
Black-box Evolutionary Search for Adversarial
Examples against Deep Image Classifiers in

Non-Targeted Attacks
Štěpán Procházka

Institute of Computer Science
Czech Academy of Sciences

Prague, Czech Republic
prochazka.stepan@gmail.com

Roman Neruda
Institute of Computer Science

Czech Academy of Sciences
Prague, Czech Republic

roman@cs.cas.cz

Abstract—Machine learning models exhibit vulnerability to
adversarial examples i.e., artificially created inputs that become
misinterpreted. The goal of this paper is to explore non-targeted
black-box adversarial attacks on deep networks performing
image classification. The original evolutionary algorithm for
generating adversarial examples is proposed that employs a
guided multi-objective search through the space of perturbed
images. The efficiency of attacks is validated by experiments
with the CIFAR-10 data set. The experimental results verify
the usability of our approach against deep convolutional neural
networks.

Index Terms—deep learning, image classification, adversarial
patterns, evolutionary algorithms

I. INTRODUCTION

Deep learning image classification solutions reports vulner-
ability to adversarial examples i.e., artificially created inputs
that become misinterpreted. It has been showed that carefully
crafted perturbations added to images may successfully lead
to model failure, while being unnoticeable for the human
observer, or a different model. The issue of vulnerability
to adversarial attacks does not apply only to the task of
image classification, but it also concerns speech recognition,
particularly the use of virtual personal assistants; or image seg-
mentation and object detection on which autonomous vehicles
depend. It is of great importance to study those vulnerabilities,
attacks and corresponding defenses to improve reliability of
such solutions.

The goal of this work is to explore adversarial attacks
in image classification by deep networks in the black-box
scenario. We want to assess the suitability of evolutionary
algorithms as a generative procedure for finding adversarial
examples. To this end, we propose a multi-objective evolu-
tionary algorithm working on image data, and searching for
adversarial examples that are misclassified by the machine
learning model while still retaining visual similarity to the
original image. The main constraint in the black-box attack
scenario is the impossibility to access the machine learning
model parameters, or even consider any knowledge about
the attacked model. The attacking algorithm is only able to
query the model for a classification of particular image. Thus,

previously successful gradient-based attack methods are not
applicable, unless a some kind of surrogate model solution is
employed. Our method, on the other hand, satisfies the black-
box attack constraints naturally.

The structure of this work is as follows. The following
section II introduces the deep models and image data set
that are referred to and used in our experiments, as well
as several concepts related to adversarial examples. Related
work is presented in section III. The original contribution of
this work – the algorithm for generating adversarial examples
– is described in section IV. Experiments validating the
performance of our algorithm are presented in section V.
Finally, a discussion of the results and possible future work
directions are presented in section VI.

II. PRELIMINARIES

A. Deep Image Classifiers

The task of image classification lies in assigning one and
only one label l from the set of possible output labels L to
each input image I from the space of all possible images I
of which we often think as a unit hypercube i.e., [0, 1]h·w·c

with h, w, c being input images height, width and number
of channels (depth) respectively. Task with input varying in
shape can be transformed to the canonical classification task by
adding a preprocessing step which unifies shape e.g., reshaping
using bilinear interpolation or conversion to common color
space (see [1]), or by building a multitude of solutions – each
targeted at specific shape of input data.

Due to the need to classify real world imagery i.e., data
with substantial amount of noise, lacking quality or having
non-trivial composition (such as multiple objects in the scene,
varying viewing angles or conditions, or heterogeneous back-
ground), the datasets of real world photographs were created.
Those datasets range from collections of thousands of low
resolution thumbnails in dozens of classes to millions of
reasonably large pictures in hierarchical systems of classes.

For the experiments in this work we have chosen the CIFAR
dataset of downsized color photographs. The CIFAR dataset
comes in two versions, namely CIFAR-10 and CIFAR-100,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

named after number of classes present. Both datasets share the
same example shape i.e., 32×32 (rectangular color image) and
dataset layout comprising of 50 000 training and 10 000 testing
images with balanced class occurrence. CIFAR-10 consists
of following classes – airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck (see fig 1), while CIFAR-100
introduces hierarchical system of 20 superclasses e.g., fish,
small mammals, tress, large carnivores, each subdivided into
5 subclasses e.g., fish – aquarium fish, flatfish, ray, shark, trout
(see [2]).

