
HTMLPhish: Enabling Phishing Web Page
Detection by Applying Deep Learning Techniques

on HTML Analysis
Chidimma Opara∗, Bo Wei†, Yingke Chen∗
∗Teesside University, Middlesbrough, UK

c.opara@tees.ac.uk, y.chen@tees.ac.uk
†Northumbria University, Newcastle upon Tyne, UK

bo.wei@northumbria.ac.uk

Abstract—Recently, the development and implementation of
phishing attacks require little technical skills and costs. This
uprising has led to an ever-growing number of phishing attacks
on the World Wide Web. Consequently, proactive techniques to
fight phishing attacks have become extremely necessary. In this
paper, we propose HTMLPhish, a deep learning based data-
driven end-to-end automatic phishing web page classification
approach. Specifically, HTMLPhish receives the content of the
HTML document of a web page and employs Convolutional
Neural Networks (CNNs) to learn the semantic dependencies in
the textual contents of the HTML. The CNNs learn appropriate
feature representations from the HTML document embeddings
without extensive manual feature engineering. Furthermore,
our proposed approach of the concatenation of the word and
character embeddings allows our model to manage new fea-
tures and ensure easy extrapolation to test data. We conduct
comprehensive experiments on a dataset of more than 50,000
HTML documents that provides a distribution of phishing to
benign web pages obtainable in the real-world that yields over
93% Accuracy and True Positive Rate. Also, HTMLPhish is a
completely language-independent and client-side strategy which
can, therefore, conduct web page phishing detection regardless
of the textual language.

Keywords-Phishing detection, Web pages, Classification model,
Convolutional Neural Networks, HTML

I. INTRODUCTION

The infamous phishing attack is a social engineering tech-
nique that manipulates internet users into revealing private
information that may be exploited for fraudulent purposes
[1]. This form of cybercrime has recently become common
because it is carried out with little technical ability and
significant cost [2]. The proliferation of phishing attacks is
evident in the 46% increase in the number of phishing websites
identified between October 2018 and March 2019 by the Anti-
Phishing Working Group (APWG) [3]. Most phishing attacks
are started by an unsuspecting Internet user merely clicking
on a link in a phishing email message that leads to a bogus
website. The impact of phishing attacks on individuals such
as identity theft, psychological, and financial costs can be
devastating.

A. Problem Definition
Recent research in phishing detection approaches has re-

sulted in the rise of multiple technical methods such as

augmenting password logins [4], and multi-factor authenti-
cation [5]. However, these techniques are usually server-side
systems that require the Internet user to correspond with a
remote service, which adds further delay in the communication
channel. Another popular phishing detection system that relies
on a centralised architecture is the phishing blacklist and
whitelist methods [6]. A URL visited by an internet user will
be compared with the URL in these lists in real-time. Although
the list based methods tend to keep the false positive rate
low, however, a significant shortcoming is that the lists are not
exhaustive, and they fail to detect zero-day phishing attacks. To
mitigate these limitations, researchers have developed several
anti-phishing techniques using machine learning models as
they are mostly client-side based and can generalise their
predictions on unseen data.

Machine learning-based anti-phishing techniques typically
follow specific approaches: (1) The required representation
of features is firstly extracted, then (2) a phishing detection
machine learning model is trained using the feature vectors.
To extract the feature representation from the lexical and static
components of a web page, the machine learning models rely
on the assumption that the infrastructure of phishing pages are
different from legitimate pages. For example, in [7], phishing
web pages are automatically detected based on handcrafted
features extracted from the URL, HTML content, network,
and JavaScript of a web page. Furthermore, natural language
processing techniques are currently used to extract specific
features such as the number of common phishing words, type
of ngram, etc. from the components of a web page [8], [9],
[10].

While the above approaches have proven successful, they
nevertheless are prone to several limitations, particularly in
the context of HTML analysis: i. inability to accommodate
unseen features: As the accuracy of existing models depends
on how comprehensive the feature set is and how impervious
the feature set remains to future attacks, they will be unable
to correctly detect new phishing web pages with evolved
content and structure without a regular update of the feature
set. ii. They require substantial manual feature engineering:
Existing phishing detection machine learning models require
specialised domain knowledge in order to ascertain the needed

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

features suitable to each task (e.g., number of white spaces in
the HTML content, number of redirects, and iframes, etc.).
This is a tedious process, and these handcrafted features are
often targeted and bypassed in future attacks. It is also chal-
lenging to know the best features for one particular application.

