and
finally, the conclusions in Section 5.

II. RELATED WORKS

A study of different techniques of image segmentation on
chest CT images is presented in [6]. The selected method for
this was a region growing algorithm. The authors concludes
that the algorithm can be used in CAD system to help
radiologist in early diagnosing of lung diseases, and can
also be used to early diagnose of other benign or malignant
pathologies from other organs, such as liver, brain or spine.
Some indications about the selection of seed pixel was made
as well in [6].

In [11] chest CT imaging exams of lung were used to
extract resources for the classification of lung diseases, such as
the classification of pneumonia, emphysema, and bronchitis.
Algorithms of supervised machine learning and image filters
were also used.

A fully automatic method for identifying the lungs in three-
dimensional (3-D) pulmonary X-ray CT images was presented
in [12]. The method has three main steps. First, the lung region
is extracted from the CT images by gray-level thresholds.
Then, the left and right lungs are separated by identifying
the anterior and posterior junctions by dynamic programming.
Finally, a sequence of morphological operations are used to
smooth the irregular boundary along the mediastinum in order
to achieve results consistent with those obtained by manual
analysis, in which only the most central pulmonary arteries
are excluded from the lung region.

In [13] it is presented an extensive survey about CAD
system to detect multiples diseases in the chest X-rays. It

reviews the datasets of chest X-rays, image segmentation
techniques, and artificial intelligence that were used in others
works.

III. METHODOLOGY

Image segmentation is the process of separating an image
in parts for a more meaningful representation. This can be
used either to search objects or regions within the image,
or to determine the borders of those regions. Thus, regions
are grouped or divided depending on whether or not their
pixels have similar characteristics in terms of some significant
properties for the analysis to be made, such as color, objects
form and texture. [14].

Adjacent regions are significantly different with respect to
the same characteristic [15]. There are several automatic or
semi-automatic algorithms for this purpose. The majority of
them are based on few basics strategies and combinations, as
multi-thresholding, region growing, edge detection, fusion and
division, morphological image reconstruction, clustering and
dual clustering, partial differential equation-based methods,
graph partitioning methods and compression-based methods.
Image segmentation task in this work is based on region
growing method [16].

A. 3D Seeded Region Growing

Image segmentation based on region growing are best suited
for grouping sets of voxels that meet a given criterion of
homogeneity. The region growing method will add new voxels
iteratively around the seed element in case they have similar
characteristics. Consequently, the border points of the region
will exhibit features possibly less similar to the seed voxel as
it moves away from it. The homogeneity criterion establishes
the type of features that will be used to evaluate the similarity
or dissimilarity between the seed point and the current point
in analysis [17].

In the seeded region growing method [16] the scanned
object slices are loaded into memory along with manually
selected seeds coordinates. These seeds make up the first
voxels that represents the region to be segmented and a feature
vector is calculated for each seed.

After loading the seeds and calculating their feature vectors,
the region growing loop begins. At each iteration of the loop,
each voxel that is neighbor to the region has its feature vector
calculated and, if the euclidean distance between its vector and
the seed’s feature is less than a predefined threshold value, it
is added to the region. These steps are repeated until no more
voxels are added to the region. Fig. 3 flowchart shows an
overview of this method.

The method performs volumetric growth, that is, the region
growing algorithm not only considers the pixels in the same
2D section to make the growth, but also the voxels that are
in the neighborhood in three dimensions. In the proposed
method, the neighborhood, also called connectivity, is a 26-
neighborhood. Besides the voxels on the left/right, top/bottom,
front/back of the current voxel in a 6-neighborhood, it also
considers the voxels on the two diagonals from the current



Fig. 3. Region Growing Method Flowchart.

Fig. 4. 26-connected neighborhood of a voxel.

voxel. Fig. 4 illustrates what would be a 26-neighborhood
(green voxels), of the voxels being analyzed (orange voxels).

