
A Framework for the Analysis of Deep Neural
Networks in Aerospace applications using Bayesian

Statistics
1st Yuning He

NASA Ames Research Center
Moffett Field, USA
yuning.he@nasa.gov

2nd Johann Schumann
KBR, NASA Ames Research Center

Moffett Field, USA
johann.m.schumann@nasa.gov

Abstract—Deep Neural Networks (DNNs) have gained tremen-
dous popularity in many application areas over the recent years.
Safety-critical applications as found in the aerospace domain
require that the behavior of the DNN is validated and tested
rigorously for system safety.

In this paper, we present a framework to support testing
of DNNs. Our framework employs techniques from statistical
modeling and active learning to effectively generate test cases for
DNNs used in Aerospace systems and also supports a comparison
between different DNNs. In this paper, we will describe our
statistical framework, the algorithms for model construction and
the metric guiding the test case generation process.

We will present a case study on a physics-based Deep recurrent
residual neural network (DR-RNN), which has been trained to
emulate the aerodynamics behavior of a Boeing 747-100 aircraft.

Index Terms—Deep Neural Network, Verification and Valida-
tion, Bayesian Statistics, Active Learning

I. INTRODUCTION

Deep Neural Networks (DNNs) have gained tremendous
popularity in recent years and new relevant applications are
continuously detected. DNN applications have even found
their way into the aerospace domain, where Neural Networks
are started to be used for navigation for autonomous drones
[15], obstacle and collision avoidance, as well as compact
and efficient representation of Aircraft Dynamics [21], just
to mention a few examples. Review articles like [2] or [4]
discuss numerous applications.

Most of these applications share an important commonality:
they are highly safety- and mission critical. This means that a
malfunction of the DNN could cause loss of human life, cause
substantial damage on the ground, or at least can jeopardize
the mission. Therefore, when applied to safety-critical tasks,
the behavior of the DNN and its software implementation must
undergo rigorous V&V (Verification and Validation) to ensure
safe operations at all times.

The Aerospace industry and agencies have developed very
stringent safety requirements and standards with regards to
safety-critical software systems (e.g., DO-178C [17]). Depend-
ing on the level of safety-criticality, rigorous software devel-
opment processes, certified tool chains, as well as different
levels of structural code testing are required.

For example, for level A software, software testing must
occur according to the strict MC/DC (Modified Condition/De-
cision Coverage) metric that requires numerous test cases for
conditional code (if-then-else, or case statements).

However, the structure of the code for the use of a pre-
trained DNN is extremely simple as it only consists of nested
loops, but no elaborate conditional code. All the trained infor-
mation is stored as weights in numerical arrays. Therefore,
DNNs render traditional V&V techniques like code-coverage
testing unsuitable for validation of DNN behavior.

In general, approaches for V&V and certification of DNN
applications are still in their infancy [1]. Important V&V tasks
for such systems include comprehensive testing the DNN after
training, understanding the model as represented by the DNN,
and assessing the DNN configuration and structure.

Understanding a DNN model is usually difficult because of
the complexity of the DNN architecture and its distributed
representation of information. Also, a DNN application is
often constructed using “out of the box” configurations like
the preset number, type, and size of layers without any prior
study or understanding if these configuration parameters are
good or even suitable in the given situation.

Usually, a DNN is trained off-line, i.e., before the deploy-
ment of the system. During operation, the model is not
adjusted to new data. The situation gets more complicated
for systems or missions that make it necessary to adapt
toward novel and unexpected situations. An example might
be operation of a spacecraft in an unknown environment, like
a mission to the Europa moon. In such situations, the network
must be trained on-line during the mission, but retraining of
the DNN from scratch is often not feasible because it is very
resource consuming. Furthermore, the suitability of the DNN
architecture and model parameters needs to be monitored and,
if necessary, improved. Otherwise, the network setup might
lead to a potentially poorly performing neural network with
slow convergence, limited scalability, or bad generalization
behavior. There are only few recent approaches on effective
on-line training of DNNs [12], [18], which try to address slow
convergence and scalability issues.

In this paper, we present a framework to support testing and

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

analysis of a Deep Neural Network. We employ techniques
from Active Learning and Computer Experiment Design to
iteratively construct new test cases to exercise the DNN. Here,
we focus on testing for deviations in the behavior of the neural
network compared to the truth as obtained by a high-fidelity
system simulator.

