
Probabilistic Neural Network - parameters
adjustment in classification task

Piotr A. Kowalski, Senior Member IEEE and Maciej Kusy Member IEEE
and Szymon Kubasiak and Szymon Łukasik Member IEEE

Abstract—This work presents a comparative analysis of prob-
abilistic neural network training methods applied to achieve best
performance in various classification tasks. Two result from clas-
sical mathematical methods based on the theory of kernel density
estimators: the plug-in method and cross-validation procedure.
The other two methods are more advanced: a metaheuristic
algorithm of particle swarm optimization, and a procedure
based on reinforcement learning. Ten data sets, regarded in
eleven classification problems, taken from the UCI repository
are used for the numerical analysis. A comparative analysis of
probabilistic neural network learning methods leads to interesting
conclusions. Although it does not allow for unambiguous selection
of the best learning method, it provides a possibility of choosing a
method that is adequate for the given conditions. The description
of this is included in the work.

Index Terms—probabilistic neural network, learning proce-
dures, plug-in algorithm, cross-validation procedure, particle
swarm optimization, reinforcement learning , prediction ability

I. INTRODUCTION

Computational intelligence, being a subset of artificial in-
telligence, is one of the most dynamically developing fields
of computer science. This is due to the need of analyzing
larger and larger data sets, what in turn requires the application
of more efficient computer equipment and the use of more
advanced methods of analysis and data mining. The creation
of artificial neural networks is one of the basic procedures in
computational intelligence. These are structures inspired by
biological neural networks that make up the brain and the
nervous system of live animals. Structures of these types learn
to perform tasks based on given examples, deemed a ‘learning

P.A. Kowalski is with Faculty of Physics and Applied Computer Science,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059
Cracow, Poland, e-mail: pkowal@agh.edu.pl and Systems Research Institute,
Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland, e-mail:
pakowal@ibspan.waw.pl.

M. Kusy is with the Faculty of Electrical and Computer Engineering,
Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959
Rzeszow, Poland, e-mail: mkusy@prz.edu.pl.

Szymon Kubasik is with Faculty of Physics and Applied Computer Science,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059
Cracow, Poland

Szymon Łukasik is with Faculty of Physics and Applied Computer Science,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059
Cracow, Poland, e-mail: slukasik@agh.edu.pl and Systems Research Institute,
Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland, e-mail:
slukasik@ibspan.waw.pl.

This work was partly supported by Grant for Statutory Activity from: (i)
Faculty of Physics and Applied Computer Science of the AGH University of
Science and Technology in Cracow; (ii) Systems Research Institute, Polish
Academy of Sciences; (iii) Department of Electronics Fundamentals, Rzes-
zow University of Technology, within the subsidy for maintaining research
potential (UPB).

set’. The artificial neural network consists of interconnected
units called ‘artificial neurons’. As in the real world, the
neuron receives a signal that can be modified in some way
and then transmitted to other neurons connected to it.

A special case of the artificial neural network is the proba-
bilistic neural network (PNN) that was proposed by Donald F.
Specht [1]–[3]. This type of network is very much inspired by
the idea behind kernel density estimators (KDE) of probability.
It assumes that for each element in the training set, there
is a probability density function of the set of attributes, the
estimation of which allows determining the desired value.

Neural networks can be used in two issues: classification [4]
and regression [5]. The classification task consists in the func-
tional transformation of the object’s attribute space into a set of
labels for the classes under consideration, while the regression
task allows for prediction of an unknown function value based
on the character of elements from the training set. In each of
the above cases, learning is a key issue in the context of neural
networks, without which the network can generate partially
or completely wrong or unrepresentative results. Moreover,
various learning methods can provide different parameters in
the neural network being selected which in turn may contribute
to diverse results during network operation for the same set
of input data. This difference can be significant, both in the
context of solution correctness and computational efficiency
of the neural algorithm. Therefore, choosing the right learning
method is a very important issue.

There are many different methods and algorithms for pa-
rameter selection for the probabilistic neural network. Tradi-
tional methods result from the mathematical foundations of
the theory of kernel estimators, however, newer methods are
gaining in popularity. Among these are metaheuristics, which
describe the methods of transition between solutions in order
to find the optimal solution. Further methods are built upon
reinforcement learning (RL), based on searching the solution
space as built upon the system’s response to the proposed
change of parameter values.