To address the above issues, we propose HTMLPhish, a
deep learning based data-driven end-to-end automatic phishing
web page classification approach. Specifically, HTMLPhish
uses both the character and word embedding techniques to
represent the features of each HTML document. Then Convo-
lutional Neural Networks (CNNs) are employed to model the
semantic dependencies.

The following characteristics highlight the relevance of
HTMLPhish to web page phishing detection:

(1) HTMLPhish analyses HTML directly to help reserve
useful information. It also removes the arduous task required
for the manual feature engineering process.

(2) HTMLPhish takes into consideration all the elements of
an HTML document, such as text, hyperlinks, images, tables,
and lists, when training the deep neural network model.

We experimentally demonstrate the significance of character
and word embedding features of HTML contents in detecting
phishing web pages. We then propose a state-of-the-art HTML
phishing detection model, in which the character and word
embedding matrices are concatenated before employing con-
volutions on the represented features. Our proposed approach
ensures an adequate embedding of new feature vectors that
enables straightforward extrapolation of the trained model to
test data. Subsequently, we conduct extensive evaluations on
a dataset of over 50,000 HTML documents collected over two
months. This ensures our evaluation settings reproduces real-
world situations in which models are applied to data generated
up to the present point and applied to new data.

We summarise the main contributions of this paper as
follows:
• Different from existing methods, our proposed model,

HTMLPhish, to the best of our knowledge, is the first
to use only the raw content of the HTML document
of a web page to train a deep neural network model
for phishing detection. Manual feature engineering is
reduced as HTMLPhish learns the representation in the
features of the HTML document, and we do not depend
on any other complicated or specialist features for the
task. Our proposed approach takes advantage of the word
and character embedding matrix to present a phishing
detection model that automatically accommodates new
features and is therefore easily applied to test data.

• We conduct extensive evaluations on a dataset of more
than 50, 000 HTML documents collected in two months.
The distribution of the instances in our dataset is similar
to the ratio of phishing and legitimate web pages found
in the real-world. This ensures that our evaluation metrics
and results are relevant to existing systems.

• Furthermore, we carried out a longitudinal study on the
efficiency HTMLPhish to infer the maximum retraining
period, for which the accuracy of the system does not

reduce. Our result only recorded a minimal 4% decrease
in accuracy on the test data. This confirms that HTML-
Phish remains reliable and temporally robust over a long
period.

We organised the remainder of the paper as follows: the next
section provides an overview of related works on proposed
techniques of detecting phishing on web pages. Section III
gives the prior knowledge on Convolutional Neural Networks,
and Section IV provides an in-depth description of our pro-
posed model. Section V elaborates on the dataset collection,
while the detailed results on the evaluations of our proposed
model are found in Section VI. Finally, we conclude our paper
in Section VII.

II. RELATED WORKS

In this section, we address two most closely related topics
to our work: the phishing web page detection using feature
engineering and the Deep Learning method (especially for
NLP).

A. Feature Engineering for Phishing Web Page Detection

These techniques extract specific features from a web page
such as JavaScript, HTML web page, URL, and network fea-
tures. These are fed into machine learning algorithms to build a
classification model. These machine learning techniques differ
in the type of heuristics and number of feature sets used and
the optimisation algorithm applied to the machine learning
algorithm. These techniques are based on the fact that both
the phishing and benign web pages have a different content
distribution of extracted features. The accuracy of heuristics
and machine learning-based techniques critically depends on
the type of features extracted, and the machine learning
algorithm applied. Many phishing detection techniques have
been built on different proposed feature sets.

Varshney et al [11] proposed LPD, a client-side based web
page phishing detection mechanism. The strings from the URL
and page title from a specified web page is extracted and
searched on the Google search engine. If there is a match
between the domain names of the top T search results and the
domain name of the specified URL, the web page is considered
to be legitimate. The result from their evaluations gave a true
positive rate of 99.5%.

Smadi et al. [12] proposed a neural network model that
can adapt to the dynamic nature of phishing emails using
reinforcement learning. The proposed model can handle zero-
day phishing attacks and also mitigate the problem of a limited
dataset using an updated offline database. Their experiment
yielded a high accuracy of 98.63% on fifty features extracted
from a dataset of 12,266 emails.

The selection of features from various web page elements
can be an expensive process from security risk and techno-
logical workload angle. For example, it can be prolonged and
somewhat problematic to extract specific feature sets. Besides,
it needs specialist domain expertise to define which features
are essential.