The advent of deep learning and its soaring popularity
has been boosted by outstanding results achieved with deep
learning models, beating then state of the art methods by
a large margin. Arguably AlexNet was the first architecture
to show the potential of deep convolutional neural networks,
followed by gradually deeper architectures VGGNet, ResNet,
etc. ResNet was the first architecture to tackle the issue of
vanishing gradients. Residual shortcuts, connections bypassing
convolutions, enabling gradient flow have been employed.
With that improvement, ResNet-152 model [3], with 152 layers
and parameter count of 60.2 millions, scored top-5 error of
3.6% on ImageNet [4] and 6.43% on CIFAR-10. It uses 3×3
convolutions, average pooling, ReLU activation and dropout
after dense layers. Moreover batch normalization between
each convolution and activation is used. It is trained using
SGD with momentum. Further exploiting the performance
gain of residual shortcuts usage, authors of [5] created the
DenseNet architecture. WideResNet [6] was another extension
of the ResNet architecture. The performance gain of residual
shortcuts usage was further exploited e.g., by authors of
DenseNet [5] and authors of WideResNet [6]. Contrary to
the original ResNet, the WideResNet architecture sacrifices
network depth (i.e. number of layers) for network width (i.e.,
the size of layers). The authors show that this is not only more
computationally efficient but also more performant in terms
of accuracy. WideResNet with 28 layers and widening factor
k=10 reaches SOTA results with 3.89% error on CIFAR-10.

B. Adversarial Examples

Performance of deep learning models is not perfect and
certain amount of input data gets misclassified naturally due
to the insufficient accuracy of models. However, the paper
[7] showed that misclassification can be achieved artificially
by adding small perturbations designed to fool the model
to the previously correctly classified examples. Those inputs
are called adversarial examples. We will focus on adversarial
examples for image classification task.

The task of generating adversarial example for input x and
model Mθ, such that Mθ(x) = l is the correct label, lies in
finding the perturbation η, such that Mθ(x+η) =Mθ(x

′) = l′,
with l′ being target class for the adversarial attack.

We can characterize adversarial attacks by the following,
mutually independent properties i.e., specificity, scope, adver-
sary’s knowledge and perturbation constraints.

The specificity of adversarial attack is defined by the target
class l′. In case of targeted attack, the target class l′ corre-

sponds to one specific classification category. On the other
hand, in case of non-targeted attack, l′ corresponds to all but
the ground truth class l and adversarial example is than any
x′ = x+ η such that Mθ(x

′) 6= l.
The scope of adversarial attack lies in number of original

examples to be attacked by single η. Singleton attack stands
for attack on single example x such that Mθ(x+η) = l′. Multi
attack stands for attack on arbitrary number of examples X
of the same class such that ∀x ∈ X :Mθ(x+η) = l′. Finally,
universal attack seeks single η such that ∀x :Mθ(x) = l =⇒
Mθ(x+ η) = l′

We distinguish between three cases of adversary’s knowl-
edge. The white-box attack assumes full knowledge of targeted
model i.e., architecture, weights and training data as well
as parameters of the optimizer being used for training. On
the other hand, the black-box attack assumes no additional
information about targeted model, apart from the classification
predictions and respective probabilities. Finally, the surrogate
attack treats the targeted model as a black-box, yet has full
access to substitute model i.e., model sharing some charac-
teristics of target model e.g., task it solves, training data,
architecture, output probability distribution, etc.

Regarding the perturbation constraints of the attack, we
distinguish the following three cases. Unconstrained attack
with no limitations on perturbation η, constrained attack,
with limited intensity of perturbation η allowed, with respect
to some measure, and finally the optimized one, where the
perturbation intensity is minimized. The l1 and l2 norms, or
PASS by [8] and SSIM by [9] – visual similarity measures, are
frequently used intensity measures.

III. RELATED WORK

The research of adversarial attacks against machine learning
models has become popular in last years and several methods
have been proposed, see [10] for overview. Thanks to the
inherent property of deep learning models – differentiability,
gradient based methods are easy to be used and perform
well in white-box and reasonably well in surrogate scenarios.
More of those methods have been invented, namely the L-
BFGS using Broyden-Fletcher-Goldfarb-Shannon optimization
algorithm, fast gradient sign method and its modifications, or
feature adversary attack.