Many research works do not mention the issue of applying
PNN training algorithms. Other scientific articles focus on
using only a single training method not considering the prob-
lem of the most suitable approach. This article is, therefore,
a work aimed at comparing different methods of training a
PNN for deriving solutions for the classification problem.
The learning methods of plug-in algorithm, cross-validation
procedure, particle swarm optimization metaheuristics (PSO),
and reinforcement learning will be considered.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Despite the passage of time since the introduction of this
type of neural networks, we have observed their very dynamic
development. A PNN as data classifier finds common use in
following tasks: image classification and recognition [6]–[8],
earthquake magnitude prediction [9], multiple partial discharge
sources classification [10], interval information processing
[11], medical diagnosis and prediction [12]–[14] and phoneme
recognition [15].

Moreover, in recent years many works have been published
that are devoted to changes in the topology structure of the
PNN network. In [4], [16], the authors propose the use of local
sensitivity analysis to reduce the number of neurons in the
input and pattern layers; in [17] a global sensitivity analysis is
presented. A similar consideration can be observed in [18] and
[19], with the difference that the main tool used for reduction
is the clustering algorithm. A completely different task in
exploratory data analysis is the processing of data in various
types, but it should be clearly stated that this is not a trivial
task. In the paper [20], authors propose to enrich the current
set of vector features with interval type information, while in
[21], a completely different task is considered - classification
in a time-varying environment.

This article is composed as follows. Section II discusses
topology and mathematical principals of probabilistic neural
network. In section III, we present algorithms for learning the
PNN process: plug-in algorithm, cross-validation procedure,
PSO method and finally RL procedure. Section IV, provides
results and discussion of numerical analysis. Finally, in Section
V, we conclude our work.

II. PROBABILISTIC NEURAL NETWORK

In its basic form, the probabilistic neural network is a one-
way, multi-layer network consisting of four layers. The first is
the input layer, represented by the input data attributes; the
next is the pattern layer that consists of as many neurons
as there is data in the training set, which are divided into
individual classes. The third layer is the summation layer,
where there is one neuron for each of the considered classes;
and at the end of the network there is the output layer, where
a single neuron determines the class to which the investigated
tested data belongs. Figure 1 depicts the graphical structure of
a PNN as applied to solve a classification problem.

PNN is based on the concept of the probability density esti-
mator. Consider, therefore, an n-dimensional random variable
derived from a distribution with a probability density f . Its
estimator is determined on the basis of an m-element random
sample:

x1,x2, ...,xm. (1)

The variables xi are interpreted as the values obtained ex-
perimentally in the course of independent experiments in
examining the value of the variable X . The kernel probability
density estimator, in its basic form, is defined as:

f̂(x) =
1

mhn

m∑
j=1

K

(
x− xj

h

)
, (2)

where m denotes random sample size, n is random variable
dimension, h notes positive real number defined as smoothing
parameter. The K function is called the kernel function. More
about PNN and KDE can be found in [4], [22].

III. PROBABILISTIC NEURAL NETWORK TRAINING
ALGORITHMS

The choice of the kernel function K form is one of the
basic and most important issues that affect the quality of
the estimator and hence PNN. Choosing the wrong form can
significantly reduce the quality of the kernel estimator and,
consequently, the neural network.

The most effective function of the kernel, in the sense of
minimizing the Mean Integrated Squared Error (MISE), is
the Epanecznik kernel. It should be noted that some methods
for determining the value of the smoothing parameter require
differentiation of the kernel function. This makes selection im-
possible. The functions fulfilling this condition are Gaussian,
logistic and sigmoid functions. The last two are, however, the
least effective of those presented [22]. Hence it was decided
to use the Gaussian kernel function in the implemented neural
network.

In the case when a multidimensional data set is considered,
the methodology of PNN in our approach is generalized to the
product kernel notation:

K(x) = K(x1, x2, . . . , xN)T =

K(x1)· K(x2)· . . . · K(xN),
(3)

where K(xi) denotes one dimensional kernel function.
Training a neural network is about choosing the right num-

ber of parameters that will allow the network to generalize.
This is the property of generating the correct solution for
the test data set, i.e. examples which did not participate in
the learning process. Training a PNN involves selecting the
appropriate number of smoothing parameters for individual
kernel estimators in the pattern layer. The number of variables
determined depends on the network model, the number of
patterns and classes.