B. Deep Learning

Due to its performance in many applications, Deep Learning
has attracted increased interest in recent years [13], [14],
[15]. The core concept is to learn the feature representation
from unprocessed data instantaneously without any manual
feature engineering. Under this premise, we want to use Deep
Learning to detect phishing HTML content by directly learning
how features from the raw HTML string is represented instead
of using specialist features that are manually engineered.

As we want to train our Deep Learning networks using
textual features, it is, therefore, essential to discuss NLP as it
relates to Deep Learning. Deep learning techniques have been
successful in a lot of NLP tasks, for example, in document
classification [16], machine translation [17], etc. Recurrent
neural networks (e.g., LSTM [18]) have been extensively
applied due to their ability to exhibit temporal behaviour and
capture sequential data. However, CNN has become brilliant
substitutes for LSTMs, especially showing excellent perfor-
mance in text classification and sentiment analysis as CNN
learns to recognize patterns across space [19].

Very few attempts have been made to use Deep Learning
to detect phishing web pages using web page components.
Bahnsen et al. [20] proposed a phishing classifying scheme
that used features of the URLs of a web page as input and
implemented the model on an LSTM network. The results
yielded gave an accuracy of 98.7% accuracy on a corpus of
2 million phishing and legitimate URLs. The authors of [21]
proposed a CNN based model which combines the outputs of
two Convolutional layers to detect malicious URLs.

However, our review did not find any existing approach
that detects malicious phishing web pages using only HTML
documents on Deep Learning. HTMLPhish learns the semantic
information present only in the character and words in an
HTML document to determine the maliciousness of the web
page. Our thorough analysis shows that phishing web pages
can be detected using only their HTML document content.

III. PRELIMINARIES

We define the problem of detecting phishing web pages us-
ing their HTML content as a binary classification task for pre-
diction of two classes: legitimate or phishing. Given a dataset
with T HTML documents {(html1, y1), ..., (htmlT, yT)},
where htmlt for t = 1, . . . , T represents an HTML
document , while yt ∈ {0, 1} is its label. yt = 1 corresponds
to a phishing HTML document while yt = 0 is a legitimate
HTML document.

A. Deep Neural Network for Phishing HTML Document De-
tection

The deep neural network that underlies HTMLPhish is a
Convolutional Neural Network (CNN). To detail a basic CNN
for HTML document classification, an HTML document is
comprised of a string of characters or words. Our goal is to ob-
tain an embedding matrix html→s εRmaxlen×d, in a way that
s is made up of sets of adjoining inputs si ∈ (1, 2, ...,maxlen)
in a string, in which the input can be individual characters or

words from the HTML document. Each input is subsequently
transformed in an embedding siεRd is the ith column of S
and the d-dimension is the vector size which is automatically
initialized and learnt together with the remainder of the model.

In this paper, the embedding matrix was automatically
initialised, and for parallelisation, all sequences were padded
to the same length maxlen.

The CNN performs a convolution operation ⊗ over
sεRmaxlen×d using:

ci = f(M ⊗ si:i+n−1 + bi)

followed by a non-linear activation where bi is the bias,
M is the convolving filter and n is the kernel size of the
convolution operation. After the convolution, a pooling step
is applied (which in our model is the Max Pooling) in order
to decrease the feature dimension and determine the most
important features.

The CNN is capable of exploiting the temporal relation of n
kernel size in its input using the filter M to convolve on each
segment of n kernel size. A CNN model typically contains
several sets of filters with different kernel sizes (n). Those are
the model hyperparameters that are set by the user. In this deep
neural network, the convolution layer is usually followed by
a Pooling layer. The features from the Pooling layer are then
passed to dense layers to perform the required classification.
The entire network is then trained by using backpropagation.

Note: In order to differentiate our state-of-the-art model
from the baseline models, for the rest of this paper, we
will use the term HTMLPhish-Full to indicate HTMLPhish
trained with the proposed model unless otherwise stated, while
HTMLPhish-Character and HTMLPhish-Word represent the
deep neural network model using only the character and word
embedding respectively.

IV. THE PROPOSED MODEL

In this section, we elaborate on the architecture of our
proposed deep neural network model HTMLPhish-Full. The
network architecture seen in Figure 3 shows HTMLPhish-
Full has two input layers. The first input layer processes the
raw HTML document into an embedding matrix made up
of character-level feature representations, while the second
input layer does the same with words. These two branches
are concatenated in a dense layer called the Concatenation
layer. Therefore, the embedding matrix in this model is the
sum of the character-level embedding matrix and the word
embedding matrix Cem + Wem where Cem →c εRmaxlen1×d,
and Wem→w εRmaxlen2×d. The features in the Concatenation
layer allows the preservation of the original information in the
HTML content. In the concatenation layer, the content of both
embedding layers are put alongside each other to yield a 3
dimensional layer [Cem + Wem →(None, 180, 100) + (None,
2000, 100) = (None, 2180, 100)].

