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Abstract—Deep learning based medical image classifiers have
shown remarkable prowess in various application areas like oph-
thalmology, dermatology, pathology, and radiology. However, the
acceptance of these Computer-Aided Diagnosis (CAD) systems
in real clinical setups is severely limited primarily because their
decision-making process remains largely obscure. This work aims
at elucidating a deep learning based medical image classifier by
verifying that the model learns and utilizes similar disease-related
concepts as described and employed by dermatologists. We used
a well-trained and high performing neural network developed by
REasoning for COmplex Data (RECOD) Lab for classification
of three skin tumours, i.e. Melanocytic Naevi, Melanoma and
Seborrheic Keratosis and performed a detailed analysis on its
latent space. Two well established and publicly available skin
disease datasets, PH2 and derm7pt, are used for experimentation.
Human understandable concepts are mapped to RECOD image
classification model with the help of Concept Activation Vectors
(CAVs), introducing a novel training and significance testing
paradigm for CAVs. Our results on an independent evaluation
set clearly shows that the classifier learns and encodes human
understandable concepts in its latent representation. Additionally,
TCAV scores (Testing with CAVs) suggest that the neural network
indeed makes use of disease-related concepts in the correct way
when making predictions. We anticipate that this work can not
only increase confidence of medical practitioners on CAD but also
serve as a stepping stone for further development of CAV-based
neural network interpretation methods.

Index Terms—Skin Lesion Classification, Medical Image Anal-
ysis, Computer-Aided Diagnosis, Explainable Artificial Intelli-
gence, Concept Activation Vectors, Convolutional Neural Net-
works.
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I. INTRODUCTION

United Nations (UN) has recognised healthcare and well-

being as one of the 17 Sustainable Development Goals (SDGs)

to create a better future for all by 2030 [1]. However, achieving

this goal requires concerted and sustained efforts in utilizing

all available means to improve healthcare since many people

are needlessly suffering from preventable diseases. In 2017, AI

for Good [2], a UN initiative to provide a global platform for

researchers, identified great potential of Artificial Intelligence

(AI) to achieve these SDGs and to help solve the greatest

global challenges.

Numerous remarkable studies have been conducted in the

last few years successfully applying deep learning for disease

classification using various medical image modalities [3]–[5].

However, the acceptance of such Computer-Aided Diagnosis

(CAD) solutions with doctors and patients remains dubious

at best due to the fact that the process behind learning

and encoding features in latent space by computer models

is not very well understood. This lack of transparency in

the whole decision-making process cannot be overlooked in

various critical application areas including medical diagnosis.

Especially after Europe’s General Data Protection Regulations

(GDPR) [6] came into effect in 2018, data subjects are entitled

to Right to Explanation for any automated decision made

by computer algorithms. It is, therefore, need of the hour

to elucidate the working principle of deep learning based

classifiers so that practical applications of AI in medical

diagnosis can be realized expeditiously.

Compared to other fields of applications of Deep Neural
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Networks (DNNs), medical image analysis often presents

unique challenges due to inherent complexity of this task.

Manual classification of complex diseases involves recogniz-

ing subtle features and high-level concepts that are challenging

to grasp without expert knowledge. Even with expert knowl-

edge, doctors’ subjective understanding of disease biomarkers

leads to low inter-expert agreement [7], [8]. Therefore,

common explanation methods like visualization of saliency

maps, which strongly rely on spatial divisibility of concepts,

work well on common object detection tasks [9]–[11] that

have well distinguishable features, but fail on more complex

medical image analysis tasks.

Skin cancer is the most common type of cancer in the

U.S [12]. According to a recent study [13], skin cancer

related death rate forecast for U.S. in 2019 amounted to

11,650 people. These rising rates of skin cancer incidences

can not only cost precious lives but also incur huge burden

on healthcare systems. It is estimated that approximately 3

million people are treated annually for skin cancer in the U.S.

and it costs around 8.1 billion USD [14].

In this study, we choose classification of skin diseases as

a use case to understand what DNNs learn and what they

rely on for their predictions in medical diagnosis. We attempt

to understand if the concepts learnt by classifiers in complex

Medical Image Analysis (MIA) tasks are similar to those used

by dermatologists. We use two publicly available datasets of

dermoscopic images to learn concept mappings i.e. PH2 and

derm7pt. These datasets are selected because they provide

concept annotations in addition to image-wise diagnosis labels.