System requirements for such a system define acceptable
deviations of behavior with respect to the truth. For example,
for a DNN, which is learning the dynamics of an aircraft,
acceptable deviations would be given as a maximal allowable
error in the roll, pitch, and yaw rates. A test case, as generated
by our framework would prescribe a parameterized scenario
that is executed by the DNN and, in parallel, by the system
dynamics simulator. Then, the deviation is calculated and
compared against the limits given by the system requirements
to determine if the deviation is acceptable or not.

This information is used to incrementally construct our
statistical model. For the representation and construction of the
model, we are using Dynamic Regression Trees (DynaTrees)
[5], [19], a dynamic Gaussian process model based upon
Particle Filters. DynaTrees are regression and classification
learning models with complicated response surfaces in on-
line application settings. DynaTrees create a sequential tree
model whose state changes over time with the accumulation
of new data, and provide particle learning algorithms that
allow for the efficient on-line posterior filtering of tree-states.
A major advantage of DynaTrees is that they allow for the
use of very simple models within each partition. The models
also facilitate a natural division in sequential particle-based
inference: tree dynamics are defined through a few potential
changes that are local to each newly arrived observation, while
global uncertainty is captured by the ensemble of particles.

This surrogate model is initialized with available training
data and incrementally refined using candidate data points
that are produced by our active learning module. It evaluates
the current surrogate model using a customized active-learning
heuristics and suggests candidate data points that provide most
information for model refinement. For these candidate points,
the ground truth is obtained by using a system simulation or
real data.

Our framework features customizable heuristics that allow
the active learning to focus on particular characteristics of the
model. Classical algorithms like ALM [13] or ALC [3] focus
on under-explored regions in general of the domain space.
Inspired by [9] and work on contour finding algorithms, we
loosely follow [16] and define our boundary-aware metric
boundary-EI [7], [8] that puts the focus of the search into
regions, which are close to boundaries that separate regions,
where deviations are acceptable from regions of high, and
potentially unsafe deviations.

For the purpose of analysis and testing of a DNN, our
framework offers several advantages with respect to test cover-
age and model understanding. Due to the high dimensionality
of the input space, a combinatorial exploration testing is not
practical. Random testing of a DNN via “Monte Carlo” testing
is a popular incremental testing method. However, requires

large numbers of test cases and is therefore not applicable for
most applications.

Our framework, which is based upon active learning
explores the input space in an intelligent manner, focusing
on finding new data points in “interesting” and potentially
“troublesome” areas. Here, our surrogate model therefore
exhibits substantially more details. This exploration is guided
by the selected active learning heuristics and is able to cover
the entire input space with a low number of data points.

In this paper, we will describe our framework, the under-
lying statistical models and learning algorithms, as well as
our specific boundary-EI metric. We will illustrate and assess
our framework with a case study, where we consider a
physics-based deep recursive residual neural network (DR-
RNN), which has been set up to learn the aerodynamics
of an aircraft. The DR-RNN is trained on time-series data
and learns to model the aircraft dynamics to a high level
of accuracy, enabling efficient trajectory prediction, diagno-
sis, and prognostics [21]. Since this DR-RNN application is
obviously safety-critical, its analysis using our framework can
provide valuable insights for the V&V of deep neural network
architectures.

The reminder of the paper is structured as follows: Sec-
tion II briefly describes our application domain of aircraft
dynamics and Deep Residual Neural Networks (DR-RNN).
Then we present an overview of our framework architecture
in Section III, before we discuss in detail the statistical models
and algorithms of our framework (Section IV) as well as
our boundary-aware active learning method in Section V. We
then present our Bayesian shape estimation for the boundaries
(Section VI). Section VII presents the application of our
framework for the quality analysis for Deep Neural Networks.
Section VIII focuses on our case study, a DR-RNN for the
emulation of flight dynamics for a Boeing 747-100 aircraft.
Finally, Section IX presents future work and concludes.

II. BACKGROUND

A. Aircraft Dynamics

The dynamics of an aircraft is typically described as a set
of differential equations, which are integrated to obtain, given
an initial condition, the state vector x of the aircraft. In this
paper, we only present a minimal context and refer the reader
to standard text books in this area, e.g., [14]. In our paper, we
are mainly interested in the aircraft attitude, i.e., the roll angle
ψ, the pitch angle θ, and yaw angle φ.

