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Abstract—Multi-agent systems recently gained a lot of atten-
tion for solving machine learning and data mining problems.
Furthermore, their peculiar divide-and-conquer approach is
appealing when large datasets have to be analyzed. In this paper,
we propose a multi-agent classification system able to tackle large
datasets where each agent independently explores a random small
portion of the overall dataset, searching for meaningful clusters
in proper subspaces where they are well-formed (i.e., compact
and populated). This search is orchestrated by means of a genetic
algorithm able to act in a multi-modal fashion, since meaningful
clusters might lie in different subspaces. Furthermore, since
agents operate independently one another, their execution is
parallelized across different computational units. Tests show that
the proposed algorithm, E-ABC2, is able to deal with large
datasets, returning satisfactory results in terms of scalability
and performances, especially when compared with our previous
baseline versions.

I. INTRODUCTION

In the Big Data era, designing powerful data mining and
machine learning algorithms able to extract useful informa-
tion from huge amount of data is of paramount importance.
Furthermore, such big datasets are often noisy and/or with
plenty of redundant information, making the data mining task
and the interpretability of the learning algorithm output rather
difficult.

In a general sense, data mining algorithms can be roughly
divided in supervised and unsupervised: in the former case, the
dataset is labelled (i.e., patterns are mapped with ground-truth
class labels, in case of classification problems) and the learning
algorithm exploits input-output pairs to track the decision
boundary that separates different classes. In the latter case,
patterns are unlabelled and regularities have to be discovered
by taking into account mutual dissimilarities between patterns.
Recently, multi-agent systems [1] emerged as powerful strate-
gies to solve data mining problems. Broadly speaking, multi-
agent systems are composed by atomic units (agents) that
somehow cooperate in order to reach a common goal, where
the agent’s definition is vague and algorithm-dependent. For
example, in [2] a multi-agent approach has been used for
local graph clustering. In [3|] each agent runs a different
clustering algorithm in order to return the best one for the data
set at hand. In [4] agents negotiate one another rather than
being governed by a master/wrapper process (e.g. evolutive
algorithm). In [5]] each agent consists in a set of data points
and agents link to each other, thus leading to clustering. In
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[6] a genetic algorithm has been used where the agents’
genetic code is connection-based: each agent is a clustering
result whose genetic code builds a subgraph and, finally, such
subgraphs can be interpreted as clusters. In [7]] the multi-agent
approach collapses into two agents: a first agent runs a cascade
of principal component analysis, self organizing maps and k-
means in order to cluster data and a second agent validate
such results. Finally, in [8] a multi-agent algorithm has been
proposed in which agents perform a Markovian random walk
on a weighted graph representation of the input data set. Each
agent builds its own graph connection matrix amongst data
points, weighting the edges according to the selected distance
measure parameters, and performs a random walk on such
graph in order to discover clusters. This algorithm has been
employed in [9] to identify frequent behaviours of mobile
network subscribers, starting from a set of call data records.

In this work, we consider Evolutive Agent Based Clustering
Classifier (E-ABC?), an agent-based algorithm developed both
for solving clustering [[10]], [11]] and classification [12] prob-
lems. In E-ABC? each agent runs a very simple clustering
procedure on a small sub-sample of the whole dataset. A
genetic algorithm [13] orchestrates the evolution of such
agents in order to return a set of well-formed clusters, thus
discovering possible regularities in the data set at hand. Many
clustering algorithms deal with a global metric. This means
that the dissimilarity measure between patterns weights, in
a suitable fashion, each feature leading to a global feature
selection procedure. In the proposed approach weights are
valid locally. The property of “locality” is ensured by a
weighted dissimilarity measure alongside the not straightfor-
ward clustering procedure adopted and, practically, it is valid
in the region around the cluster representatives. In other words,
the evolutionary clustering process selects, through the agents,
the subspace where these clusters are well-formed.