In the beginning, only the HU voxel intensity value was
considered as a feature for the segmentation, but the results
obtained were not adequate, since the segmented region was
either significantly smaller than manual segmentation, or it
overflowed outside the region of interest, as shown in the red
area in Fig. 5.

To improve segmentation, other features were included.
Each feature vector is made up of five elements, where the
first feature represents the voxel’s HU value. CT slices are
grayscale images, where each pixel value has a single value

Fig. 5. Results obtained using HU feature only.

representing intensity information. Although grayscale images,
in general, have 256 possible intensities values for a pixel,
CTs slices are stored in DICOM file which usually has a 12-
bit field for the pixel value, so in this case, there are 4096
possible values for each voxel.

The first value in the feature vector is the HU voxel intensity.
The next three features in the vector consider statistical
information about the voxel being analyzed: the minimum,
maximum and mean value computed from its value and the
26 neighbors voxels around it.

The last feature, called depth, represents the position that the
voxel sits in the tomography’s z-axis. This feature was added
later to improve the efficiency of lung segmentation. Because
using features based only on HU intensity a dilemma could
appear. If the defined threshold value is enough to include
the lung edge in the region, then the growth could spread to
the upper body through the trachea and nasal pathways. This
happened because these areas have intensity values similar to
the lung.

With the use of a depth-based feature, it was possible to
contain growth only in the lung region. The depth feature also
weighs twice as much as the other features when calculating
the distance.

Thus, the five features computed from the window of any
voxel is a features vector. Then, a new voxel belongs to lung
region, if the euclidean distance of its feature vector to the
seed’s feature vector is less than of a tolerance threshold, as
previously described.

This new configuration of the feature vector proved to be
more efficient in targeting the target area, as will be presented
in the section IV.

B. Parallel Region Growing

Volumetric growth allows greater efficiency in lung seg-
mentation as it helps to avoid the problem where the same
organ appears separated in more than one area of the image,
which is the case of images with both right and left side of
lung in the same image. However, processing growing region
segmentation in three dimensions requires a high processing
capacity. Since each slice of a CT scan has dimensions of 512
x 512 and in general each scan has about 300 slices, running



this algorithm sequentially can take a long time, because it
is necessary to traverse each of the region neighbor voxels
at each growth cycle. A 300-slice exam, for example, has
78,643,200 elements, so this is a case in favor of using parallel
computing.

Other works such as [18] have already proven the advantage
of using parallel processing based on GPUs to accelerate
region growing. GPUs are powerful and accessible parallel
devices. Their architecture are composed of several thousands
cores, grouped in Streaming Multiprocessors (SM). Compute
Unified Device Architecture (CUDA) programming model is
based on a kernel, that is instantiated in many threads. Each
thread is processed by one GPU core. Threads can be grouped,
in order to share fast memory data interchange. These groups
are called blocks and each block is designated to a specific
SM. Each thread is addressed by a thread index. Typical GPU
based solutions distribute the data of a large dataset through
the thread indices.

In the algorithm proposed in this work, each voxel in
the CT Scan volume is mapped to a specific thread index,
ensuring that each voxel will be processed in parallel. As the
dataset used is a volume, it was used a 3D grid of blocks in
CUDA programming language in order to make the code more
readable.

In the parallel processing, every voxel of each slice of
the scan is processed simultaneously. This factor brings a
significant gain in the processing time. Processing occurs
at every loop of the region growing algorithm and at each
iteration of the loop, all neighboring voxel in the region has
the distance from its feature vector to the seed’s feature vector
calculated. If the distance is less than a predefined threshold,
the voxel is included in the region. Algorithm 1 presents the
parallel 3D seeded region growing algorithm used in this work.

The N is used to define the scanned and region sizes in the
algorithm and corresponds to the number of scan slices, which
can vary from exam to exam. The features function used in
the algorithm is simply a function that calculates the values in
each features vector. The full algorithm implementation can
be accessed on this Github repository [19].