To generate the character-level embedding matrix Cem, the
model learns an embedding, which takes the characteristics of
the characters in an HTML document. To do so, all the distinct
characters, including punctuation marks in the corpus, are

listed. We obtained 167 unique characters. We set the length
of the sequences maxlen1 = 180 characters. Every HTML
document with strings greater than 180 characters is cut from
the 180th character, and any HTML document with characters
smaller than 180 characters would be padded up to 180 with
zeroes. Before each character in our work is embedded into
a d-dimensional vector, we conduct a tokenization on the
characters in the HTML document and segment the characters
into tokens as shown in Figure 1. An index is associated with
each token before being applied to a d-dimensional character
embedding vector where d is set at 100, which is automatically
initialised and learnt together with the remainder of the model.
To facilitate its implementation, each HTML document html
is transformed into a matrix, html →c εRmaxlen1×d, where d
= 100 and maxlen1 = 180.

For the word embedding matrix Wem, firstly, the raw
HTML document is processed into word-level representations
by the word embedding layer. To achieve this, all the different
words in the HTML document of the training corpus are
listed using the following approach: An HTML document
is split into individual words while treating all punctuation
characters as separate tokens. For example, as shown in
Figure 1, <!DOCTY PE html>, will be split into [′<′,
′!′, ′DOCTY PE′, ′html′]. We surmise that punctuation
marks provide important information benefits for phishing
HTML document detection since punctuation marks are more
prevalent and useful in the context of HTML documents than
ordinary languages. HTML contains a sequence of markup
tags that are used to frame the elements on a website.
Tags contain keywords and punctuation marks that define the
formatting and display of the content on the Web browser.
The listed unique words are used to create a dictionary where
every word becomes a feature. We obtained about 321,009
unique words in our dataset. We also padded the HTML
documents to make the lengths of the HTML documents
uniform in terms of number of words (maxlen2 = 2000).
Each unique word is then embedded into a d-dimensional
vector, where d is set at 100, which is automatically initialised
and learned together with the remainder of the model. All
the HTML documents are converted to their respective matrix
representation (maxlen2 × d), on which the CNN is applied
where d = 100 and maxlen2 = 2000. Figure 1 shows an
overview of the character and word embedding layer.

We can now introduce Convolutionary layers using the
HTML document matrix (for all the HTML documents st∀t =
1, ..., T) as the corpus. We applied 32 Convolutionary filters
MεRd×n where n 8. The Max-Pooling layer whose features
are then passed to a 10 unit dense layer comes after the
Convolutionary filters. The dense layer, which is regularised
by dropout, finally connects to a Sigmoid layer. Then using
the ADAM optimisation algorithm [22], we train the model
through backpropagation.

A. Baseline Models

The baseline models, HTMLPhish-Character and HTML-
Phish-Word, whose architectures are detailed in Figure 3, are

Word EmbeddingCharacter Embedding

< ! D O < !
DOCT
YPE

html

1 54 5 83 1 54 4 6

0.02 0.15 0.09 0.88
0.58 0.69 0.17 0.43
0.27 0.65 0.41 0.56

0.01 0.67 0.78 0.44
0.98 0.34 0.42 0.59
0.81 0.26 0.03 0.11

<!DOCTYPE html><htmlclass="no_js"id="facebook"

Tokens

Sequence of
Integers

Embedding
Matrix

Fig. 1: Configuration of the Embedding Layer

TABLE I: HTML Documents Used in this Paper

Dataset D1 D2
Date generated 11 - 18 Nov, 2018 10 -17 Jan, 2019
Legitimate Web Pages 23,000 24,000
Phishing Web pages 2,300 2,400
Total 25,300 26,400

CNN models trained either on character-level embeddings or
word-level embeddings, respectively. The embedding matri-
ces described above are applied to 32 Convolutionary filters
MεRd×n where n 8. The next layer after the Convolutionary
filters is the Max-Pooling layer, whose features are then passed
to a 10 unit dense layer. The Dense layer, which also is
regularised by dropout, finally connects to a Sigmoid layer.
Also, the models are trained through backpropagation using
the ADAM optimisation algorithm.