The fast gradient sign method (FGSM) computes gradients
of loss function of the target model with respect to the target
example x and class l′. The sign of gradients is taken and
multiplied by ε, the step size, and subtracted from x (targeted
attack) – this way the target image is moved in the direction
of rising target class prediction (1). In case of non-targeted
attack, gradients are computed with respect to source class l
and, instead of subtraction, we use addition to move the target
image in direction of falling source class prediction.

x′ = x− εsgn (∇θL (Mθ(x), l
′)) (1)

The FGSM can be used iteratively with xt = x′t−1. Optional
clipping after each step may take place in case of constrained

airplane

bird

deer

frog

ship

automobile

cat

dog

horse

truck

Fig. 1. CIFAR 10 samples

attack. Versions of FGSM with momentum exists – generating
the adversarial example the same way as the training of deep
learning models optimizes the parameters.

Apart from methods based on backpropagation, the usage of
deep generative models for adversarial example generation has
been researched. Authors of [11] trained generative adversarial
network (generator G) on target model task dataset, mapping
random latent space to images and inverter I , mapping images
to latent space of generator G. The adversarial examples
are generated by finding z′ close to z = I(x), such that
Mθ (G(z

′)) = l′. This approach generates adversarial exam-
ples more natural to human observer as we are perturbing the
hidden representation rather than the final output.

Regarding the black-box adversarial attacks for deep learn-
ing models, only a few methods has been proposed so far.
Authors of [12] performed a successful one-pixel attack using
differential evolution algorithm, they demonstrated a vulnera-
bility of image classifiers to extreme change of a single pixel
of the image. In [13], authors suggest an approach converting
black-box attack to surrogate attack, by synthesizing dataset
for the surrogate model to be trained on. The work [14]
proposes to perform a local-search of the neighborhood of
targeted image to estimate the gradient of targeted model. This
estimate is later use to guide the generation of adversarial
example. The former approach is later extended by authors of
[15], who employ natural evolutionary strategies to estimate
target model gradients with respect to targeted image. The
adversarial example is generated using the gradient descent
algorithm on the estimated gradient. Finally, in [16], authors
used genetic algorithms to perform adversarial attack mostly
on a variety of machine learning models including SVMs,
kernel networks and multilayer perceptrons.

IV. OUR SOLUTION

In our solution, we propose genetic algorithm to perform
search on space of images to find adversarial examples for the
given model. We do not assume anything in particular about
targeted model, its architecture, dataset or training process,
contrary to white-box or surrogate methods. We treat the
model only as a function classifying the given image (input)
into probability distribution over the set of labels (output). In

this section we will describe our solution in detail, focusing
on data representation and algorithms used.

The genetic algorithm is a population based search method,
working with a set of individuals – encoded solutions to the
given problem. Assume a task with objective O on space S.
Then a population P is a subset of space to be searched (P ⊂
S), with individual i being an element of population (i ∈ P),
hence element of search space S i.e., representing a possible
solution. Fitness function F : i 7→ R is a real valued measure
of fitness depending on individual, often function of the ob-
jective function O of the task to be solved i.e., F : O(i) 7→ R.
As an operator Op : Pin1

, Pin2
, . . . , Pinn

7→ Pout we define
a function converting one or more populations to a new one,
often in element-wise (per individual) manner. Epoch is then
one step of the genetic algorithm consisting of application of
the sequence of operators to current population Pt, producing
new population Pt+1 = Opn

(
Opn−1 (. . .Op1(Pt))

)
.

The ability of genetic algorithms to effectively search given
space lies in application of suitable operators. Those operators
can be divided into three categories – reproduction operators
e.g., cross-over which combines several individuals into new
one; mutation operators, which add random perturbations to
individuals, with the idea of exploring genes not present in
current population; and finally selection operators mimicking
the natural selection based on fitness of individuals.

Our approach encodes the image as a 3D matrix to maintain
spatial relations of the data – images. Those relations are
further exploited by selected operators, namely cross-over.
The suitability of this change is supported by the fact, that
vast majority of deep learning image classifiers is based on
use of convolutional layers, which extracts the spatial context
of processed data. Our individual is thus defined as a matrix
i ∈ [−1, 1]h×w×c and represents perturbation η. While a use
of zero centered binomial distribution scaled by factor of 1

255
is possible to sample initial population, in our approach we
found that simple zero initialization yields satisfactory results.

In our solution we use two point cross-over, which swaps
randomly selected rectangular regions i.e., image crops of
parent individuals, to produce offspring (see fig 2). As a muta-
tion operator, we use biased mutation with normal distribution
(Mut) followed by quantization to multiples of 1/255 (Quant).