Summarizing our contributions, this study presents;

• A new training and significance testing paradigm for

Concept Activation Vectors (CAVs) using identically dis-

tributed data.

• Mapping of concepts learnt by a deep model, in its latent

space for skin lesion classification, to dermatologically

significant human-understandable concepts using CAVs.

• Analysis of contributions of different dermoscopic criteria

to the predictions of deep models, revealing agreement

between reasoning process of doctors and deep models.

II. RELATED WORK

Understanding the way neural networks learn and explaining

their prediction behaviour are active areas of research [15],

[16]. To interpret these inherently nonlinear mathematical

models, three main types of methods are usually employed.

A. Saliency-Based Neural Network Explanations

Saliency-based methods for neural network explanation

were among the first tools towards explainable AI and are

still highly in use today. Examples for those methods are

GradCAM [11], SmoothGrad [17], Integrated Gradient [18]

and Layer-Wise Relevance Propagation (LRP) [19] to name a

few. Since these methods create importance maps based on in-

dividual input samples, they provide only local interpretations

and are unable to explain network’s decisions on a global scale.

To date, there are only very few works focusing on inter-

preting deep classifiers for dermoscopic images using saliency-

based attribution methods [20], [21]. This might partly be

due to the innate difficulty in skin lesion classification that

mandates huge amount of expert knowledge to recognize

complex and subtle structures. It could also be due to a large

variation in fine nuances of these structures that are hard to

discern yet can drastically change diagnosis. Moreover, the

visual artefacts corresponding to various diseases in skin lesion

images sometimes overlap and are usually distributed all over

the image, which does not fare well with saliency-based model

interpretation. Other domains in which these methods are

frequently used for interpretation like object classification [9]–

[11] usually show more discriminatory features corresponding

to specific parts of an object – for instance tires or headlights

of cars.

B. Text-Based Neural Network Explanations

Textual explanation methods for neural networks can be ei-

ther template-based [22]–[24] that generate justifications from

some auxiliary information or rule-based [25]–[28], where a

classifier is trained with images as well as additional natural

language explanations. Zhang et al. [27] proposed a unified

network called MDNet following a rule-based approach that

generates diagnostic reports along with corresponding atten-

tion maps of input images in order to increase the semantic

and visual interpretability of MIA task at hand. Jing et al. [28]

proposed a multi-task learning framework that is able to

localize abnormal regions in medical images, predict tags and

generate their descriptions.

C. Concept-Based Neural Network Explanations

Concept-based explanations address the problem of ex-

plaining black-box models by finding human-understandable

concepts in neural networks’ latent representation. Kim et

al. [29] introduced Concept Activation Vectors (CAVs) that

are used to map human-understandable concepts to latent

representation learnt by models in a supervised way using

general human concept patches that were taken from various

domains. By calculating these main concept directions and by

leveraging directional derivatives, they were able to quantify

the influence of a concept to the prediction of single output

classes. Zhou et al. [30] followed a similar approach by

decomposing neural networks’ activations into semantically

meaningful components pre-trained from a large concept

corpus. Graziani et al. [31], [32] restated the problem of

classification in CAVs and employed regression instead. They

applied their so-called Regression Concept Vectors (RCVs)

on problems from medical domain like binary classification

of breast cancer histopathology slides and classification of

Retinopathy of Prematurity (ROP) states. As an extension to

the work in [29], Ghorbani et al. [33] recently developed a

method for unsupervised clustering of object datasets by first

applying segmentation of single objects and then clustering

activations of object patches into semantically meaningful

clusters.



To the best of our knowledge, concept-based explanation

methods have not previously been explored for skin lesion

classification networks. Due to the nature of this problem,

not all of the previously described methods can be directly

applied on this task. Unsupervised clustering as used in [33],

for example, is not suitable in skin lesions as there is a huge

spatial concept overlap and thus no possibility for distinct part

segmentation. RCVs are also not applicable as skin lesion

concepts are hardly quantifiable. The method in [30] requires a

concept corpus which is not readily available for this specific

task. Any type of textual explanation generation is also not

applicable, as no diagnostic reports or descriptions of diagnosis

are provided with any public dermoscopic skin lesion dataset.

The computation of CAVs as seen in [29] requires patches cor-

responding to general human-understandable concepts. In this

work we adopt the TCAV method to the problem of skin lesion

classification. Instead of providing general, out-of-distribution

concept patches, we train CAVs using samples from identically

distributed datasets to map human-understandable concepts to

the network’s latent space.