B. Deep Residual Neural Networks

Deep Residual Neural Networks (DR-RNN) have been
introduced in [10] for modeling of dynamical systems and
model reduction. This approach has been used in [21] for
learning and prediction of aircraft trajectories for a large
commercial transport aircraft.

The physical system under consideration and its dynamics
are defined using differential equations

ẋ = Ax+ Bu+ ν (1)

where x is the state vector, u the command input, and ν
Gaussian noise. For example, for an aircraft, the state vector
x = [ψ, θ, φ] with roll angle ψ, pitch angle θ, and yaw
angle φ would describe the attitude of the aircraft. A and
B are matrices, into which numerous parameters concerning
the aircraft structure and design are incorporated.

The residual function for Eq. (1), based upon Euler integra-
tion and fixed discrete time steps ∆t is given by

rt+1 = xt+1 − xt −∆t(Axt+1 + But+1)

A DR-RNN with K network layers is defined to minimize
the residual. [10] defines the network as

xkt+1 = xk−1t+1 −w ◦ tanhUrkt+1 for k = 1

xkt+1 = xk−1t+1 −
ηk√
Gk+ε

rkt+1 for k > 1

where U,w ∈ <N with N the dimension of the state vector
x, and ηk are parameters of the DR-RNN, which are adjusted
during training. Furthermore,

rkt+1 = xk−1t+1 − xt −∆t(Axk−1t+1 + But+1)

Finally, Gk is an exponentially decaying squared norm of
the residual:

Gk = γ||rkt+1||2 + ζGk−1

where γ and ζ are the decay factors, usually γ = 0.1 and
ζ = 0.9, and ε a small positive number.

The DR-RNN can be trained using different learning algo-
rithms, for example, a modified Gradient descent [10], or the
stochastic Adam algorithm [11], [21] with respect to the loss
function

L =
1

Nt · T ·N

Nt∑
c=1

T∑
t=1

N∑
i=1

|x̂i,t − xtruei,t |

where Nt is the number of training examples, T the length
of the training time series, N the dimensionality of the state
vector, x̂t = xNt the predicted value, and xtruet is the true state
vector at time t.

III. ARCHITECTURE OF OUR TESTING FRAMEWORK

Figure 1 shows the high-level architecture of our testing
framework. On the right-hand side, we have our DR-RNN,
which is the “system under test” (SuT). Its behavior is evalu-
ated and compared against a system dynamics simulator and
any deviations are recorded. The level of allowable deviations
is given as a system requirement, against which our framework
is testing the DR-RNN.

Each test case, which is used to trigger the DR-RNN
assessment is given as a set of specific initial conditions or a
scenario. For example, the aircraft dynamics is to be evaluated,
given initial conditions of pitch angle θ, angle of attack α,
and air-speed Vias. The aircraft state over time is obtained
by DR-RNN lookup or integration of the dynamic model. A
comparison of these two time series and thresholding then
yields the test result, stating if the system requirements have
been met or not. Figure 2 shows the temporal development of
the pitch angle θ over time, comparing the DR-RNN output

designerfeedback to

new test case

Design

Experimental

Computer

active learning

model
statistical

DR−RNN
system

simulator
dynamics

deviations ?

shape estimation

boundary

Requirement
System

Fig. 1. High level architecture of our DNN testing framework

(red) against the results of the high-fidelity simulator (blue)
over a run of 800 seconds. In the Figure 2A, there is almost
no deviation between both time series and the requirements
are met. In another scenario, however (Figure 2B) deviations
show near the peaks of the oscillation, causing the requirement
to fail.

0 2000 4000 6000 8000 10000
-1

-0.5

0

0.5

1

time [0.1s]

DR-RNN

ODE

Fig. 2. Pitch angle θ over time after disturbance. Values obtained by the high
fidelity simulator (including numerical integration) shown in blue; output of
the DR-RNN shown in red. Example of initial conditions, which result in
small deviations (left). Example of initial conditions, which produce large
deviations, violating the safety requirement (right).

This result of the test run is then used to refine our statistical
surrogate model (Figure 1 left). For the representation and
construction of the model, we are using Dynamic Regression
Trees (DynaTrees), which will be described in more detail
below.

For the efficient generation of most informative test cases,
we use active learning and Computer Experimental Design.
Our boundary-EI metric (see below) proposes, based upon
the information in our statistical model, new test cases that
are close to “interesting” regions, but that also cover the
entire space in order not to miss important areas in the high-
dimensional state space.