IV. RESULTS AND EVALUATION

To evaluate the efficiency of the proposed method, a set
of rodent chest CT scans was used as the evaluation dataset.
A ground truth (GT) was created by a manual segmentation
procedure, performed on this dataset by a medical specialized
in lung images, in order to be used in the evaluation. Ground
truth is a set of images where the voxels that represent the
correct area to be segmented with the computer program
are specified. Finally the parallel 3D seeded region growing
method was applied to the CT scans of the five rodents in this
dataset.

There are some metrics options in the literature to evaluate
the performance of anatomical structure segmentation methods
in images, such as the Efficiency (EFI) [20] and Youden
indexes. The ROI-index [20] will be used together with Dice
similarity coefficient [21] to evaluate the segmentation method

Algorithm 1: Parallel 3D Seeded Region Growing
Algorithm
Result: The segmented region
input : scanned volume of size 512×512×N
input : Manually selected seeds

1 region ← new empty volume of size 512×512×N ;
2 for each seed in seeds do
3 seed idx ← seed’s index;
4 region[seed idx] ← seed number;
5 end

6 while new elements are being included in region do
// call CUDA region growing kernel

7 regionGrowing(scanned, region);
8 end
9 return region;

10 Kernel regionGrowing(scanned, region) is
11 idx ← index based on GPU’s thread and block;
12 if element at idx is a region’s neighbor then
13 vec1 ← features(scanned, idx);
14 seed idx ← seed’s index;
15 vec2 ← features(scanned, seed idx);
16 dist ← euclidean distance between vec1, vec2;
17 if dist < threshold then
18 region[idx] ← seed’s number;
19 end
20 end
21 end

proposed in this work. While DICE is the most used metric in
validating medical volume segmentation [22], the ROI-Index
provides a simpler and more intuitive notion of correctness of
the segmentation results [20].

The ROI-Index and DICE coefficient are calculated based on
the following basic metrics: true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). These
metrics are based on the classification of each voxel of the
scan in which the segmentation was performed. The four basic
metrics are explained in more detail in the next paragraphs.

True positives are the voxels that are part of the segmented
area both in the ground truth as in the area segmented by
the program. Likewise, true negatives are voxels that are not
within the area indicated by the program and are also not
contained in the ground truth’s segmented area.

False positives and false negatives are voxels that are incor-
rectly classified by the program when compared to the ground
truth. False positives are voxels within the area segmented by
the program, while false negatives are those outside the area
segmented by the program.

The four basic metrics TP, TN, FP, and FN are used to
calculate three composite metrics, necessary for the calculation
of the ROI-Index, they are Accuracy (ACC) (1), positive
predictive (PDP) (2) and negative predictive (PDN) (3).



ACC = (TP + TN)/(FN + FP + TN + TP ) (1)

PDP = TP/(TP + FP ) (2)

PDN = TN/(TN + FN) (3)

ROI-Index is calculated based on ACC, PDP, and PDN,
according to (4). This index was developed focusing on the
evaluation the efficiency of a program to segment what it is
expected to be in a Region of Interest (ROI) for diagnostic
purpose.

ROI-Index = 100× (1−ACC × PDN × PDP ) (4)

DICE similarity coefficient is calculated based on TP, FP
and FN according to (5). This index provides a simple and
useful measure of spatial overlap, which can be applied to
studies of reproducibility and accuracy in image segmentation
[23].

DICE = 2× TP/(2× TP + FP + FN) (5)

Five rodent tomographies were used to evaluate the segmen-
tation method proposed in this paper. We made this dataset
publicly available in DICOM format in [19].

During the tests, the technique proposed in this paper was
used to segment the lung area of five rats. The rodent identified
as Animal 01 was selected for a more detailed analysis, based
on the ROI-Index, DICE and processing time.

The lung tomography of the individual Animal 01 has
329 slices, with the lungs beginning to appear from slice
122. Starting at slice 122, eight slices were sampled for the
performance analysis of the method: 122, 125, 128, 131, 134,
137, 140, 143.