Fig. 2. Two-point cross-over on images

As a result, such approach mimics shifting the intensity of the
pixel by several color shades to either direction. The normal
distribution biased mutation (Mut) of individual i, with normal
distribution N(µ, σ2) and gene change probability (pgene), has
the form of (2).

Mut(i)x,y =

{
ix,y + s, with probability pgene,

ix,y, with probability 1− pgene,
(2)

where s ∼ N(µ, σ2).
Following the mutation, each individual gets quantized to

multiples of 1/255 corresponding to the discrete nature of 8-
bit depth image space. Quantization of the whole population
quantizes each individual separately.

Quant(i)x,y =
b255 · ix,yc

255
(3)

Finally, the clipping takes place before evaluation of ob-
jectives to maintain the perturbed image (i.e., the individual
combined with the input image) in the range of a [0, 1] cube
(the searched space). Clipping (Clip) with lower bound l and
upper bound u for input x′ corresponds to (4).

Clip(l,u)(x
′)x,y = max (l,min(u, ix,y)) (4)

For the optimization we use two objectives – the score of
source class prediction, which is minimized; and the SSIM
measure of perturbation intensity between the input image and
its perturbed counterpart, which is being maximized. Another
option would be to use the l2 norm, but we have chosen the
SSIM since it accounts for perceptual visual similarity. Apart
from that, we suggest the use of clipping on the intensity of
perturbation if it gets below certain admissible value cbound i.e.,
taking the max(cbound,SSIM(x′, x)) as a perturbation intensity,
combining the constrained and optimized adversarial attack
paradigm.

Naturally, the selection operator performs a multi-objective
optimization, implemented by the non-dominated sorting algo-
rithm. For that matter, we choose the NSGA-II with crowding
distance (see algorithm 1), which uses concept of Pareto-
optimality to construct a so called non-dominated fronts –
groups of mutually non-dominated individuals. Furthermore
the NSGA-II employs secondary sorting algorithm (in our
case crowding distance) allowing for more stable selection
of individuals (see [17] for more). We assume this approach

superior to average of objectives for the issues with different
scaling of prediction error and perturbation intensity. The new
population is selected from the union of parents and offspring
of the current generation.

Algorithm 1 NSGA-II operator
Pin ← input population
sout ← target size of selected population

Pout ← empty list
while |Pout| < sout do
f ← pop non dominated individuals from P
if |Pout|+ |f | ≤ sout then

extend Pout with f
else

sort f by crowding distance
extend Pout with first sout − |Pout| elements of f

end if
end while
return Pout

Algorithm 2 Evolutionary generated adversarial examples
Mθ ← targeted model
x← targeted image, of shape h× w, l← source class
spop ← population size,
cbound ← perturbation intensity clipping value (optional)

P ← 0h×w

while not ∃i ∈ P :Mθ(i) 6= l do
Pold ← P
shuffle P
P ← Xover(P)
P ← Mut(P)
P ← Quant(P)
objectives evaluation ∀x′ ∈ {Clip(0,1) (x+ i) ; i ∈ P} :
(Mθ (x

′) [l′],SSIM (x′, x))
P = NSGA-II ([P, Pold], spop)

end while

The whole proposed strategy towards generating adversarial
examples takes form of an algorithm 2. After initializing
population with zeros, the main loop of the genetic algorithm
is entered. The loop comprises of the shuffling of the parents,
the two-point cross-over and the normal distribution mutation,
followed by the quantization. Next, the objectives of evolved
offspring are evaluated, followed by the selection, taking in
both parent generation and the evolved offspring. The fittest
individuals are selected for the next iteration. The algorithm
stops when adversarial example is found or maximum number
of epochs limit is reached. We provide our implementation
as an open-sourced project under MIT license – see github
repository [18].