Figure 2 shows how important it is to select the smoothing
parameter in the PNN learning process. This drawing reveals
the operation of the KDE for three sample values of the
smoothing parameter. It can easily be seen that only one curve
represents the approximate probability density distribution.
This is the curve for the parameter h = 0.08 (the orange
line).

A. Training procedures

There are several methods for determining the values of
smoothing parameters. In this work, four dominant methods
in literature are compared. Two result from mathematical
foundations which minimize the MISE, i.e. the plug-in al-
gorithm [23] and cross-validation procedure [24]. Another
method is the metaheuristic swarm algorithm Particle Swarm
Optimization [25]. The last one is based on reinforcement
learning [14]. Each method has its advantages, disadvantages
and limitations. These algorithms are used under different

Fig. 1. Structure of a probabilistic neural network in the classification problem.

Fig. 2. Comparison of different values of the smoothing parameter for the probability density estimator.

assumptions, but they all have the same purpose. The selection
of the appropriate parameter value is done by performing the
task of minimizing the error value (cost) or maximizing the
profit.

B. Types of probabilistic neural networks

There are four types of probabilistic neural network. They
differ in the form of the artificial neuron smoothing parameter.
The first of these, referred to as PNNS, has a scalar constant
smoothing parameter for all neurons. This type is described
by the way of equation (2).

The second type of probabilistic network is called PNNC.
Here, the smoothing parameter is a vector with G dimensions
hC = [h(1), h(2), ..., h(G)]

T , where G is the number of pos-
sible classes. This type of network is described by following
equation:

f̂(x) =
1

m(h(g))n

m∑
j=1

K

(
x− xj

h(g)

)
. (4)

The next type is denoted as PNNV. In this variant, the
smoothing parameter is defined as a vector with n dimensions
corresponding to a constant value for each attribute hV =
[h1, h2, ..., hn]. So, in this case the fundamental equation (2)
is extended in the following way:

f̂(x) =
1

m
∏n

i=1 hi

m∑
j=1

K

(
x− xj

hV

)
. (5)

The last and the most complex, and thus the most accurate
type of probabilistic network, is PNNVC, which is a combi-
nation of the previous two. Herein, the matrix of smoothing
parameters h with dimensions G× n is defined, and contains
parameters corresponding to the attributes of the tested object
separately for each class.

The selection of a network model is one of the basic tasks
when designing a network. However, one of the implemented
methods requires one dimensional data, which is a significant
limitation that cannot be bypassed. In addition, determining
a large number of variables requires immense computational
resources, resulting in a significant extension of their selection
time. This is not a desirable phenomenon, therefore, in this
study, it was decided to choose the PNNV model as it meets
the assumptions of all learning methods, and at the same time
is not overly complicated.

C. Plug-in algorithm

The plug-in method is one of the basic methods for deter-
mining the smoothing parameter of the KDE. It results from
the fact of minimizing the value of MISE. This method can
only be used for one-dimensional cases. In this approach,
the product form (3) of network model is chosen while the
parameter for each dimension is determined separately.

The value minimizing the integrated mean square error is
described by the formula:

h0 =

(
W (K)

U(K)2Z(f)m

)1/5

. (6)

The values of U(K) and W (K) then characterize the kernel
function K.

U(K) =

∫ ∞

−∞
xTxK(x)dx, (7)

W (K) =

∫ ∞

−∞
K(x)2dx, (8)

while the value of Z(f) relates to the estimated density of the
function f :

Z(f) =

∫ ∞

−∞
f ′′(x)2dx. (9)

Deriving the value of the functional Z(f) is the most
difficult task due to required second derivative of the un-
known probability density function. In the basic method, its
kernel estimator is first constructed, and then it is necessary
to determine the value of the smoothing parameter of the
newly created estimator. This is done in an analogous way
by constructing an estimator of the fourth derivative of the
probability density function, and subsequently, a new estimator
f2k is determined. The approximate method is used to find the
value of its smoothing parameter.