Once the surrogate model has been constructed, geometri-
cal shape estimation of the boundaries can take place. The
boundaries are then characterized as parameterized geometric
shapes taken from a library, thus facilitating feedback to the
designer of the Neural Network.

IV. METHODOLOGY OVERVIEW

We propose a sequential method for the estimation of
parameterized boundary shapes in high dimensional spaces.

A dictionary of shape classes is provided by the domain
expert. Additional constraints on the parameters, e.g., param-
eter ranges and other prior information can be given. Typical
examples for such shape classes include (hyper-)surfaces,
polygons, spheres, or ellipses.

We represent our boundary problem as learning the response
surface for the function f , where f(x) = 1 + ε if the
experiment succeeds and f(x) = 0 + ε otherwise for some
small ε > 0. In this representation a boundary is determined
by points x with f(x) = 0.5. This representation allows us
to formulate powerful methods to select the next data point,
which is explained in Section V.

Given an initial set of labeled data D0, our approach builds
a hierarchical Bayesian representation. Using active learning
and computer experimental design, the number of required
experiments and simulation runs can be kept minimal. The
hierarchical representation provides information and confi-
dence intervals for subsequent estimation of shape parameters
Θ for the threshold surface. We present the shape estimation
in Section VI below.

Our iterative modeling process, as depicted in Figure 1 uses
active learning to build an initial classifier from the data set
D0. Our algorithm is based upon the sequential classification
and regression framework as given by DynaTrees [6], [19]. It
features dynamic regression trees and a sequential tree model.
Particle learning for posterior simulation makes DynaTrees a
good candidate for applications, where new data points are
processed sequentially. In our architecture, the classifier is
represented by a DynaTree at any given point in time. After
adding a number of new data points, the current classifier is
used to estimate a set of data points, which are close to the
current prediction of the boundary. This is a subset of data
points from a regular grid or a Latin hyper square, for which
their entropy measure is high (classification representation) or
the estimated response value is close to 0.5.

Since the execution of each new test can consume con-
siderable resources, our framework aims to minimize the
number of tests that need to be generated to characterize
the boundaries in the high-dimensional space. For that, we
use active learning with a specific boundary-sensitive metric,
which will be discussed below.

V. ACTIVE LEARNING AND EXPECTED IMPROVEMENT

A. Finding Boundaries

Each data point describing one simulation run (experiment)
is defined as x = 〈P1, . . . , Pp〉, where Pi are the input param-
eter settings and the outcome o(x) ∈ {success, failure}.
Thus these data define a classification problem with C = 2
classes. Informally, a boundary can be found between regions,
where all experiments yield success p(x = success) = 1 and
those, where the experiments do not meet the success criterion
p(x = failure) = 1. Therefore, we can define a point x to be
on the boundary if p(x = success) = p(x = failure) = 0.5.
Although this condition can easily be generalized to more than
two classes, in this work, we will focus on C = 2.

A common metric to characterize points on the bound-
ary is based upon the entropy. The entropy entr =
−
∑
c∈c1,..,cC p(x = c) log p(x = c) becomes maximal at

the boundary. In cases of more than two classes, [5] uses a
BVSB (Best vs. Second Best) strategy. [20] defines a metric
advantage as essentially adv(x) = |p(x = success)− p(x =
failure)|. Then [20] considers points with minimal advantage
to be close to the boundary. In the general case with more than
two dimensions, [20] proposed to use the difference between
the two most likely classes.

In general, there are two basic methods: explicitly from
knowledge of the classification function, or by treating the
classifier as a black box and finding the boundaries numeri-
cally. For some classifiers it is possible to find a simple para-
metric formula that describes the boundaries between groups,
for example, LDA or SVM. Most classification functions can
output the posterior probability of an observation belonging to
a group. Much of the time we do not look at these, and just
classify the point to the group with the highest probability.