Ai
rp

la
ne

Au
to

m
ob

ile

Bi
rd Ca

t

De
er

Do
g

Fr
og

Ho
rs

e

Sh
ip

Tr
uc

k

prediction

Airplane
Automobile

Bird
Cat

Deer
Dog
Frog

Horse
Ship

Truck

gr
ou

nd
 tr

ut
h

958 4 9 1 1 2 1 1 14 9
0 983 0 0 0 0 0 0 1 16
7 0 944 9 12 10 15 1 2 0
4 1 5 914 8 52 9 2 3 2
2 0 5 9 969 7 3 5 0 0
2 0 4 29 13 942 2 6 0 2
4 0 6 11 2 3 974 0 0 0
2 0 2 6 7 9 0 974 0 0

10 3 3 2 1 0 0 0 974 7
1 17 1 1 0 0 0 0 7 973

Confusion matrix

Fig. 3. Confusion matrix of the model (each cell represents the number of
images with ground truth label (row) classified as predicted label (column)).

V. EXPERIMENTS

A. Framework

In order to empirically assess the performance of proposed
solution we have carried out an experiment on the CIFAR-
10 dataset. This particular dataset was chosen for it is simple
enough to enable thorough examination and measurements of
results on statistically significant number of examples (whole
test set), yet more complex than MNIST and the like [19].

We use the WideResNet of depth 28 with widening factor
k = 10 with dropout as a target model. It was trained
according to the strategy proposed by its authors, using
SGD with Nesterov momentum and cross-entropy loss. The
initial learning rate is set to 0.1, weight decay to 0.0005,
dampening to 0, momentum to 0.9, and minibatch size to
128. The learning rate drops by 0.2 at 60, 120 and 160
epochs, and we train for total 200 epochs. We use standard
input preprocessing – mean subtraction and standard deviation
division with channel-wise precomputed moments on training
data. Training examples are augmented using random left-right
flips and random crops from originals padded by 4 px on each
side with their reflection.

Training is carried out on CIFAR-10 training set. The test
accuracy of the model yields 96.05%.

Detailed decomposition of model accuracy is described by
a confusion matrix at fig 3.

B. Results

We examine the performance of our proposed solution based
on the use of genetic algorithms. The hyperparameters of the
approach are set as follows: the population size as well as
the maximal number of epochs is equal to 256, the cross-over
takes place with probability pxover = 1, the biased mutation
uses normal distribution with µ = 0, σ2 = 4/255 (shift of 2

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

loss
acc

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 4. Training metrics. Cross-entropy loss (y-axis on the left) and classifi-
cation accuracy (y-axis on the right)

color shades to either direction on average), with pmut = 1
the probability of individual being mutated and pgene = 1
the probability of gene mutation. No perturbation intensity
clipping is used in our experiments, and the SSIM norm is
used.

We use the non-guided random search as a baseline black-
box attack. For each input image we generate random per-
turbations using normal distribution followed by quantization.
The parameters are chosen so that the approach is directly
comparable to our solution. Namely, the number of perturba-
tions (which is equal to target model evaluations) is set to 2562

(number of epochs × population size), and normal distribution
with parameters µ = 0, σ2 = 0.03.

We measure the success rate of black-box attacks on the
examined architecture on the test set of CIFAR-10 dataset.
As a successful attack we perceive generating adversarial
example whose predictions on target model yield over 0.5
score in non-source class (the model is confident in misclas-
sification). The overall success rate of attacks is 43.5% for
the random baseline, and 98.6% for our solution, which is not
only quantitatively better (approximately 2 times), but also
qualitatively different – our approach is reaching near-perfect
performance. The success rate of our solution is shown in
detail using heatmaps (see fig 5). We are providing two sets
of results, we denote them first and best – The first being
measurements from the first epoch in which the algorithm
performed successful attack, while the best is the epoch in
which the model produced successful attack with the lowest
intensity of the perturbation (compared to the whole 256 epoch
long run). Note that the overall and per-source class success
rate is the same for both measurements, and it differs only in
the resulting class distribution.

Apart from the success rate measurements, we also provide
a comparison of time complexity of the attacks (see fig 8). The
epoch count heatmaps show average number of evolutionary
algorithm epochs needed to perform a successful attack. We