V. DATASET

Data collection plays an essential role in phishing web page
detection. In our approach, we collated HTML documents
using a web crawler. We used the Beautiful Soup [23] library
in Python to create a parser that dynamically extracted the
HTML document from each final landing page. We chose to
use Beautiful Soup for the following reasons:

(1) it has functional versatility and speed in parsing HTML
contents, and

(2) Beautiful Soup does not correct errors when analysing
the HTML Document Object Model (DOM). The HTML
documents in our corpus include all the contents of an HTML
document, such as text, hyperlinks, images, tables, lists, etc.
Figure 2 shows an overview of the data collection stage.

A. Data Collection

Since phishing campaigns follow temporal trends in the
composition of web pages, the earliest data obtained should
always be used for training and the most recent data collected
for testing [24]. Different phishing pages created during the
same time may probably have the same infrastructure. This
could exaggerate an over-trained classification model’s predic-
tive output. To ensure our evaluation settings reproduces real-
world situations in which models are applied on data generated
up to the present point and applied on new web pages, we

Data Collection

Tokenization

Length
padding

Embedding

Convolutional
Filters

Sigmoid
Layer

Dense
Layer

Output
Label

User Web page
<DOCTYPE html>
<html class="no-js" dir="ltr" lang="en"
xmlns="http://www.w3.org/1999/xhtml">

Extract HTML

Preprocessing

Deep Neural Network

Fig. 2: A Schematic Overview of the Stages Involved in Our Proposed Model

Input HTML Document

Character Embedding
No. Unique Charc X Maxlen1 X

100

Word Embedding
No. Unique Words X Maxlen2 X

100

32 Convolutional Filters
With 8 Kernel Sizes

32 Convolutional Filters
With 8 Kernel Sizes

Max Pooling Max Pooling

Dense Layer (10 Units)
Activation = ReLU

Dense Layer (10 Units)
Activation = ReLU

Input HTML Document

HTML
Document

Classification
Sigmoid Layer

HTML
Document

Classification
Sigmoid Layer

HTMLPhish-Character HTMLPhish-Word

Character Embedding
No. Unique Charc X Maxlen1

X 100

Input HTML Document

Cem Embedding

Concatenated Character and Word representations

Max Pooling

Dense Layer (10 Units)
Activation = ReLU

HTML
Document

Classification
Sigmoid Layer

Input HTML Document

Word Embedding
No. Unique Words X Maxlen2

X 100

Wem Embedding

32 Convolutional Filters
With 8 Kernel Sizes

HTMLPhish-Full

Fig. 3: The Overall Architecture of HTMLPhish Variants

TABLE II: HTMLPhish-Full Deep Neural Network

Layers Values Activation
Embedding Dimension = 100 -
Convolution Filter = 32, Filter Size

= 8
ReLU

Max Pooling Pool Size = 2 -
Dense1 No. of Neurons = 10,

Dropout = 0.5
ReLU

Dense2 No. of Neurons = 1 Sigmoid
Total Number of
Trainable Parameters

412,388,597 -

collected a dataset of HTML documents from phishing and
legitimate web pages over 60 days.

Also, to ensure the deployability of our model to real-word
systems, our data set is required to provide a distribution
of phishing to benign web pages obtainable on the Internet
in the real-world (≈ 10/100) [25], [26]. Given that when a
balanced dataset (1/1), is used, the results can yield a baseline
error [27]. Consequently, our training dataset D1 consisting of
HTML documents from 23,000 legitimate URLs and 2,300
phishing URLs was collected between 11 November 2018
to 18 November 2018. D1 dataset was used to train and
validate the three different variants of our model (HTMLPhish-
Character, HTMLPhish-Word, and HTMLPhish-Full). From
10 January 2019 to 17 January 2019, testing data set D2
consisting of HTML document from 24,000 legitimate URLs
and 2,400 phishing URLs were generated.

Note that D1 ∩ D2 = ∅. Also, our testing dataset D2, is
slightly larger than our training dataset D1. This is because
learning with fewer data, and having decent tests on a broader
test data means that the detection technique is generalised.
This ensures that the features and model of classification
include specific features from legitimate and phishing web
pages and that the approach can be applied to the vast number
of online Web pages. In total, our corpus was made up
of 47,000 legitimate HTML documents and 4,700 phishing
HTML documents, as shown in Table I.