D. Cross-validation procedure

The cross-validation method, like the plug-in method, is
based on the task of minimizing the MISE error value. Unlike
the previous method, it does not place restrictions on the
dimensionality or differentiation of kernel functions. The algo-
rithm of cross-validation for finding the smoothing parameter
of the kernel estimator is as follows. For the established form
of the kernel, the following function is given:

g(h) =
1

hn

 1

m2

m∑
i=1

m∑
j=1

Γ

(
xj − xi

h

)
+

2

m
K(0)

 , (10)

where xi and xj represent value of i-th and j-th object. The
function Γ(x) is determined by the equation:

Γ(x) = K∗2(x)− 2K(x), (11)

where K∗2(x) is the convolution square of the K function,
defined as:

K∗2(x) = (4π)−n/2exp(−1

4
xTx). (12)

The appropriate value for the smoothing parameter is a
value that minimizes the value of the function (10). Various
methods of minimization can be used, while in this paper
the method of the golden ratio is applied. This consists of
gradually narrowing the range (a, b) with a value equal to:

q =

√
5− 1

2
(b− a). (13)

The value determined by the formula (13) is subsequently
added to the upper or lower boundary from the previous

iteration depending on the values in the intermediate points,
which are potential new boundaries. As with the substitution
method, the cross-validation method is used to determine the
smoothing parameter for each dimension separately.

E. Particle Swarm Optimization

Many algorithms and problem solving methods in computer
science are inspired by natural processes. The same is true for
the PSO algorithm. This is called the ‘swarm algorithm’, i.e. a
metaheuristic algorithm inspired by swarm behavior [26]–[28].
The algorithm was proposed by James Kennedy and Russel C.
Eberhart in [25].

Five basic principles can be distinguished, thanks to which
modelling of artificial life can be called ‘swarm intelligence’:
proximity - the population should store data in simple struc-
tures so that the calculations are not expensive; quality - the
quality of solutions results from factors exclusively from the
environment; diverse answers – the population should not
focus on a limited set of behaviors; stability - the population
should not change their behavior despite changes in the
environment; adaptability - the population should be able to
change their behavior when it proves to be beneficial to it.

The swarm optimization algorithm is an iterative method of
optimizing solution value. The procedure seeks the optimum
in an infinite space of solutions denoted as Rn of real numbers
space. Function parameters can be understood as points in the
real, multidimensional space of solutions, and their change as
the agent’s movement in this space. This is the basic idea of
the PSO algorithm. The algorithm operates on a population
of solutions instead of processing one solution. The number
of particles is assumed, which, moving through the space of
solutions iteratively, find better and better solutions to the
optimization problem.

In the basic version, the swarm optimization algorithm
consists of three steps: determining the quality for each of the
particles, generating local and global updates of best solutions,
and finally updating the speed and position of each of the
particles. Each particle has the following attributes: (i) location
in space solutions, (ii) a speed vector, (iii) the quality of the
solution for the current position or the cost of this solution,
(iv) best location and quality for this point, (v) the location
of the point that gives the best solution to date of the entire
swarm.

The particle speed is determined on the basis of few
components. The most important is the inertia component,
i.e. the velocity vector from the previous iteration that is
consistent with the direction of the best current position found
by the entire swarm and consistent with the direction of the
best position found by this particle. In the proposed solution,
each member of the swarm represents one vector hV . During
the PSO procedure, a calculation of the new vector hV is
generated. The quality of solution is achieved by the way
of creating a neural network with new h classification being
applied to a testing set.

F. Reinforcement learning algorithm

The purpose of the RL algorithm is to learn a policy which
allows an agent to find an optimal solution for a given task.
The learning process amounts to the interactions between the
agent and the environment and may be realized using different
approaches. The most popular approach relies on the update
of the action value function Qt(st, at) in the iterative manner
[29]:

Qt (st, at) = Qt−1 (st, at)

+ α
(
rt + γmax

a
Qt−1 (st+1, a)−Qt−1 (st, at)

)
,

(14)

where t is a discrete time step, st ∈ S denotes the agent’s
state, at ∈ A stands for an action chosen according to the
policy of the agent, while rt is the reinforcement signal. The
algorithm that uses this type of action value function update
is known as Q(0)–learning. Moreover, an enhanced version of
this algorithm exists: Q(λ)–learning, where the computation
of the action value function is enriched by the history of
state–action pair activations. In both cases, the function Q is
represented in table form.

The most important task in RL is to design the form of the
environment that results in the choice of set of states S, set
of actions A and the signal rt. Additionally, the procedure of
action value function update must be adjusted to a considered
problem. In order to conduct the PNN training process, the
environment must be conformed to the data classification
problem with the use of PNN. In [14], it was assumed that
the environment is composed of: (i) the data set in the form
of pairs ⟨xj , tj⟩ for j = 1, . . . ,m, where m is the data
cardinality, (ii) the PNN classifier and (iii) the classification
quality indicator.