Ai
rp

la
ne

Au
to

m
ob

ile Bi
rd Ca

t

De
er

Do
g

Fr
og

Ho
rs

e

Sh
ip

Tr
uc

k

result

Airplane
Automobile

Bird
Cat

Deer
Dog
Frog

Horse
Ship

Truck

so
ur

ce
13 7 345 120 148 17 55 17 226 52

8 4 36 20 17 9 293 3 118 492

38 8 23 172 287 119 296 20 14 23

5 6 141 21 179 232 342 27 30 17

6 3 314 137 8 105 308 97 17 5

2 3 164 373 127 13 247 47 16 8

5 10 250 193 400 62 24 9 28 19

6 3 99 101 501 196 58 12 6 18

78 34 228 58 199 16 229 6 13 139

16 231 78 84 62 40 263 15 197 14

Ai
rp

la
ne

Au
to

m
ob

ile

Bi
rd Ca

t

De
er

Do
g

Fr
og

Ho
rs

e

Sh
ip

Tr
uc

k

result

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

so
ur

ce

13 10 341 105 164 17 52 13 223 62

17 4 35 17 16 9 249 7 117 529

53 5 23 176 304 124 267 16 14 18

5 5 141 21 169 279 311 24 28 17

9 2 340 128 8 124 265 102 17 5

5 3 122 521 127 13 148 46 10 5

6 10 255 211 385 63 24 8 24 14

6 3 77 111 507 218 41 12 8 17

126 41 220 60 156 14 186 6 13 178

23 262 85 83 64 41 199 13 216 14

Fig. 5. Attacks success rate. Each cell represents the number of examples from the source class (row) which got misclassified by given model as a result
class (column), when using our method. Diagonal holds the numbers of unsuccessful trials. Left plot shows the first results, right plot shows the best results.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Bird

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ship

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
scores

best_non_source_class
source_class

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025
intensity

Fig. 6. Visual comparison of adversarial examples: Bird misclassified as a
Ship. Bottom plots show progression of objectives with vertical dashed lines
marking first and best epochs (from left to right).

can see that in many cases the algorithm is capable of
generating the first successful attack in only a few epochs
– half of the first successful attacks is reached under 8 epochs
(2048 model queries) (median) and 95 per cent of them under
56 epochs (approximately 14000 model queries). On the other
hand, generating the best possible (i.e., the least intense)
perturbation our method is capable of, takes significant amount
of epochs (the median time is 174 epochs, while 95 per cent
of them is reached in 250 epochs). A detailed visualization

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Cat

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Dog

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
scores

best_non_source_class
source_class

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

0.030
intensity

Fig. 7. Visual comparison of adversarial examples: Dog misclassified as a
Horse. Bottom plots show progression of objectives with vertical dashed lines
marking first and best epochs (from left to right).

of algorithm results and objectives progress throughout its run
are illustrated on fig. 6 and fig. 7.

VI. CONCLUSIONS

In this paper, we have proposed, described and evaluated
the method for generating non-targeted adversarial examples
against deep neural networks in the black-box scenario. The
attacks were performed on the CIFAR-10 data set against the
state of the art deep image classifier. Our method was very

Ai
rp

la
ne

Au
to

m
ob

ile

Bi
rd Ca

t

De
er

Do
g

Fr
og

Ho
rs

e

Sh
ip

Tr
uc

k

target

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

so
ur

ce
3 7 7 7 4 5 9 6 4

7 39 25 13 3 22 14 11 17

17 20 10 17 10 12 27 14 15

1 1 10 8 4 7 8 8 4

5 5 17 10 15 12 16 10 9

2 1 11 8 11 10 10 13 4

20 41 34 26 34 33 76 37 46

7 15 19 12 14 13 14 2 31

15 18 17 11 19 11 14 18 18

12 21 36 38 41 25 25 17 18

Ai
rp

la
ne

Au
to

m
ob

ile

Bi
rd Ca

t

De
er

Do
g

Fr
og

Ho
rs

e

Sh
ip

Tr
uc

k

target

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

so
ur

ce

120 136 116 130 96 110 144 116 117

154 181 116 143 128 191 172 145 178

129 84 128 137 128 139 110 121 129

50 50 126 120 113 129 119 105 103

113 16 166 139 140 161 157 149 119

30 14 141 130 134 130 138 89 44

113 165 189 175 184 161 187 179 184

106 87 156 147 170 148 174 53 171

153 154 169 164 163 86 170 153 162

148 174 170 170 181 164 191 206 163

Fig. 8. Mean attack epoch count – each cell represents average number of generations the genetic algorithm needed to find an adversarial example for the
example from the source class (row) to the result class (column), the lower is the number, the better. (The diagonal is empty, measuring the mean epoch count
for the unsuccessful attack (same source and result class) does not make sense.) Left plot shows the first results, right plot shows the best results.

successful, as it managed to provide non-targeted adversarial
examples for all source classes.