The legitimate URLs were drawn from Alexa.com’s top
500,000 domains, while the phishing URLs were gathered
from continuously monitoring Phishtank.com. The web pages
in our dataset were written in different languages. Therefore,
this does not limit our model to only detecting English
web pages. We manually sanitised our corpus to ensure no
replicas or web pages that are pointing to empty content.
Alexa.com offers a top list of working websites that internet
users frequently visit, so it is an excellent source to be used
for our aim.

VI. EVALUATION OF HTMLPHISH VARIANTS

A. Experimental Setup

Table II details the selected parameters we found gave
the best performance on our dataset bearing in mind the
unavoidable hardware limitation for our proposed HTMLPhish
variants:

• HTMLPhish-Character

• HTMLPhish-Word
• HTMLPhish-Full
The three CNN models were implemented in Python 3.5

on a Tensorflow backend and a learning rate of 0.0015 in the
Adam optimizer [22]. The batch size for training and testing
the model were adjusted to 20.

All HTMLPhish and baseline experiments were conducted
on an HP desktop with Intel(R) Core CPU, Nvidia Quadro
P600 GPU, and CUDA 9.0 toolkit installed.

B. Evaluation Metrics

Because of the severely imbalanced nature of our dataset,
we evaluated the performance of our models in terms of the
Area under the ROC Curve (AUC). We also used the receiver
operating characteristic (ROC) curve in our evaluation. The
ROC curve is a probability curve, while the AUC depicts how
much the model can distinguish between two classes, which
for our model is - legitimate or phishing. The higher the AUC
value, the better the performance of the model. The ROC curve
is plotted with the true positive rate (TPR) against the false
positive rate (FPR) where TPR = (TP)

(TP+FN) and FPR =
(FP)

(TN+FP) . Where TP, FP, TN, and FN stand for the numbers
of True Positives, False Positives, True Negatives, and False
Negatives, respectively.

Additionally, we employed the precision, True Positive
Rate, and F-1 score metrics to evaluate the performance of
HTMLPhish and the baseline models. The True Positive Rate
computes the ratio of phishing HTML documents that are
detected by the models. In contrast, the precision metrics
compute the ratio of detected phishing HTML documents that
are actual phishes to the total number of detected phishing
HTML documents.

C. Overall Result

To record the performance of HTMLPhish-Full and the
baseline models on the D1 dataset, we split the dataset into
80% for training, 10% for validation, and 10% for testing.
Also, taking cognizance of how our data is severely imbal-
anced, we ensured we manually shuffled the datasets before
training.

The ROC curves of HTMLPhish and its variants are
shown in Figure 4. From the result detailed in Table III, in
general, HTMLPhish-Full significantly outperforms the other
two variants: HTMLPhish-Character, and HTMLPhish-Word.
While HTMLPhish-Character and HTMLPhish-Word have
similar performances, HTMLPhish-Full takes advantage of the
strengths of both and produces more consistently better results.
Also, HTMLPhish-Full offered a significant jump in AUC over
the other variants, while HTMLPhish-Word performs slightly
worse amongst the three.

On the D1 dataset, HTMLPhish-Full provided a 98% accu-
racy and 2% False Positive Rate. The minimal False Positive
Rates indicates the ratio of legitimate web pages, which are
incorrectly identified as a phish. This is helpful when the
model will be deployed in real-world scenarios as users will

TABLE III: Result of HTMLPhish and Baseline Evaluations on the D1 dataset

Models Accuracy Precision True Positive Rates F-1 Score AUC Training time
HTMLPhish-Full 0.98 0.97 0.98 0.97 0.93 6.75 mins
HTMLPhish-Word 0.94 0.93 0.94 0.93 0.88 10 mins
HTMLPhish-Character 0.95 0.92 0.95 0.94 0.90 3.5 mins
[28] 0.97 0.96 0.97 0.96 0.93 5.25 mins
[20] 0.95 0.94 0.95 0.94 0.91 18 mins

TABLE IV: Result of HTMLPhish and Baseline Evaluations on the D2 dataset

Models Accuracy Precision True Positive Rates F-1 Score AUC Testing time
HTMLPhish-Full 0.93 0.92 0.93 0.91 0.88 9 seconds
HTMLPhish-Word 0.90 0.87 0.91 0.88 0.73 107 seconds
HTMLPhish-Character 0.91 0.89 0.91 0.89 0.77 7 seconds
[28] 0.91 0.84 0.91 0.87 0.73 15 seconds
[20] 0.90 0.90 0.92 0.90 0.78 112 seconds

not be inappropriately blocked from accessing legitimate web
pages.