In [14], the set of states S was defined by means of the
classification error:

E =
1

m

m∑
j=1

δ [o(xj) ̸= tj] , (15)

where o(xj) is the PNN’s output determined for xj , while
δ [·] = 1, if o(xj) ̸= tj and 0 otherwise. Thus, S =
{0, 1/m, 2/m, . . . , (m−1)/m, 1}. This solution has a natural
interpretation since the state defined in such a way is the
function of PNN output, which depends on the smoothing
parameter.

The actions were defined as the values from a symmetric
set A = {−a(1),−a(2), . . . ,−a(P), a(P), . . . , a(2), a(1)}. The
elements a(p) ∈ A were directly used to modify the parameter
h:

ht = ht−1 + at. (16)

This allows the smoothing parameter to increase or de-
crease its values in each PNN training step. In the arti-
cle, a six element action set was proposed wherein A =
{−1,−0.1,−0.01, 0.01, 0.1, 1}.

The basis of the action value function update is a temporal
difference error, for which the reinforcement signal r is an
integral part. The task for the signal r is to pass information

to the learning agent on the benefit from taking the action
at in the state st. Since in this work, the core of the
modification of the smoothing parameter is the minimization
of the PNN’s classification error (15), it is natural to propose
the reinforcement signal in the way in which it rewards an
agent when the training error decreases and punishes an agent
when the error increases. The reinforcement signal is defined
as:

rt = Et−1(ht−1)− Et(ht), (17)

where Et−1(ht−1) and Et(ht) are the errors in the previous and
current learning step. This not only makes this idea become
satisfied, but, additionally takes into the account the dynamics
of the changes of the classification error. Such a form of the
reinforcement signal combined with the action value function
update strengthens the confidence that the choice of an action
is beneficial or not.

In order to perform the process of smoothing parameter
update according to (16), Q(0)–learning, Q(λ)–learning and
stateless Q–learning algorithms is proposed in [14]. The entire
PNN training procedure can be summarized as follows. For
each time step t:

1) choose action at by means of an actual policy derived
from the action value function Q;

2) update the smoothing coefficient on the basis of formula
(16);

3) compute the reinforcement signal rt;
4) update the action value function Q.

G. Procedure for modification of smoothing parameter
In the basic algorithm of the PNN, the smoothing parameter

value is constant for all objects in the training set. In the
investigated network model (PNNV) it is a vector. Due to
non optimal determination of parameter values or the presence
of outlier elements in the sample on the basis of which the
network is constructed, the determined values may cause er-
roneous or insufficiently accurate estimation of the probability
density distribution.

The smoothing parameter modification algorithm is de-
signed to individualize its impact on individual kernels. It
consists in reducing the value in the areas of compaction of the
objects of the set, which in turn enables the specific features of
the estimated distribution to be better shown. However, in rare
regions, the value of h is increased, which causes an additional
smoothing of the distribution and reduces the sensitivity to
outliers, which is a very favourable phenomenon. An addi-
tional advantage is the increase of the estimator’s resistance
to improper determination of the smoothing parameter. This
feature is extremely beneficial due to the fact that the issue of
selection of the smoothing parameter is a significant problem
during the construction of the kernel estimator.

The algorithm used to modify the smoothing parameter
looks as follows. Multiplicative parameters modifying sj > 0
for (j = 1, 2, . . . ,m) are first selected, such that:

sj =

(
f̂∗(xj)

s̃

)−c

. (18)

Here, the s̃ denotes the geometrical mean of the estimator
quantities f̂∗(xj) for j = 1, 2, . . . ,m, while the c parameter is
a constant denoting the intensity of the modification. Analysis
of the mean square criterion indicates a suitable value of c =
0.5, which is why this value is used in the implemented version
of the algorithm [23]. Finally, the kernel estimator is defined,
in which the value of the smoothing parameter is modified:

f̂(x) =
1

mdet(h)

m∑
j=1

1

snj
K

(
(x− xj)

T
h−1

sj

)
. (19)

The estimator presented in equation (19) is an extension of
its basic version (2), where the smoothing parameter is a fixed
scalar value. In this work, the model (19) was applied.