After running the parallel segmentation, the metrics ACC,
PDP and PDN were calculated to obtain the ROI-Index for
each of the sampled slices. To provide a more comprehensive
comparison, DICE coefficient, Efficiency and Youden indexes
where also considered in the evaluation. The results are shown
in Table I.

TABLE I
RESULTS OF THE ANIMAL 01 SEGMENTATION

# Efficiency Youden ROI-Index DICE
122 0.814 0.628 24.401 0.687
125 0.896 0.793 0.313 0.884
128 0.892 0.783 0.378 0.879
131 0.873 0.746 3.518 0.844
134 0.892 0.785 0.820 0.878
137 0.904 0.809 0.630 0.894
140 0.912 0.823 0.914 0.902
143 0.936 0.872 0.864 0.930

In general, the similarity indexes showed interesting values.
Slice 143, for example, obtained the best similarity between
the segmentation performed automatically and the ground truth
is very close accordingly both Efficiency, Youden, and DICE
coefficient. Fig. 6 shows in green the segmented area using

the technique presented in this work and in red the segmented
area annotated in the ground truth for slice 143.

Fig. 6. Animal 01 slice 143, Automatic Segmentation and GT.

Slices 125 and 122, respectively, correspond to the lowest
and highest value obtained from the perspective of the ROI-
Index, which is why they deserve more attention in the
analysis. In regard to the ROI-Index, the lower the value
obtained, the greater the similarity between the segmented area
and the ground truth.

Fig. 7 shows in green the segmented area using the tech-
nique presented in this work and in red the segmented area
annotated in the ground truth. It is possible to see in Fig. 7
that the contours are very close to each other.

Fig. 7. Animal 01 slice 125, Automatic Segmentation and GT.

Slice 122 showed a relatively high ROI-index compared to
other slices. This result was achieved mainly because the area
segmented by the program presents some false positives in the
tracheal area, as can be seen in Fig. 8.

The trachea region is no longer considered part of the
lung, despite having HU values similar to the voxels located
within the lung area. To improve the results on this issue,
besides tuning the depth feature weight, it may be necessary
to consider new ways to stop the growth of the region from a
seed in the lung before it leaves the lungs region.

Processing time is an important aspect when applying a
segmentation technique. In order to evaluate the performance
of the proposed algorithm from the perspective of time,
a comparison of processing time with a sequential region
growing algorithm, typically used by programs that run on
CPUs, was performed.



Fig. 8. Animal 01 slice 122, Automatic Segmentation and GT.

The parallel region growing algorithm was implemented
using CUDA and then executed on an Nvidia GPU. Results
show a considerable performance improvement.

To confirm the performance advantage of using the parallel
algorithm over the sequential approach, both techniques were
performed on CT scans with 200, 300 and 400 slices. The test
results can be seen in the Table II.

TABLE II
PROCESSING TIME COMPARISON

Number of Slices Sequential Parallel
100 774.853s 2.588s
200 1457.028s 5.463s
300 1666.775s 11.605s

These tests were performed using the Google Colaboratory
[24] cloud environment. The equipment provided by this
platform was an Nvidia Tesla P100 GPU, with 6.0 Compute
Capability and 16GB RAM.

It is possible to observe the great difference in execution
time between the two algorithms, with the parallel approach
being at least 150 times faster. The processing time of the
sequential algorithm is very high, so the implementation in
parallel can be a deciding factor for the adoption of the 3D
region growing technique.

V. CONCLUSION

This paper proposes a novel method for the parallel 3D
seeded region growing segmentation of anatomical structures,
based on GPU architectures. The results observed with a
sample of five CT scans of rodents showed that the method is
promising both in terms of efficiency in correctly segmenting
the region and in the processing time when compared to a
sequential algorithm. The improvement of the segmentation
technique mainly at the edges and transition areas of the
anatomical structure are interesting topics for future work. In
near future, we expect to improve our technique using multiple
GPUs and more efficient memory access patterns, in order to
achieve close to real time processing time.
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