Three main concepts are well addressed with E-ABC?: i) the
possibility of conceiving an evolutionary learning algorithm
capable of dealing with local metrics, instead of global metrics,
hence learning which features are important in characterizing
input space regions, possibly belonging to different classes
for the classification problem at hand [14]; ii) the use of
the multi-agent paradigm that allows to face the pattern
recognition problem by relying on possibly distributed and
scalable architectures [15]], [[16]], suitable in Big Data contexts,



by solving a complex problem by dividing it in small (simple)
sub-problems [[17]]; iii) the adoption of a clustering algorithm,
as the main core of agent’s job, that allows building a gray-
box model useful for further data discovery analysis [18].
The contribution of this paper is two-fold:

1) we propose a multimodal variant of E-ABC?: in fact, in
previous works [10]-[12], a standard genetic algorithm
took care of orchestrating the swarm of agents. However,
this can limit the exploration capabilities, especially as
the local metric learning task is concerned;

2) since each agent independently operates on a specific
dataset shard randomly drawn from the dataset, their jobs
can be embarrassingly parallelized.

The remainder of the paper is structured as follows: in
Section [II| we introduce the E-ABC? basic algorithm, along
with the two aforementioned variants in Section and [[-El
Section [[TI shows the experimental results, whereas Section [[V]
concludes the paper.

II. E-ABC?

E-ABC? is a classification algorithm which takes advantage
of the approach proposed for E-ABC algorithm and uses it to
extract meaningful clusters from the data set, which will later
be used for building the classification model. Hereinafter, let
us consider the overall dataset S to be split into three non-
overlapping training, validation and test set (S, Sy} and Si).

A. E-ABC? Agent Behaviour

The key role of E-ABC? agents is to construct well-formed
clusters, starting from a subset of patterns R randomly sampled
from training set, used to build the decision regions of the
classification model M. The underlying clustering algorithm,
individually performed by each agents, is based on the well-
known Basic Sequential Algorithmic Scheme (BSAS). This
method scans sequentially the input data and assigns a pattern
to an existing cluster if the pattern-to-representative distance is
below a given threshold 8. If the pattern cannot be assigned, it
will serve as a centroid for a new cluster. However, especially
for low @ values, BSAS is likely to return a huge number
of small clusters: to limit this issue, a maximum number
of allowed clusters Q can be defined by the end-user and
new clusters can be spawned provided that the number of
already-available clusters is below Q. A major drawback of
BSAS is its sensitivity to pattern order and outliers due to
the sequential approach followed by the procedure. In order
to mitigate this issue, in E-ABC?, a Reinforcement Learning-
based BSAS (RL-BSAS), has been considered [19]. In this
variant, an energy value S is assigned to the each cluster. When
a cluster C receives a new pattern, its energy is increased
by a value a € [0,1], whereas the energies of all other
clusters are diminished by a value 8 € [0, 1]. As consequence,
relevant clusters will survive, giving high level of energies,
whereas badly-formed clusters will eventually vanish when
their energies approach to zero. Each E-ABC? agent relies on
a set of parameters:

« a binary mask w € [0,1]" is in charge of selecting only
relevant features, defining the specific (local) metric used
by the agent in searching for well-formed clusters;

« the maximum radius 6 for the BSAS procedure;

« the ratio parameter r = a/8 € (0,1) involved in the RL-
BSAS.

Each agent exploits the aforementioned parameters in order to
cluster the input shard R. Specifically, it first retains features
from patterns in R belonging to 1’s in w, then runs the RL-
BSAS parameter with threshold 6, with penalty and reward
factors @ =r- 8. For the sake of simplicity, @ has been set to 1,
in such a way that 3 can easily be evaluated as 8= a/r. Hence,
the basic agent task is to return a partition P = {C,...,Cjp|}.
Before returning # the agent merges overlapped clusters which
may occur due to the RL-BSAS architecture. The single agent
behaviour is summarized in Algorithm [T}

Algorithm 1 E-ABC? Agent Behaviour

P - Partition of clusters {Cy,...,C|p|}
O - radius of k™ cluster in P
d(-;-) - suitable distance between entities
R - agent data shard

Input: R

Output: P

procedure AGENTEXECUTION
P =RL-BSAS (R)
repeat
for each pair C;, C; in £ do
Evaluate D =d (C;,C;)
ifD<9i && D<9j then
Merge C; with C;

until a merge occurs

B. Evolutive Orchestration and Model Synthesis

As stated in Section [ a genetic algorithm is in charge
of orchestrating the swarm of agents and of returning a
suitable model. In this evolutive scenario, each agent acts as an
individual for the evolving population. As for Section[[I-A] the
agent behaviour is determined by several parameters driving
the subspace in which clusters shall be found (w) and the RL-
BSAS per se (6, r). These parameters compose the genetic
code, that reads as

[9 w r] (1)

Each agent exploits the parameters written in its genetic code
in order to return a partition # of the random data shard R as
described in Section As P ={Ci,...,Cp|} is returned,
each cluster C in the partition is evaluated thanks to a quality
index f..(C) that considers both its compactness f.o(C) and
cardinality f.,(C), i.e.