IV. RESULTS OF NUMERICAL ANALYSIS

In the current study, the simulations are conducted to find
solutions of the classification problems for the University
of California, Irvine machine learning repository (UCI-MLR)
data sets [30]. In order to compare the operation of a PNN
trained with four different methods, ten data sets are used. Ta-
ble I shows the characteristics of the sets: the dimensionality,
the cardinality, the type and the domain of use.

In all classification problems, the results are assessed by
comparing (i) the classification accuracy defined as the ratio
of the number of correctly classified cases to all available
examples and (ii) computational time (in seconds) necessary
to provide the final solution.

The structure of a PNN is strongly dependent on the parti-
tion of the data into the learning and testing sets; therefore, for
each of the sets, every method is trained and tested on exactly
the same separation of the data into the above-mentioned
parts. However, the relationship between the structure and
the data division makes the comparison of these methods
difficult due to the fact that a different division may result
in selecting diverged values of smoothing parameters and
therefore completely different accuracy outcomes than the
ones presented here. Thus, the partition into training and
testing sets takes place in such a way that 30% of the elements
selected at random from the whole set constitute the test set.
The rest of the data forms the training part which is fed to the
learning algorithm.

Table II shows the accuracy of a PNN in all classification
tasks computed on the test set. Based on such an indicator, it
is easy to point out the method with the highest performance.
The individual results shown in this table are the averages over
100 outcomes of the entire verification procedure.

As shown in numerical results, the classification quality,
expressed in terms of testing accuracy, is similar for all
implemented methods. However, if we consider the ranking
based on the highest accuracy outcome (including the draw),
the plug-in method achieves the best results in 6 out of 11
cases. The cross-validation and PSO methods perform worse
since they provide the highest quality four times. The RL based
PNN training method turns out to be least efficient with solely
two best results.

TABLE I
CHARACTERISTIC OF THE DATA SETS.

Data set Dimensionality No. of data sample Data type Domain
Banknote Authentication 5 1372 real computer science

Breast Cancer 10 699 integer medicine
Glass 10 214 real material

Indian Liver Patient Dataset 10 582 real and integer medicine
Iris 4 150 real biology

Seeds 7 210 real biology
Statlog (Image Segmentation) 19 2310 real computer science

Wine 13 178 real and integer food
Wireless Indoor Localization 7 2000 real computer science

Vertebral Column (a) 2 classes 6 310 real medicine
Vertebral Column (b) 3 classes 6 310 real medicine

TABLE II
COMPARISON OF ACCURACY SOLUTIONS IN THE CLASSIFICATION PROBLEM.

Data set Plug-in Cross-validation PSO Reinforcement
Banknote Authentication 1.00 1.00 0.99 0.99

Breast Cancer 0.59 0.62 0.94 0.95
Glass 0.45 0.73 0.64 0.53

Indian Liver Patient Dataset 0.74 0.74 0.69 0.71
Iris 1.00 1.00 1.00 0.97

Seeds 0.91 0.88 0.83 0.88
Statlog (Image Segmentation) 0.31 0.30 0.95 0.93

Wine 0.49 0.54 0.80 0.74
Wireless Indoor Localization 0.61 0.24 0.96 0.96

Vertebral Column (a) 2 classes 0.82 0.58 0.58 0.74
Vertebral Column (b) 3 classes 0.76 0.26 0.26 0.25

TABLE III
COMPARISON OF COMPUTATIONAL TIME EFFICIENCY OF SOLUTIONS IN THE CLASSIFICATION PROBLEM. THE EVALUATION TIMES ARE PRESENTED FOR

THE ENTIRE TESTING PROCESS, I.E.: FOR 100 ITERATIONS.

Data set Plug-in Cross-validation PSO Reinforcement
Banknote Authentication 11.15s 40.75s 1001s 12393s

Breast Cancer 3.69s 19.68s 52043s 7361s
Glass 0.38s 2.39s 5557s 767s

Indian Liver Patient Dataset 1.91s 10.08s 14974s 790s
Iris 0.15s 0.62s 1311s 162s

Seeds 0.18s 0.87s 142724s 82.87s
Statlog (Image Segmentation) 32.8s 252s 420074s 21084s

Wine 0.35s 1.33s 5174s 728s
Wireless Indoor Localization 14.46s 62.99s 106880s 5710s