The experiments were carried out on significant number of
examples compared to the dataset size. The chosen method-
ology perceived adversarial attack as successful only if the
prediction of the non-source class overcomes one half in the
model output probability distribution, posing more difficult
task than aiming for simple maximum among all output
classes. Moreover, the intensity of the perturbation has been
minimized for, again rising the difficulty of finding adversarial
example. Even in those hardened conditions, our method
yielded satisfactory results in terms of attack success rate,
attack complexity and perturbation intensity.

Being a black-box method, the targeted model does not need
to be an end-to-end differentiable one, contrary to white-box
attack methods relying on such properties, thus, our approach
can be used even against complex pipelines of models used
for image classification, which is often the case in production
environments.

The results of the experiments suggest that the WideResNet
architecture is relatively vulnerable to adversarial attack. In our
previous work we observe lower vulnerability of the models
with worse classification performance that were characterized
by the lack of residual connections. It can be speculated that
extensive feature reuse by means of residual connections can
worsen the model resiliency to attacks. Yet, this hypotheses
remains one of the possible future work topics.

We also recognize the potential suitability of our method to
attack convolutional networks, for they internally operate on
patches of the input image, as the cross-over operator combine
individuals by swapping their rectangular crops. We believe
that this enables the method to combine promising regions
of perturbation to gradually form a successful adversarial

example.
We believe that apart from the study of adversarial attacks,

study of defenses against those is just as important, if not more.
We assume that improvements in dataset augmentation as well
as employing methods of adversarial attacks to the process of
training may lead to significant improvements in resilience of
deep learning models. Apart from these, the study of feature
reuse and its consequences with respect to adversarial attacks
may offer interesting insights.

ACKNOWLEDGMENTS

This research has been partially supported by Czech Science
Foundation project no. GA18-23827S.

REFERENCES

[1] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.
Berlin, Heidelberg: Springer-Verlag, 2010.

[2] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” Tech. Rep., 2009. [Online]. Available:
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in CVPR09, 2009. [Online]. Available: http://www.image-
net.org/papers/imagenet cvpr09.pdf

[5] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected
convolutional networks,” CoRR, vol. abs/1608.06993, 2016. [Online].
Available: http://arxiv.org/abs/1608.06993

[6] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” CoRR, vol. abs/1605.07146, 2016. [Online]. Available:
http://arxiv.org/abs/1605.07146

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” CoRR, vol. abs/1312.6199, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6199

[8] A. Rozsa, E. M. Rudd, and T. E. Boult, “Adversarial diversity and
hard positive generation,” CoRR, vol. abs/1605.01775, 2016. [Online].
Available: http://arxiv.org/abs/1605.01775

[9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” Trans.
Img. Proc., vol. 13, no. 4, pp. 600–612, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1109/TIP.2003.819861

[10] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, “Adversarial examples:
Attacks and defenses for deep learning,” CoRR, vol. abs/1712.07107,
2017. [Online]. Available: http://arxiv.org/abs/1712.07107

[11] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial
examples,” CoRR, vol. abs/1710.11342, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11342

[12] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” CoRR, vol. abs/1710.08864, 2017. [Online].
Available: http://arxiv.org/abs/1710.08864

[13] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against deep learning
systems using adversarial examples,” CoRR, vol. abs/1602.02697, 2016.
[Online]. Available: http://arxiv.org/abs/1602.02697

[14] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial
attacks on deep neural networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), July 2017,
pp. 1310–1318.

[15] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial at-
tacks with limited queries and information,” CoRR, vol. abs/1804.08598,
2018. [Online]. Available: http://arxiv.org/abs/1804.08598

[16] P. Vidnerová and R. Neruda, “Evolutionary generation of adversarial
examples for deep and shallow machine learning models,” in
Proceedings of the The 3rd Multidisciplinary International Social
Networks Conference on SocialInformatics 2016, Data Science 2016,
ser. MISNC, SI, DS 2016. New York, NY, USA: ACM, 2016, pp. 43:1–
43:7. [Online]. Available: http://doi.acm.org/10.1145/2955129.2955178

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: Nsga-ii,” Trans. Evol.
Comp, vol. 6, no. 2, pp. 182–197, Apr. 2002. [Online]. Available:
http://dx.doi.org/10.1109/4235.996017

[18] Štěpán Procházka, “Evolutionary generated adversarial exam-
ples,” 2018, last visited 2018-07-20. [Online]. Available:
https://github.com/proste/evgena

[19] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