Points that are uncertain, i.e., have similar classification
probabilities for two or more groups, suggest that the points
are near the boundary between the two groups. For example,
if a point is in Group 1 with probability 0.45, and in Group 2
with probability 0.55, then that point will be close to the
boundary between the two groups. We can use this idea to
find the boundaries. If we sample points throughout the design
space we can then select only those uncertain points near
boundaries. The thickness of the boundary can be controlled
by changing the value, which determines whether two prob-
abilities are similar to each other or not. Ideally, we would
like this to be as small as possible so that our boundaries
are accurate. Some classification functions do not generate
posterior probabilities. In this case, we can use a k-nearest
neighbors approach. Here we look at each point, and if all
its neighbors are of the same class, then the point is not on
the boundary and can be discarded. The advantage of this
method is that it is completely general and can be applied
to any classification function. The disadvantage is that it is
slow (O(n2)), because it computes distances between all pairs
of points to find the nearest neighbors. In general, finding
of the boundaries faces the “curse of dimensionality”: as the
dimensionality of the design space increases, the number of
points required to make a perceivable boundary (for fitting or
visualization purposes) increases substantially. This problem
can be attacked in two ways, by increasing the number of
points used to fill the design space (uniform grid or random
sample), or by increasing the thickness of the boundary.

B. Boundary Expected Improvement

Finding a boundary between two classes can be considered
as finding a contour with a = 0.5 in the response surface of
the system response. Inspired by [9] and work on contour
finding algorithms, we loosely follow [16], and define our
heuristics by using an improvement function. In order to use
the available resources as efficiently as possible for our con-
tour/boundary finding task, one would ideally select candidate

A

A

B

B

C

C

Fig. 3. Boundary-EI metric and its different components

points which lie directly on the boundary, but that is unknown.
Therefore, new trial points x are selected, which belong to
an ε-environment around the current estimated boundary. This
means that 0.5 − ε ≤ ŷ(x) ≤ 0.5 + ε for ε > 0. ŷ(x) is
the learned estimate of the response function at x. New data
points should maximize the information in the vicinity of the
boundary. Following [9] and [16], we define an improvement
function for x as

I(X) = ε2(x)−min{(y(x)− 0.5)2, ε2(x)}

here, y(x) ∼ N(ŷ(x), σ2(x)), and ε(x) = ασ(x) for a
constant α ≥ 0. This term defines an ε-neighborhood around
the boundary as a function of σ(x). This formulation makes
it possible to have a zero-width neighborhood around existing
data points. For boundary sample points, I(X) will be large
when the predicted σ(x) is largest.

The expected improvement E[I(x)] can be calculated easily
following [16] as

E[I(x)] = −
0.5+ασ(x)∫

0.5−ασ(x)

(y − ŷ(x))2φ

(
y − ŷ(x)

σ(x)

)
dy (2)

+2(ŷ(x)− 0.5)σ2(x) [φ(z+(x))− φ(z−(x))]

+(α2σ2(x)− (ŷ(x)− 0.5)2) [Φ(z+(x))− Φ(z−(x))] ,

where z±(x) = 0.5−ŷ(x)
σ(x) ± α, and φ and Φ are the standard

normal density and cumulative distribution, respectively. Each
of these three terms are instrumental in different areas of the
space. Figure 3 sketches the situation: the first term sum-
marizes information from regions of high variability within
the ε-band (marked “A” in the figure). The integration is
performed over the ε-band as ε(x) = ασ(x). The second term
is concerned with areas of high variance farther away from
the estimated boundary (labeled “B” in Figure 3). Finally, the
third term is active close to the estimated boundary (labeled
“C”). After the expected improvement has been calculated, the
candidate point is selected as the point, which maximizes the
expected improvement.

VI. BOUNDARY SHAPE ESTIMATION

A. Notation

Suppose there are m shape classes M1, . . . ,Mm with m ≥
1, which are parameterized by Θ1, . . . ,Θm. The task is to fit
l shapes S1, . . . , Sl, l ≥ 1, where S1 = (i1,Θ1), . . . , Sl =
(il,Θl) and ij denotes the shape class for the jth shape with

ij ∈M = {M1, . . . ,Mm}. Several of the ij can be the same
to accommodate more than one shape belonging to the same
class. The Θi should be different since we do not want to
represent the same boundary shape twice. We also seek to
determine the correct number of shapes l that represents the
input point set Xn.

For example, we may consider the m = 2 shape classes
M1 = hyperplane and M2 = sphere in <d. Hyperplanes
are represented as a1x1 + · · · + adxd + ad+1 = 0 with
parameter vector Θ1 = (a1, . . . , ad, ad+1) ∈ Rd+1. In the
same d-dimensional space, a sphere of radius r with center
c = (c1, . . . , cd) is described by (x1−c1)2+· · ·+(xd−cd)2 =
r2 with parameter vector Θ2 = (c, r) ∈ <d+1.