Vertebral Column (a) 2 classes 0.45s 1.65s 2536s 154s
Vertebral Column (b) 3 classes 0.46s 1.57s 2665s 119s

Comparing the PSO and RL based PNN training methods
we can observe that the first one achieves a better performance
when dealing with a limited number of examples. In the
collections of a large number of records, there is no significant
difference in the accuracy between the two. On the other
hand, PNN trained with basic methods, i.e. the plug-in and
the cross-validation, generates very similar results. However,
it appears that the plug-in method allows obtaining a better
quality when creating a model for the sets which are more
difficult to classify: Seeds, Wireless Indoor Localization and
Vertebral Column. A similar phenomenon is observed for PSO
and RL methods. The swarm optimization procedure is a better
choice for more difficult databases (such as Statlog, Glass or
Wine).

In hard-to-classify collections (Wine and Glass), the choice

of most reliable solution requires introducing some compro-
mise, especially between PSO and RL methods. PSO works
well when the set is not numerous, but characterized by a
considerable dimensionality while RL method turns out to be
a better solution in the opposite case.

Now, if one considers the computational time (Table III) as
the efficiency indicator, the plug-in method is undoubtedly the
best approach. However, we need to realize that a significant
error is achieved by a PNN when this solution is adopted for
network’s training. It is also worth noting that PSO training
method requires a longer time to complete the classification
task than the RL based approach in 9 out 11 cases. This is
especially important when both methods yield similar accuracy
values. For example, PSO method provides the final solution
for Seeds and Statlog data sets in 142 724 s and 420 074 s.

This is respectively: 1.7 × 103 and ≈ 20 times longer time
than in the case when RL method is applied.

V. CONCLUSIONS

In this paper, four different PNN training methods were
presented and compared. All of them relied on computing and
optimizing the smoothing coefficient which is the network’s
kernel function parameter. Four various solutions were con-
sidered: the plugin method, the cross-validation, the particle
swarm optimization and the reinforcement learning. For the
purpose of the comparative analysis, ten UCI-MLR data sets
were utilized. Despite the satisfactory results presented in
terms of testing accuracy, it was not possible to select single
best method. It was only possible to indicate a good choice
under some criterion, e.g. data cardinality or dimensionality.

REFERENCES

[1] D. F. Specht, “Probabilistic neural networks for classification, mapping,
or associative memory,” in IEEE international conference on neural
networks, vol. 1, no. 24, 1988, pp. 525–532.

[2] ——, “Probabilistic neural networks,” Neural networks, vol. 3, no. 1,
pp. 109–118, 1990.

[3] ——, “Probabilistic neural networks and the polynomial adaline as
complementary techniques for classification,” IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 111–121, 1990.

[4] P. A. Kowalski and M. Kusy, “Sensitivity analysis for probabilistic neural
network structure reduction,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 5, pp. 1919–1932, May 2018. doi:
10.1109/TNNLS.2017.2688482

[5] D. F. Specht et al., “A general regression neural network,” IEEE
transactions on neural networks, vol. 2, no. 6, pp. 568–576, 1991.

[6] Y. Chtioui, S. Panigrahi, and R. Marsh, “Conjugate gradient and ap-
proximate newton methods for an optimal probabilistic neural network
for food color classification,” Optical Engineering, vol. 37, no. 11, pp.
3015–3023, 1998.

[7] S. Ramakrishnan and S. Selvan, “Image texture classification using
wavelet based curve fitting and probabilistic neural network,” Interna-
tional Journal of Imaging Systems and Technology, vol. 17, no. 4, pp.
266–275, 2007.

[8] X.-B. Wen, H. Zhang, X.-Q. Xu, and J.-J. Quan, “A new watermarking
approach based on probabilistic neural network in wavelet domain,” Soft
Computing, vol. 13, no. 4, pp. 355–360, 2009.

[9] H. Adeli and A. Panakkat, “A probabilistic neural network for earthquake
magnitude prediction,” Neural networks, vol. 22, no. 7, pp. 1018–1024,
2009.

[10] S. Venkatesh and S. Gopal, “Orthogonal least square center selection
technique–a robust scheme for multiple source partial discharge pattern
recognition using radial basis probabilistic neural network,” Expert
Systems with Applications, vol. 38, no. 7, pp. 8978–8989, 2011.