Considering the computational complexity of HTMLPhish-
Full, it can be seen that on a dataset of over 25,000 HTML
documents, HTMLPhish-Full can be speedily trained within
7 minutes. Once trained, HTMLPhish-Full can evaluate an
HTML document in 1.4 seconds.

D. Comparison with State-Of-The-Art Techniques

We compared HTMLPhish-Full with the methodology,
speed, and performance of existing state-of-the-art models in
[20] and [28]. [28] is a Deep Neural Network with multiple
layers of CNNs that takes as input word tokens from a URL to
determine the maliciousness of the associated web page. On
the other hand, [20] takes as input the character sequence of a
URL and models its sequential dependencies using Long short-
term memory (LSTM) neural networks to classify a URL as
phishing or benign. We applied these techniques to the HTML
documents in the D1 dataset and also tested them on the D2
dataset.

From the result detailed in Table III and Table IV,
HTMLPhish-Full provides better precision, recall and compa-
rable accuracy against the existing state-of-the-art models. The
performance of HTMLPhish-Word and [28] can be attributed
to the fact that it is trained on a definite dictionary of
words from the training data. Therefore it will be unable
to obtain useful embeddings for new words in the test data.
HTMLPhish-Character and [20] perform better with respect to
the AUC metric because the individual character embedding
CNN can learn structural patterns in the HTML document
and can also obtain feature representations for new words.
This makes it easy to be applied to the test data. In addition,
due to the limited number of characters, the scale of the CNN
model using the individual embedding character remains fixed
when compared to word-based model sizes. However, CNN
models built with individual character embeddings cannot
exploit structural information available in long sequences in
the HTML document. It also disregards word borders and
makes it challenging to differentiate special characters in the
data.

Furthermore, CNN’s using only character level embedding
struggles to differentiate information for scenarios where
phishing HTML documents try to imitate benign HTML
documents through small modifications to one or few words in
the HTML document[29]. This is because the Convolutional
filters will likely yield similar output from a sequence of
characters with a similar spelling. Therefore, CNNs using
only character embeddings are not enough to obtain structural
information from the HTML document in detail. That is
the reason word embeddings must be taken into account.
Consequently, HTMLPhish-Full takes advantage of both word
and character embedding matrices to accommodate unseen
words in the test data, and therefore yield a better result than
the other variants and baseline models.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC Curve

Word + Character Embedding AUC = 0.88
Character Embedding AUC = 0.77
Word Embedding AUC = 0.73

Fig. 4: The ROC Curve of HTMLPhish Variants

E. Temporal Resilience

The techniques for implementing a phishing web page is
continuously evolving due to emerging technology applica-
tions for designing phishing web pages. The evaluation of
the resilience of this evolution is paramount for a phishing
web page detection technique. In this paper, we applied
the longitudinal study [30] by evaluating the accuracy of
the HTMLPhish-Full using freshly collected data. This study

enabled us to infer a maximum retraining period, for which
the accuracy of the system does not reduce. For a security
supplier deploying HTMLPhish-Full in the wild, the retraining
time frame can provide an approximate cost of maintenance.

Using the evaluation metrics detailed above, we compared
the accuracy of HTMLPhish variants and baseline models on
the training data D1 with its accuracy when applied to the test
data D2 without retraining the model. From the results in Table
IV, HTMLPhish-Full provided a 98% accuracy on the training
dataset while yielding a 93% accuracy on the test dataset.
The result of our longitudinal study demonstrates the readiness
of HTMLPhish-Full for real-world deployment. HTMLPhish-
Full will remain temporally robust, and will not need retraining
within at least two months.

VII. CONCLUSION

In this paper, we proposed HTMLPhish, a deep learning
based data-driven end-to-end automatic phishing web page
classification approach. HTMLPhish receives the HTML con-
tent of a web page as input and applies CNNs to learn the
semantic dependencies in both the characters and words in the
HTML document in a jointly optimized network. Furthermore,
we applied convolutions on a concatenation of the matrix of
character and word embeddings in order to ensure the effective
embedding of new words in the test HTML documents. Our
approach can learn context features from HTML documents
without requiring extensive manual feature engineering.

We evaluated our model using a comprehensive dataset of
HTML contents presented in a real-world distribution. HTML-
Phish provided a high precision rate, showing a temporally
stable result even when it was trained two months before being
applied to a test dataset.

The future work is to compare our model to feature
engineering-based models that extract features only from the
HTML document. Also, we intend to implement our model as
a browser extension. This will enable HTMLPhish to recognise
phishing websites in real-time.