Jee(C) = A+ feo(C) + (1 =) - fea(C) 2)



where, in turn

(1 - |C|_l erC d(x7/'l)) — COmin

COmax — COmin

fco(C) =

3)

fa(C) = M 4)

Camax — CAmin

where comin, COmax, Cmin and camax are the minimum and
maximum compactness and cardinality values observed so far
during the evolution, u denotes the centroid of the cluster and
A €[0,1] is a user-defined trade-off parameter. In order to
retain only good quality clusters, for each agent, only the best
cluster C* is retained, namely the cluster in  that maximizes
Eq. (). Since we are dealing with a supervised problem, each
pattern is mapped with a ground-truth class label, hence each
cluster can also be assigned to one of the problem-related
classes by considering the most frequent label amongst the
patterns in the cluster itself. Another quality index can be
defined by considering a supervised approach: let S,; be a
validation set, then it is possible to define the accuracy of
cluster C, say Acc(C) as the ratio between the validation data
sharing the same label as C that fall within C and the number
of all validation set patterns falling in C. The latter is only
evaluated on C* and if Acc(C*) is greater than a user-defined
threshold Accmin and it is greater than an adaptive parameter
Accgy, then C * is added to the model M, incrementally built
generation-by-generation. M is the core of the classification
model: after all agents have offloaded their good clusters in
M, then it is possible to consider such clusters as building
blocks for the classification model. The Accgy; parameter is
the global accuracy of M computed over the entire Sy;. Each
agent is finally assigned with a fitness function f defined as

f=Accg - Acc(C*)+(1-Accy) - foe(CF) &)

The rationale behind this formulation can be summarized
as follows: at early generations we do not expect to find
good clusters in M, hence Accg; will be rather low and the
fitness takes mainly into account the quality index fe.(C).
For the sake of completeness, the procedure designed for
the agent’s fitness evaluation just discussed, is reported in
Algorithm [2| After all agents have been evaluated, standard
genetic operators (elitism, crossover, selection, mutation) take
care of moving from one generation to the next. The evolution
goes on until either NG generations have been completed or an
early-stop criterion is triggered: the latter counts the number
of consecutive generations with an Accg increment below a
given threshold. If the count overcomes a maximum value the
evolutionary procedure terminates. A general picture of the
whole system evolution and model building can be found in
Algorithm [3]

C. Testing Phase

At the end of the optimization procedure, the model M =
{C1,...,Cm} is the key player as it contains the best clusters
found by the swarm during the evolution. It is worth recalling
here that each cluster C is uniquely identified by the tuple

Algorithm 2 Agents Fitness Evaluation and Model Design

P; - Partition of clusters {Ci,...,C)p|} ih agent
R; - data shard for i" agent

(C) - cluster compactness

|C| - cluster cardinality

Input: P, R;, Sy
Output: Agent Fitness f, Best Cluster C*
procedure AGENTSEVALUATION
Compute Accg; for the model M on Sy
for each agent a; in P do
P; = agentExecution(R;)
for each C in #; do
Jee(C)=2-{C)+(1-2)-|C|
C* = argmax f,.,.
CeP;
Compute cluster accuracy Acc(C*) on Sy

f=Accg - Acc(C*)+(1-Accgr) - fee(C*)

Algorithm 3 E-ABC? Training Phase
N -

Number of agents
P; - population of i generation
R; - data shard for jM agent
Input: S, Sy
Output: M
procedure TRAINAGENTS
Set M =0
Initialize individuals in Py with random genetic code
for i =0 to Ng do
Draw random shards {Ri,..., Ry} from S
C*, f = agentsEvaluation(P;, {R],...Rn},Sw)
Compute accuracy Accg; of model M on Sy
for each agent a; do
if Acc(C*) > Accpmin &&
Acc(C*) > Accg then
Add C* to model M
if Stop Condition == True then
break
P = Evolve(Pi)