B. What is a Good Shape Set S for an Input Point Set Xn?

There are three conditions that specify when a shape set S
provides a good fit to the data Xn:
(i) Summary: each point on a shape S ∈ S is close to some

classifier boundary point in Xn,
(ii) Completeness: each classifier boundary point in Xn is

close to some shape point on some shape S ∈ S, and
(iii) Minimality: the shapes in S are as different from one

another as possible.
Condition (i) encourages each shape S ∈ S to be a good

summary of one of the parts of the boundary of classifier Pn.
That is, the points of a shape should lie along high entropy
areas of Pn.

Condition (iii) encourages that shape set S to be minimal;
i.e., S will not use any extra shapes to form a complete sum-
mary of the boundaries of classifier Pn. A complete summary
S (i.e., one satisfying (i) and (ii)) remains a complete summary
if one of its shapes S ∈ S is added to S either exactly or after
a small perturbation. In fact, adding a small perturbation Ŝ
of S may actually improve completeness slightly since Ŝ can
be even closer to some high entropy points than S. And if
S were a good summary, then so too would Ŝ. We need the
minimality condition (iii) to be able to obtain the simplest
(i.e., smallest) shape set that is a complete summary of the
classifier boundaries.

C. Statistical Modeling

The shape set posterior is

P (S|Xn) =
P (Xn|S)P (S)

P (Xn)
∝ P (Xn|S)P (S).

We build the posterior model P (S|Xn) by modeling the
likelihood P (Xn|S) and the shape set prior P (S). In the
posterior P (S|Xn) ∝ P (Xn|S)P (S), we will model the
likelihood P (Xn|S) to encourage completeness and the prior
P (S) to encourage distance between shapes and therefore
minimality. It makes sense that the data likelihood accounts for
completeness because completeness requires observed points
to be close to a shape and the observed points arise from
the ground truth shapes with the addition of noise. We will
encourage good summary using a Bayesian loss function that
grows with increasing distance of the shapes to the point set.

Finally, we determine the number of shapes l by minimizing
the expected posterior loss.

1) Likelihood: Our likelihood will encourage completeness.
For the completeness condition (ii), we are interested in
making the average squared distance D

2

Xn,S of boundary
points in Xn = {x1, . . . , xn} to shapes in S small:

D
2

Xn,S =

∑
x∈Xn

d2
Xn,S(x)

|Xn|
=

∑n
j=1 d

2
Xn,S(xj)

|Xn|
, (3)

where
d2Xn,S(x) = min

s∈S
||x− s||22 (4)

is the minimum squared distance of a high entropy point x to
a point on any shape in the collection S = (S1, . . . , Sl).

An observed point xj ∈ Xn is assumed to have been
generated from a shape Szj , where zj gives the shape number
that explains xj . Given zj , we model the likelihood of xj as a
decreasing function of the minimum distance from xj to Szj .
The closer xj is to shape Szj , the higher the likelihood of
xj . The observations xj are assumed to be independent and
modeled as

xj = sj + εj = sj + rjnj , rj ∼ N(0, σ2
r),

where nj is a unit normal to Szj at sj and rj = (xj−sj) ·nj .
Here the noise vector εj = rjnj is along a unit normal nj to
the shape Szj at the closest shape point sj to xj . The scalar
residual rj is the signed distance along nj from the shape Szj
to xj . We model the observation error εj by modeling the
signed residual as a N(0, σ2

r) random variable.
Note that the squared residual r2j is just the minimum

distance squared from xj to the closest point sj on shape
Szj :

r2j = min
s∈Szj

||xj − s||22,

where the minimum occurs at s = sj . Let Z = (z1, . . . , zn).
Assuming independence of points and that xj depends only
on shape Szj , then P (Xn|Z, S) =

∏n
j=1 P (xj |zj , Szj) =∏n

j=1N(rj |0, σ2
r). Since rj ∼ N(0, σ2

r), it follows that

P (Xn|Z, S) = Kσ−n
r exp

(
− 1

2σ2
r

n∑
j=1

min
sj∈Szj

||xj − sj ||22

)
, (5)

for a constant K. Note that if the observed point set Xn

is close to the shapes in S, then P (Xn|Z, S) is high. This
statement assumes, of course, that the correct shape Szj
explaining each point xj has also been identified.