ACKNOWLEDGMENT

The authors acknowledge the Petroleum Technology De-
velopment Fund (PTDF), Nigeria for the funding and support
provided for this work.

REFERENCES

[1] J. Lopez and J. E. Rubio, “Access control for cyber-physical systems
interconnected to the cloud,” Computer Networks, vol. 134, pp. 46–54,
2018.

[2] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning
based phishing detection from urls,” Expert Systems with Applications,
vol. 117, pp. 345–357, 2019.

[3] APWG, “Phishing activity trends report, 1st quarter 2018,” Tech. Rep.,
2018.

[4] D. Chattaraj, M. Sarma, and A. K. Das, “A new two-server authentica-
tion and key agreement protocol for accessing secure cloud services,”
Computer Networks, vol. 131, pp. 144–164, 2018.

[5] T. Acar, M. Belenkiy, and A. Küpçü, “Single password authentication,”
Computer Networks, vol. 57, no. 13, pp. 2597–2614, 2013.

[6] “Google safe browsing,” http://code.google.com/apis/safebrowsing/, ac-
cessed: 2019-09-30.

[7] C. Amrutkar, Y. S. Kim, and P. Traynor, “Detecting mobile malicious
webpages in real time,” IEEE Transactions on Mobile Computing, no. 8,
pp. 2184–2197, 2017.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[9] C. N. Gutierrez, T. Kim, R. Della Corte, J. Avery, D. Goldwasser,
M. Cinque, and S. Bagchi, “Learning from the ones that got away:
Detecting new forms of phishing attacks,” IEEE Transactions on De-
pendable and Secure Computing, vol. 15, no. 6, pp. 988–1001, 2018.

[10] E. Buber, B. Dırı, and O. K. Sahingoz, “Detecting phishing attacks from
url by using nlp techniques,” in International Conference on Computer
Science and Engineering (UBMK), 2017. IEEE, 2017, pp. 337–342.

[11] G. Varshney, M. Misra, and P. K. Atrey, “A phish detector using
lightweight search features,” Computers & Security, vol. 62, pp. 213–
228, 2016.

[12] S. Smadi, N. Aslam, and L. Zhang, “Detection of online phishing
email using dynamic evolving neural network based on reinforcement
learning,” Decision Support Systems, vol. 107, pp. 88–102, 2018.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[16] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[17] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of cnn and
rnn for natural language processing,” arXiv preprint arXiv:1702.01923,
2017.

[20] A. C. Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas, and F. A.
González, “Classifying phishing urls using recurrent neural networks,”
in Electronic Crime Research (eCrime), 2017 APWG Symposium on.
IEEE, 2017, pp. 1–8.

[21] H. Le, Q. Pham, D. Sahoo, and S. C. Hoi, “Urlnet: Learning a url
representation with deep learning for malicious url detection,” arXiv
preprint arXiv:1802.03162, 2018.

[22] D. Kingma and J. Ba, “Adam: a method for stochastic optimization
(2014),” arXiv preprint arXiv:1412.6980, vol. 15, 2015.

[23] L. Richardson, Beautiful Soup, 4th ed., 2017. [Online]. Available:
https://www.crummy.com/software/BeautifulSoup.

[24] S. Marchal and N. Asokan, “On designing and evaluating phishing
webpage detection techniques for the real world,” in 11th {USENIX}
Workshop on Cyber Security Experimentation and Test ({CSET} 18),
2018.

[25] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifi-
cation of phishing pages.” in NDSS, vol. 10, 2010, p. 2010.

[26] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 639–648.

[27] E. Borgida and N. Brekke, “The base rate fallacy in attribution and
prediction,” New directions in attribution research, vol. 3, pp. 63–95,
1981.

[28] B. Wei, R. A. Hamad, L. Yang, X. He, H. Wang, B. Gao, and W. L.
Woo, “A deep-learning-driven light-weight phishing detection sensor,”
Sensors, vol. 19, no. 19, p. 4258, 2019.

[29] W. Chu, B. B. Zhu, F. Xue, X. Guan, and Z. Cai, “Protect sensitive sites
from phishing attacks using features extractable from inaccessible phish-
ing urls,” in 2013 IEEE International Conference on Communications
(ICC). IEEE, 2013, pp. 1990–1994.

[30] S. Marchal, G. Armano, T. Gröndahl, K. Saari, N. Singh, and N. Asokan,
“Off-the-hook: An efficient and usable client-side phishing prevention
application,” IEEE Transactions on Computers, vol. 66, no. 10, pp.
1717–1733, 2017.