(u,0,w), namely its centroid, radius and subspace mask,
respectively. The test set has the final goal of evaluating the
performances of the final model returned by E-ABC?. For each
pattern x € S

1) the distance with respect to all clusters in M is evaluated.
Each distance is obviously weighted according to each
cluster’s w metric parameters (subspace)

2) the resulting distances are checked against each cluster’s
0: if less than (or equal to) 6, a match is scored

3) the labelling takes place according to the following rules:
« in case of only one match, x inherits the label of its

closest cluster
« in case of multiple matches, x inherits the most fre-
quent label across all clusters in which it felt



« in case of no matches, x is marked as unclassified.

D. Multimodal E-ABC?

From Section [l it is clear that each cluster is identified not
only by its centroid ¢ and radius 6, but also by its binary
mask w containing the parameters of the subspace in which
said cluster has been found. Further, recall that the search
of these parameters is driven by an evolutive metaheuristic.
Standard genetic algorithms notably aim at optimizing a given
fitness function in a unimodal manner, i.e., the population
tends to converge to a single (sub-)optimal solution. However,
since meaningful clusters might lie in different subspaces,
a unimodal, plain, genetic algorithm might as well limit
the exploration in this regard, returning one (or very few)
subspaces. In the technical literature, these kind of problems
are known as multimodal, as multiple optima exist [20], [21]].
To this end, we removed the elite pool and introduced a fitness
sharing based approach [22[]-[25[]: after the fitness of each
agent has been evaluated, an additional step occurs to modify
it. As if they where sharing a limited resource, close agents (in
terms of search subspace) are penalized. The more agents share
the same subspace, the more their fitness value is reduced. In
this way, agents are encouraged to explore new subspaces that
no other agents are investigating.

In particular, the considered fitness sharing tweaking on the
it agent fitness function reads as [22]]

fir=film; (6)

where f; is its original fitness value and m; is an estimate on
the number of individuals sharing the same fitness as agent i.
The latter formally reads as

mi= - shdr)) ™

being N the population size and d; ; the distance between
individuals i and j. Since we want to employ the fitness
sharing mechanism to foster subspace exploration, d; ; is
defined as the Jaccard dissimilarity between the w portions
of their respective genetic codes. The sharing function sh(-)
is defined as

sh(ds ;) = {(1)_ e

where o is a threshold parameter and w regulates the smooth-
ness of the sharing function.

if di’j <o
®)

otherwise

E. A Parallel Implementation

All of the parallelizations have been implemented by means
of the OpenMP API. OpenMP provides a thread pool archi-
tecture whose size (number of available threads) can be set
at the application startup. The use of a thread pool reduces
the multi-threading management overhead because it avoids
to create and destroy a thread each time it is used. In brief,
each agent independently receives a random data set shard and
outputs a set of clusters. These tasks can be easily parallelized
with a naive parfor-like loop. The master task spawns as many

tasks as there are agents and forwards each one, with the agent
genetic code and the data set shard, to an available thread
in thread pool: threads perform in parallel agents’ search for
clusters. When a thread completes its task receives a new agent
to perform its cluster search, until the task queue is over.
The control now returns to the master process that updates
the minimum and maximum bounds for compactness and
cardinality (comin, COmax> Camin and camax) and the new values
are returned to the threads (agents) that, now, can evaluate their
respective clusters (compactness and cardinality — see Egs.
(B)-(@)). Therefore, they are also able to elect the best cluster
and evaluate its classification capabilities over the validation
set. The analysis of the validation set is also included in a
parfor-like loop so that the classification of each pattern in
validation set is performed in parallel. However, since the
validation set might be huge as well (and forwarding the entire
validation set to all threads can be a serious bottleneck) it
undergoes a subsampling (like the training set) and the shard
is forwarded to the agent that, to this end, is now able to
evaluate of its best cluster accuracy.