III. BACKGROUND

This section briefly describes CAVs and the method of

calculating TCAV scores used in this work to quantify the

contribution of a concept to DNN’s prediction. Moreover,

dermoscopic concepts explaining the classifier’s decisions are

also introduced.

A. Concept Activation Vectors

In order to achieve human-centered interpretability of

DNNs, Kim et al. [29] introduced Concept Activation Vectors.

A CAV, ~vc, is a vector in the embedding space of a neural

network pointing into the direction that encodes the given

concept c. CAVs can be calculated by training a binary concept

classifier dividing samples containing a given concept from

samples where the concept is absent. The CAV is then defined

as the normal to the hyperplane separating the two classes.

a) TCAV Score: The metric introduced in [29] to estimate

the influence of a CAV on a class of input images is the

TCAV score. It makes use of directional derivatives SC,k,l(x)
to measure the contextual sensitivity of a concept towards an

entire input class, therefore providing global explanations. The

TCAV score is given by:

TCAVQC,k,l
=

|x ∈ Xk : SC,k,l(x)> 0|

|Xk|
, (1)

where Xk denotes all inputs, k represents the class labels

and SC,k,l(x) the directional derivate of a sample’s activation x

from layer l with respect to class k and concept C. The TCAV

score effectively measures the ratio of class k’s inputs, that

are positively affected by concept C without taking any mag-

nitude into account. As compared to saliency maps or other

per-feature metrics, the TCAV score allows for quantitative

evaluation of concepts on whole input classes.

B. Dermoscopic Concepts used for Analysis

The concepts used in this work to interpret the deep classi-

fier are briefly defined below in accordance with standardized

terminology agreed upon by expert dermatologist in 3rd Con-

sensus Conference of the International Society of Dermoscopy

(IDS) [34]. Fig. 1 depicts examples of some concepts listed

below.

1) Pigment Networks: Pigment Networks consist of inter-

connected pigmented lines forming a gridlike pattern. Depend-

ing on the subtype of Pigment Network, it can either have

minimal variability in colour, thickness and spacing of the

lines, forming a symmetric grid (Typical Pigment Network)

or have greater variability in colour, thickness and spacing

of the lines, forming an asymmetric grid (Atypical Pigment

Network). Apart from those two general types, more subtypes

are also defined in literature. Atypical Pigment Networks can

be a clue for Melanoma (although many dysplastic naevi also

have atypical networks) whereas typical Pigment Networks

normally indicate benign melanocytic lesions (Naevi).

2) Streaks: Streaks describe an abnormality of the lesion

that can either have the form of pure straight radial extensions,

radial extensions with bulbous and often kinked projections

on their ends, or a widening of broken lines with incomplete

connections. Streaks are referred to as irregular if they are

irregularly distributed along the edge of the lesion and are

brown-black in colour [35]. Regular Streaks indicate benign le-

sions and Irregular Streaks are clues for malignant Melanoma.

3) Regression Structures: Regression Structures are char-

acterized by the appearance of either areas of fine, grey-blue

dots, or areas of skin whiter than the surrounding normal-

looking skin without blood vessels or shiny-white structures.

Its presence is highly indicative of melanoma [35].

4) Dots and Globules: Dots are small structures of pig-

mented areas clustered in any distribution on or around the

lesion. Dots clustered in center regions or on the network

lines are referred to as regular, otherwise irregular. Globules

are round, oval or polygonal structures larger than dots that

can have high variability in colour, size and shape along

with asymmetric distribution (Irregular Globules) or minimal

variability along with symmetric distribution (Regular Glob-

ules). Regular Dots and Globules are indicators for benign

melanocytic lesions and irregular Dots and Globules indicate

melanoma [35].

5) Blue-Whitish Veils: Blue-Whitish Veils describe an ir-

regularly shaped, structureless blotch on the lesion area that

is characterized by a blue hue with an overlying whitish

ground-glass haze. In [36] it is rated as the most useful single

diagnostic indicator for melanoma.

6) Asymmetry: Asymmetry is the most important factor in

malignant melanoma identification using ABCD rule [37]. In

our work, asymmetry refers to an asymmetrical lesion contour

as well as asymmetrical distributions of structures and colours

within a lesion [38]. The asymmetry concept is further divided

into symmetric and asymmetric in one or two axes.