[11] P. A. Kowalski and P. Kulczycki, “Data sample reduction for classifica-
tion of interval information using neural network sensitivity analysis,”
in Artificial Intelligence: Methodology, Systems, and Applications, ser.
Lecture Notes in Computer Science, D. Dicheva and D. Dochev, Eds.
Springer Berlin Heidelberg, 2010, vol. 6304, pp. 271–272. ISBN 978-
3-642-15430-0

[12] R. Folland, E. Hines, R. Dutta, P. Boilot, and D. Morgan, “Comparison
of neural network predictors in the classification of tracheal–bronchial
breath sounds by respiratory auscultation,” Artificial intelligence in
medicine, vol. 31, no. 3, pp. 211–220, 2004.

[13] D. Mantzaris, G. Anastassopoulos, and A. Adamopoulos, “Genetic
algorithm pruning of probabilistic neural networks in medical disease
estimation,” Neural Networks, vol. 24, no. 8, pp. 831–835, 2011.

[14] M. Kusy and R. Zajdel, “Application of reinforcement learning algo-
rithms for the adaptive computation of the smoothing parameter for
probabilistic neural network,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 26, no. 9, pp. 2163–2175, Sept 2015.

[15] K. Elenius and H. G. Tråvén, “Multi-layer perceptrons and probabilistic
neural networks for phoneme recognition.” in EUROSPEECH, 1993.

[16] M. Kusy and P. A. Kowalski, “Weighted probabilistic neural network,”
Information Sciences, vol. 430–431, pp. 65–76, 2018.

[17] P. A. Kowalski and M. Kusy, “Determining the significance of
features with the use of sobol’ method in probabilistic neural
network classification tasks,” in Federated Conference on Computer
Science and Information Systems 2017 (FedCSIS 2017), ser. Annals of
Computer Science and Information Systems, M. Ganzha, L. Maciaszek,
and M. Paprzycki, Eds., vol. 11. Prague (Czech Republic): IEEE,
September 2017. doi: 10.15439/2017F225 pp. 39–48. [Online].
Available: http://dx.doi.org/10.15439/2017F225

[18] Y. Chtioui, D. Bertrand, and D. Barba, “Reduction of the size of
the learning data in a probabilistic neural network by hierarchical
clustering. application to the discrimination of seeds by artificial vision,”
Chemometrics and Intelligent Laboratory Systems, vol. 35, no. 2, pp.
175–186, 1996.

[19] M. Kusy, “Fuzzy c-means-based architecture reduction of a probabilistic
neural network,” Neural Networks, vol. 108, pp. 20 – 32, 2018.
doi: https://doi.org/10.1016/j.neunet.2018.07.012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018302119

[20] P. A. Kowalski and P. Kulczycki, “Interval probabilistic neural
network,” Neural Computing and Applications, vol. 28, no. 4, pp.
817—-834, 2017. doi: 10.1007/s00521-015-2109-3. [Online]. Available:
http://dx.doi.org/10.1007/s00521-015-2109-3

[21] L. Rutkowski, “Adaptive probabilistic neural networks for pattern clas-
sification in time-varying environment,” Neural Networks, IEEE Trans-
actions on, vol. 15, no. 4, pp. 811–827, July 2004.

[22] P. Kulczycki, “Kernel estimators in industrial applications,” in Soft
Computing Applications in Industry. Springer, 2008, pp. 69–91.

[23] M. P. Wand and M. C. Jones, Kernel smoothing. Chapman and
Hall/CRC, 1994.

[24] B. W. Silverman, “Monographs on statistics and applied probability,”
Density estimation for statistics and data analysis, vol. 26, 1986.

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-International Conference on Neural Networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[26] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm intelligence. Elsevier,
2001.

[27] X.-S. Yang, Nature-inspired optimization algorithms. Elsevier, 2014.
[28] P. A. Kowalski, S. L. ukasik, and P. Kulczycki, “Methods of collective

intelligence in exploratory data analysis: A research survey,” in Pro-
ceedings of the International Conference on Computer Networks and
Communication Technology (CNCT 2016), ser. Advances in Computer
Science Research, P. A. Kowalski, S. L. ukasik, and P. Kulczycki,
Eds., vol. 54. Xiamen (China): Atlantis Press, December 2016. doi:
10.2991/cnct-16.2017.1 pp. 1–7.

[29] J. Christopher, “Learning from delayed rewards,” PhD thesis, Cambridge
University, 1989.

[30] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