III. EXPERIMENTAL RESULTS
A. Dataset Description

For this test we used two data sets: a modified version of
well-known Iris and an additional synthetic data set conceived
to stress E-ABC? local metric learning capability. Iris data set
has been slightly manipulated to be adapted to the algorithm
properties and to highlight its abilities to work on suitable
random samples drawn from the dataset. The original Iris data
set is composed of 3 classes, each one containing 50 patterns.
We artificially increased the data set cardinality up to 3000
patterns, 1000 for each class:

1) the entire data set has preliminarily been normalized in
[0,1] feature by feature
2) from each original pattern p°, 19 additional patterns are
created. The /" component of the new pattern p™V is
computed as
i =pii+s ©)

where 6 € [-0.05,0.05] is a displacement randomly ex-
tracted with uniform distribution

3) the obtained patterns are normalized again to ensure they
lie in the unitary hypercube

4) 10 additional randomly drawn features are appended to
each pattern.

The initial normalization is needed to avoid a dataset de-
formation introduced by patterns extraction. The role of the
additional features is to increase the complexity of the feature
extraction task. They are randomly drawn with a uniform
distribution in [0,1] so that the additional features do not
hold any informative content and they just act as noisy
components for the model synthesis procedure. The synthetic
dataset scheme is summarized in Table [Il It is composed of
8 clusters lying in different subspaces, each one assigned to
one out of two classes identified by “X” and “O” symbols. All
patterns lie in the unitary hyper-cube and they are uniformly



Iris
Predicted
0 1 2 3

Expected

14.12
15.87

223,113
24.33

25.66
11.23

(a) Unimodal

Iris
Predicted

Expected

223.89
10.32

(b) Multimodal

Fig. 1. Confusion matrices for Iris dataset. On each box average values (top) are reported along with standard deviation (bottom).

Synthetic
Predicted

2056.32
243.95

Expected

2049.83
274.41

(a) Unimodal

Synthetic
Predicted

2370.90
362.67

Expected

2355.43
400.77

(b) Multimodal

Fig. 2. Confusion matrices for Synthetic 24k dataset. On each box average values (top) are reported along with standard deviation (bottom).

TABLE 1
SCHEMATIC REPRESENTATION OF THE CLUSTERS’ STRUCTURES FOR
SYNTHETIC DATASET

1234567891011 12 13 14-20
CGIX XX ~ ~ ~ ~ ~~ ~ ~ ~ ~ =~
Glv ~ ~ XX~ ~~~ o~~~ o~ o~
Ci|~~~~~000~~000 ~
C4lOO0~~~~~~00 ~ ~ ~ ~
Cs|~ ~ 00 ~~~~~ ~ ~ ~ ~ ~
Col~ ~~ ~ ~ XXX~~~ ~ ~ ~
Ci|l~~~~00000 ~ ~ ~ ~ ~
Cs|~ ~~~~~~~XX X X X ~

distributed in an hyper-sphere with fixed radius. For each clus-
ter, the corresponding hyper-sphere is defined in the feature
subspace marked as “X” or “O”. Features marked with ~ are
not informative for that cluster: patterns in that cluster have

[0,1] uniformly drawn values for that feature. Features 14-
20, collapsed in a single column, are not informative for any
cluster. Each cluster contains 3000 patterns. Exactly 4 clusters
are assigned to “X” (in the following referred as class 1)
and 4 assigned to “O” (referred as class 2), yielding perfectly
balanced classes. The whole data set is composed of 24000
patterns (referred as Synthetic 24k).

For both data sets, Iris and Synthetic 24k, we have built in
advance 100 splits in training, validation and test set by means
of a stratified sampling. Recall that Sy, is used by the algorithm
to look for the clusters, Sy is needed for testing the discovered
clusters and drive the overall swarm optimization and Sy is
used to check the performances of the final classifier when the
model synthesis is over.

B. Basic and Multimodal E-ABC? Performance Comparison

In this subsection we are going to analyze extensive tests
performed to compare the two E-ABC? versions: the vanilla
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Fig. 3. Accuracy distribution on /Iris and Synthetic 24k datasets in unimodal and multimodal configuration.

(unimodal) version against the multimodal one to show how
this approach affects the performances. As the multimodal
implementation is concerned, we empirically found w =1 and
o =0.4 to be suitable values for the scaling function (Eq. (§)).
Other systems parameters include Accpax =0.99, Accmin =0.6,
A1=0.5and a=1.