7) Colour: This concept refers to colour present within

the lesion area. As the appearance of single colours is not



(a) Typical Pigment Net-
work

(b) Regular Streaks (c) Regression Structure (d) Regular Dots & Glob-
ules

(e) Blue Whitish Veil

Fig. 1: Exemplary cases of skin lesion concepts from derm7pt dataset

yet indicative of any diagnosis, a combined concept of three

or more colours is used in the analysis. The presence of

three or more colours increases the probability of melanoma

drastically [35].

The intricate explanations of concepts given above along

with the concepts’ innate variability offer much room for

interpretation, implying the complexity of the problem itself.

This is evident by the fact that even doctors tend to have

notable disagreements when it comes to diagnosis, localization

or identification of concept [7], [8].

IV. MATERIALS & METHOD

A. Model

The model used in this work as the basis for our exploration

and experimentation is developed by the University of Camp-

inas in Brazil. Their RECOD Lab (REasoning for COmplex

Data) made their submission [39] to the IEEE International

Symposium on Biomedical Imaging (ISBI) 2017 challenge

and is publicly available on github1. By applying a transfer

learning approach combined with extensive ensembling using

an SVM meta-layer on top of seven base models trained

on different data subsets, they achieved best Area Under

Receiver Operating Characteristic (ROC) Curve (AUC) for

Melanoma (MEL) classification (87.4%), 3rd best AUC for

Seborrheic Keratosis (SK) classification (94.3%), and 3rd best

combined/mean AUC (90.8%) in part 3 of 2017 challenge. In

this work, we intentionally refrained from training our own

skin lesion classification model as our primary objective was

explainability of these models instead of their classification

performance. Thus, for our experimentation we only focused

on a single module from RECOD’s well-trained architecture.

We used one of the base models2 with Inception v4 [40]

architecture, subsequently referred to as model or network.

This base model was trained on RECOD’s ”deploy” set of

9,640 images using per-image normalization.

1https://github.com/learningtitans/isbi2017-part3
2checkpoint.rc25 of RECOD model

B. Datasets

The datasets used for concept training are PH2 dataset [38]

and Seven-Point Checklist Dermatology dataset abbreviated as

derm7pt [41].

The PH2 dataset consists of 200 dermoscopic images of

melanocytic lesions, including 80 common naevi, 80 atypical

naevi, and 40 melanomas. Along with the images, colour and

lesion segmentation masks are provided as well as extensive

well-curated annotations as seen in Table I. The derm7pt

dataset consists of 1,011 clinical and dermoscopic images.

Each sample is assigned to either a miscellaneous class or

one of 4 diagnosis classes. Two of these diagnosis classes i.e.

Melanoma and Naevi (NV) are further divided into 13 sub-

classes. From this dataset, only MEL and NV samples have

been considered, resulting in 823 images. SK samples have

been discounted due to their low count of only 45 samples.

Table I provides an overview of number of samples for each

concept class.

TABLE I: Distribution of image samples into different concept

classes in PH2 and derm7pt datasets. Note that PH2 dataset

does not distinguish between regular and irregular streaks.

Concepts Presentation Abbreviation PH2 [38] derm7pt [41]

Pigment
Network

PN N/A 551
Typical PN T 84 335
Atypical PN AT 116 216

Streaks
ST 30 333

Regular ST R N/A 96
Irregular ST IR N/A 237

Regression
Structures

RS 25 233

Dots &
Globules

DG 113 690
Regular DG R 54 300
Irregular DR IR 59 390

Blue-Whitish
Veils

BWV 36 182

Asymmetry
Sym 117 N/A

1-Axis Asym 1 31 N/A
2-Axis Asym 2 52 N/A

Colours 3 or more C 3 39 N/A

Total Samples 200 823



For evaluation purposes, the original ISBI 2017 challenge

dataset [42] is used. The train set of ISBI 2017 challenge

contains 1372 samples of NV, 374 samples of MEL and 254

samples of SK whereas test set contains 393 images of NV,

117 images of MEL and 90 images of SK.

In order to verify statistical significance of our results, we

trained random CAVs to compare against our concept CAVs.

For this purpose, random concept labels are assigned to a

subset of the ISIC archive3 images, excluding MEL and NV

classes, resulting in 2,870 samples. The idea behind leaving

out those two classes is that remaining samples hardly contain

concepts similar to the ones used for concept training.

C. Experimental Setup

As previously described, all experiments have been con-

ducted on one of the Inception v4 base models from [39]. For

each concept, binary classifiers are trained on network’s activa-

tions to find the concepts’ directions in the embedding space.