Results are presented in terms of aggregated confusion
matrices, averaged across 10 runs of the algorithm, where
each run has been performed on 100 training-validation-test
different splits. Confusion matrices also account for a dummy
class *0’, that corresponds to unclassified patterns. Fig. [Ta] and
[2a] respectively, show the results obtained with unimodal E-
ABC? on Iris and Synthetic 24k. Similarly, Fig. [1b] and
show analogous results for multimodal E-ABC?. Finally Fig.
[3a) and 3B respectively, show the distribution of the overall
accuracies obtained across runs of both vanilla and multimodal
E-ABC? algorithms on both Iris and Synthetic 24k.

Fig. [3a) shows there is no significant difference between
basic and multimodal approaches applied to Iris. It is due to
the internal structure of this dataset. The informative features
are the same for all of the Iris classes. The benefit of using
a multimodal search is evident in Fig. [3b] When local metric
learning is actually required: the basic approach accuracy de-
grades if compared to multimodal. In order to better investigate
this aspect, we define the stratified cluster-aware accuracy
(SCAA) for the i cluster, say C;, as

Yxeg h(x)
ICil
where h(x) =1 if pattern x has been correctly classified (i.e.,
the decision cluster model outputs the same class as C;) and
h =0 otherwise. Tables [l and [[I] show the SCAA values on
the Synthetic 24k dataset for basic and multimodal variants,
respectively. Clearly, adopting the multimodal variant results
in a more accurate cluster classification suggesting that, when
vanilla E-ABC? finds a good subspace, it starts spreading

SCAA(C) = (10)

TABLE II
SCAA INDICES FOR BASIC E-ABCZ? ON THE TEST SET. RESULTS ARE
SHOWN SEPARATELY FOR EACH OF THE 8 CLUSTERS IN SYNTHETIC 24K.

G G G G G G G G
0 |0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 | 1.00 0.04 0.05 0.19 0.04 0.05 0.07 0.05
2 |1.00 005 057 1.00 0.58 0.06 0.56 0.06
3 |1.00 043 054 1.00 0.57 042 054 042
4 | 1.00 043 0.55 1.00 0.57 042 054 044
5 | 1.00 042 056 1.00 0.59 040 0.55 0.40
6 |1.00 041 056 1.00 0.61 040 0.56 0.41
7 | 1.00 041 0.56 1.00 0.62 040 0.57 041
& | 1.00 041 057 1.00 063 039 0.57 0.40
9 |1.00 040 057 1.00 0.66 0.39 0.58 0.39
10| 1.00 041 0.57 1.00 0.66 039 0.58 0.39
11| 1.00 040 058 1.00 0.66 038 0.58 0.39
12{1.00 041 058 1.00 0.67 0.39 0.58 0.39
131.00 041 058 1.00 0.67 0.38 0.58 0.39

and saturates the population (preventing exploration of new
potentially useful subspaces), whereas the multimodal variant
leads to a better subspace exploration.

C. Multimodal E-ABC? Scalability

In order to address the scalability of the parallel E-ABC?
implementation (see Section [[I-E) the following well-known
index has been considered [26]—[29]:

Speedup: measures the ability of the parallel and distributed
algorithm to reduce the running time as more workers
are considered. The dataset size is kept constant and the
number of workers increases from 1 to m. Hence, the
speedup with m computational units reads as

running time on 1 worker

speedup(m) = 1D

running time on m workers



TABLE III
SCAA INDICES FOR MULTIMODAL E-ABC? ON THE TEST SET. RESULTS
ARE SHOWN SEPARATELY FOR EACH OF THE 8 CLUSTERS IN SYNTHETIC

12

11t

10+

data chunk 400 v
data chunk 1600 4 1
data chunk 6400

24K.
C1 Cz C3 C4 Cs C6 C7 Cg
0 [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 |0.03 000 000 000 0.00 0.00 0.00 0.00
7 1006 0.02 000 0.00 0.00 0.12 0.00 0.02
8 [0.06 0.02 0.00 0.00 0.00 0.12 0.00 0.02
9 1006 0.02 000 0.00 000 0.12 0.00 0.02
10| 0.06 0.02 0.00 0.00 0.00 0.12 0.00 0.02
741 0.89 0.83 1.00 0.71 0.68 0.66 0.95 1.00
751089 0.86 1.00 0.71 0.68 0.67 0.95 1.00
76 1 0.89 0.86 1.00 0.71 0.68 0.67 0.95 1.00
771089 0.86 1.00 0.71 0.68 0.67 0.95 1.00