The training and evaluation scheme is depicted in Fig. 2. First,

activations are extracted from mixed 6h layer of the Inception

v4 model using PH2 and derm7pt datasets. A clustering-

based under-sampling technique as well as stratified splitting

is applied to ensure evenly balanced train and validation sets

for each binary concept training. Second, TCAV score is used

to evaluate a concept’s importance to a specific target class.

To account for differences in pre-processing and classifier

initialization, each classifier training is repeated 20 times on

a randomly sampled dataset split, resulting in different CAVs

and different TCAV scores.

3https://isic-archive.com/ retrieved in November 2019

To check statistical significance of learned concepts, we

trained additional 50 random CAVs per layer. The random

datasets are produced by repeatedly sampling 1,000 random

images from ISIC archive subset described in section IV-B and

assigning random binary labels. The distribution of random

concept TCAV scores and actual concept TCAV scores is then

compared by conducting a two-sided t-test with α = 0.05 to

assure significance of the found CAVs. In the results section,

statistical insignificance is represented by red asterisks on top

of the plotted bars.

V. RESULTS AND ANALYSIS

The lack of quantifiability in most applicable explanation

methods does not allow for proper comparison with previous

approaches. Hence, we will focus on quantitative evaluation

of concept classifier’s accuracies and TCAV scores as well as

a qualitative analysis of the resulting CAVs.

Fig. 3a shows all mean validation accuracies achieved by

individual binary concept classifiers along with their standard

deviation trained on derm7pt embeddings from mixed 6h

layer. Mean baseline results from training on 50 random

concept subsets are depicted by horizontal red line along with

light red surrounding area marking standard deviation. It is

evident from the figure that all concept classifiers achieved

significantly higher validation accuracies than random base-

line. The overall accuracies achieved might not seem very

high, however it has to be mentioned here that computation of

CAVs requires the use of linear classifiers to calculate normal

vector to decision hyperplane. The results are clear evidence

that network’s latent space is structured in a way that allows

activation’s separation with respect to similar concepts.

Fig. 2: Overview of training concept classifiers and calculating CAV and TCAV scores



(a) Derm7pt dataset (b) PH2 dataset

Fig. 3: Validation accuracies of all concept classifiers trained and tested individually on derm7pt and PH2. Random baseline is

denoted by horizontal red line along with light red area marking standard deviation. Insignificant classifiers are marked with

a red asterisk.

Fig. 3b shows the classifiers’ validation accuracy trained on

PH2 dataset embeddings from mixed 6h layer. It is notable

that many concepts achieved relatively mediocre accuracies

near the random baseline. This can be explained by very small

number of positive concept samples available in PH2 dataset.

The TCAV score quantifies positive or negative influence of

a given concept towards a specific target class. Values above

0.5 indicate positive influence of the concept to the prediction

and lower values indicate negative influence. Figures 4 and 5

show the TCAV scores achieved by evaluating 20 CAVs per

Fig. 4: TCAV scores of each concept for derm7pt with respect to each target class on miexed 6h layer of RECOD model.



Fig. 5: TCAV scores of each concept for PH2 with respect to each target class on mixed 6h layer of RECOD model.

concept on the mixed 6h layer separately trained on both

datasets. Average baseline scores of all 50 random concepts

are again depicted by red horizontal lines along with their

standard deviation in light red. Statistically insignificant results

are marked by red asterisks.

Results for NV and MEL classes for concepts trained using

derm7pt look very much as expected. Although, the score for

PN turned out to be insignificant in one experiment, features

indicating benign melanocytic lesions like PN T, ST R and

DG R all contributed positively towards NV class. On the

other hand, strong signs for malignant melanoma like PN AT,

ST IR, RS, DG IR and BWV show strong negative influence.

Also, it is notable that the presence of Streaks in general (ST)

has a stronger negative influence as compared to the presence

of particularly regular Streaks (ST R). Results for MEL class

show the exact opposite behaviour, which is perfectly aligned

with the descriptions in medical literature. It is again notable

that the presence of Dots and Globules (DG) and the presence

of Streaks (ST) show higher positive impact on MEL class as

compared to their regular variants, for example, regular Streaks

(ST R). Results for SK class show similar concept influence

as for MEL, except for Pigment Networks (PN) exhibiting

negative influence. In [43] the appearance of network-like

structures in Seborrheic Keratosis has been confirmed. The

model might have encoded those structures in the atypical Pig-

ment Network (PN AT) concept, as their appearance slightly

differs from the classical Pigment Networks definition. In the

same study, evidence for Dots and blue-gray areas in SK

lesions have been found as well.

Fig. 5 shows resulting TCAV scores for CAVs trained on

PH2 dataset. All concepts achieving less than 55% validation

accuracy have not been considered. Again, TCAV scores for

NV and MEL show expected behaviour. Only typical Pigment

Networks (PN T), regular Dots and Globules (DG R) and

Symmetry (Sym) contribute positively towards Naevi class.

For melanoma, the exact opposite holds again which can be

confirmed by the concept descriptions in Section III-B. Ad-

ditionally, from the results it appears that asymmetric lesions

(Asym 2) and lesions containing more than three colours (C 3)

tend to be classified as melanoma. For SK we can again

observe low influence of typical Pigment Networks (PN T)

as well as high influence for all other concepts including

asymmetry (Asym 2) and colour diversity (C 3).

To further validate that the model has comprehensively

learnt these disease-related concepts instead of learning some

random concepts, we had our model sort all the test images

with respect to degree of visibility of a certain concept in each

image. In other words, the model ordered all 300 test images

starting from those that presented very obvious existence of

a concept and ending with those which had least evidence of

that concept. This ordering is performed based on euclidean

distance in a CAV’s direction. Fig. 6 through Fig. 8 show

first five and last five images from the sorted test set with

respect to different concepts. The first row of each figure

shows positive examples, where the concept is most clearly

visible, and the second row shows negative examples, where

the concept is virtually absent. It is evident from these figures

that the proposed method for explaining skin disease classifiers

does not only provide justification of classifier’s decision on

global dataset scale but also sensibly identifies reasons for

per-image predictions.



Fig. 6: First row shows the test images that are the most similar to Typical Pigment Network (PN T) concept according to

euclidean distance in CAV direction. The second row shows the least similar images to PN T.

Fig. 7: First row shows the test images that are the most similar to Irregular Streaks (ST IR) concept according to euclidean

distance in CAV direction. The second row shows the least similar images to ST IR.

Fig. 8: First row shows the test images that are the most similar to Regression Structure (RS) concept according to euclidean

distance in CAV direction. The second row shows the least similar images to RS.



VI. CONCLUSION

Concept-based methods for network explanation offer great

potential especially for complex classification tasks in critical

application areas like MIA. This work strives to leverage these

methods to verify the ability of DNNs to learn and utilize

human understandable concepts for skin lesion classification.

Our results show strong correlation between DNN’s learnt

representation of various concepts and those routinely used

by dermatologists. This work corroborates that deep learning

based CAD systems are able to learn and utilize similar

disease-related concepts for prediction as used by dermatolo-

gists. We hope that physicians would be able to confer higher

confidence to such CAD systems that are able to justify their

prediction by listing the concepts which influenced positively

or negatively towards a certain output. It has also been shown

that Testing with CAVs (TCAV) is applicable using com-

plete identically distributed images instead of general concept

patches. However, this work can further be improved by using

more granular labelling of diseases indicative concepts to get

deeper insight into model’s classification processes as well as

further validation of its decisions.

Due to the complexity of the problem, possibly subjective

annotations of training set by various expert and small number

of concept training samples, not all human-defined disease-

related concepts were thoroughly analysed. Standardizing the

annotation according to one school of thought in dermatology

community, for example following [34], can decrease inter-

observer disagreement but it would require an enormous

amount of time and effort by dermatology experts. Nev-

ertheless, the obtained results are remarkably aligned with

common diagnostic criteria. In order to allow for a more

comprehensive interpretation of the TCAV scores for this

specific task, it would be desirable to curate a high-quality

dataset with reliable fine-grained labels of concepts that are

known to be highly indicative of specific diagnoses.

Supervised concept learning is highly dependent on high

quality and precisely annotated human concept examples.

Therefore, more focus should be placed on generating clean

datasets of high-quality concept annotations that can be used

for explaining models in medical imaging applications to

speed up their deployments in clinical routines. As supervised

concept classification from network activations has already

been proven to be effective, the following logical and highly

desirable extension of unsupervised concept discovery should

be considered. Not only would this be another improvement

towards simplifying the interpretability of networks by elim-

inating the necessity for laborious expert annotations but

it could also allow insights in a network’s own concepts,

potentially revealing new knowledge for domain experts or

unexpected biases in the network.
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