Since in Section we showed that the multimodal variant
outperforms the basic (unimodal) counterpart, we concentrate
the scalability results on the former only. Tests have been
performed on a workstation equipped with two 6-cores Intel®
Xeon® E5-2620v3 CPUs @2.40GHz, 64GB of RAM, running
Linux Ubuntu 18.04. The software has been implemented in
C++ using the OpenMP library for parallelization.

Figure [4] shows the speedup factor for multimodal E-ABC?.
The expected speedup behaviour is perfecly linear as, intu-
itively, an m-times larger computing power shall take m times
less time to process a given dataset (dashed line). In order to
stress the algorithm, we increasingly changed the size of the
dataset shard R: one usually tries several datasets of increasing
size in order to stress how the speedup not only reacts to
the number of cores, but also to different datasets [26[—[29]],
yet it is worth recalling that the algorithm input is indeed
a set of data chunks rather than the entire dataset. To this
end, we first generated a 800000-patterns synthetic dataset
following the same schema as for Synthetic 24k and then we
changed not only the number of cores (from 1 to 12, up to the
number of physical cores on the available hardware), but also
the dataset shard size (from 400 patterns per agent to 6400
patterns per agent). Results clearly show that as the problem
gets harder (i.e., more data to be processed by each agent), then
the speedup tends to the expected linear behaviour: a sign that
E-ABC? tends to be quite robust when it comes to handling
large datasets. Due to the stochastic behaviour of the overall
algorithm, a meticulous care has been paid to letting (for
each dataset) the algorithm to converge to the same solution
(regardless of the number of cores) by a proper tweaking of
the pseudo-random number generator.

i 2 3 4 5 6 7 8 9 10 11 12

Fig. 4. Speedup performances

IV. CONCLUSION

In this paper, we proposed two improvements in E-ABC?, a
multi-agent-based classification system on the top of decision
clusters. Since its original design, E-ABC? has been conceived
to be a lightweight algorithm for finding regularities in big
datasets: we started with a first version that performed unsu-
pervised learning (i.e., clustering) and then we synthesized
a classification model on the top of discovered clusters in
order to let E-ABC? be able to solve also supervised problems.
Regardless of the nature of the problem at hand, our approach
is based on a swarm of multiple agents, each of which only
sees a small and randomly chosen portion of the dataset and
aims at finding regularities in this data shard. The swarm
of agents, properly driven by an optimization metaheurisic,
has the final goal of returning meaningful clusters that well
characterize the decision regions of classification processes,
giving the hard task of allowing different clusters to lie in
different subspaces. This poses the additional challenge of
jointly looking for well-formed and meaningful clusters and,
at the same time, the subspace in which they lie. However,
if one lets a plain genetic algorithm to drive the optimiza-
tion, then it will likely converge to a single solution, as
typical in elitist genetic algorithms. In order to overcome
this problem, we replaced the standard genetic algorithm
with a multimodal variant, able to converge simultaneously
to different (sub)optimal solutions. Our tests carried out on
both synthetic and synthetically augmented datasets show that
the multimodal approach leads to a more precise identification
of the underlying clusters. A second contribution, as instead,
has a merely computational rationale: the fact that agents
receive a (small) dataset portion and output a set of clusters
independently one another make their evaluation particularly
suited for parallelization. To this end, we adopted the OpenMP
framework in order to parallelize agents’ execution and the
obtained results are satisfactory, yielding a speedup factor that
approaches the desired linear behaviour as more and more data
are analyzed. The effectiveness of the parallelization observed
in our studies with demonstrative synthetic datasets, together
with the natively distributed nature of the system, suggest E-



ABC? as a promising framework for facing Big Data, where
partitioning the available data on different processing nodes is
often mandatory due the large memory/space footprint. In this
regard, future efforts will be devoted to extend and test the
proposed system towards structured domains such as graphs
[30], [31], sequences [32], audio and video data [33]], text
documents [34], which are common in real-world Big Data
applications.
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