We can obtain the likelihood P (Xn|S) by model-
ing Z|S and integrating out Z as in P (Xn|S) =∫
Z
P (Xn|Z, S)P (Z|S)dZ. We could, for example, model

Z|S by modeling a count vector C = (c1, . . . , cl) which
holds the number of observations ci explained by shape Si.
Here ci =

∑n
j=1 1zj=i. We can encourage good summary

by modeling C ∼ multinomial(n, (1/l, 1/l, . . . , 1/l)) where
each of the l shapes in S has the same probability 1/l of
generating an observed point. This would make shape sets
with any shapes that are from the data quite unlikely because

we would expect to see points around each shape according
to the given multinomial distribution.

It is difficult, however, to optimize over shape sets with
the hidden random variables Z in our models. Instead, we
make a simple but accurate and effective approximation in
our models and assume that the shape Szj that explains
observation xj is the shape in S which is closest to xj . Thus
we replace the minimization in equation (5) over sj ∈ Szj
with a minimization sj ∈ S over the entire shape set to obtain
the approximation

P (Xn|S) = Kσ−n
r exp

(
− 1

2σ2
r

n∑
j=1

min
sj∈S

||xj − sj ||22

)
. (6)

From Equations (3), (4), we can see that the inner sum in
equation (6) is just a scaled version |Xn|D

2

Xn,S of our
completeness measure. We can easily write our likelihood in
terms of the completeness measure D

2

Xn,S. To do so cleanly,
define σ2

complete = σ2
r/|Xn|. Then

P (Xn|S) = Kσ−ncomplete exp

(
− 1

2σ2
complete

D
2

Xn,S

)
,

where another constant factor has been absorbed into K.
2) Shape Set Prior: We build the shape set prior P (S)

based on the distances of points on each shape Si to the rest
of the shape set S−i = S\{Si}. To keep shapes apart from
one another, we want a large average squared distance from
points on each shape to the rest of the shapes. Let d2Si,Sj

(si)
be the minimum squared distance of a point si ∈ Si to another
shape Sj :

d2Si,Sj
(si) = min

sj∈Sj

||si − sj ||22.

Then the squared distance of si ∈ Si to the shape set S−i is

d2
Si,S−i

(si) = min
Sj∈S−i

d2Si,Sj
(si),

which finds the closest point in the rest of the shapes S−i to
si ∈ Si. Finally we average the inter-shape squared distances
over all points on all shapes to get

D
2

S =

∑
Si∈S

∑
si∈Si

d2
Si,S−i

(si)∑
Si∈S |Si|

To keep the shapes apart a priori, we want D
2

S to be large,
indicating that on average the inter-shape distance is large.
Equivalently, 1/DS should be small. Therefore we model the
prior for S using the normal distribution

S ∼ N(D
−1
S ; 0, σ2

shapesim).

3) Bayesian Loss: Next we define a Bayesian loss function
that encourages good summary. We can think of the summary
condition (i) as requiring a small distance from each shape
S ∈ S to the set of classifier boundary points Xn. Let d2S,Xn

(s)
denote the squared distance from a shape point s ∈ S to the
point set Xn:

d2S,Xn
(s) = min

x∈Xn

||s− x||22.

We capture the average squared distance D
2

S,Xn
from the

shape set S to the input points Xn by averaging over all points
on all shapes in S = (S1, . . . , Sl):

D
2

S,Xn
=

∑l
a=1

∑
s∈Sa

d2Sa,Xn
(s)∑l

a=1 |Sa|
.

We define our Bayesian loss function as

loss(S, Xn) = λsummaryD
2

S,Xn

The smaller the distance from each shape in S to the point
set Xn, the smaller the loss. Thus minimizing the loss will
encourage good summary.

D. Shape Fitting Method

Our shape fitting method has two main steps:
Step 1: Minimize the expected posterior loss

g(l) = E[loss(S, Xn)], |S| = l

over l to obtain the number of shapes l∗

Step 2: Compute the MAP shape set S∗,l
∗

for sets of size l∗

1) Determining the Number of Shapes: We assume that we
can a-priori limit the number of shapes l to some set L. For
example, if we know that there will not be more than five
boundaries then we can set L = {1, 2, 3, 4, 5}.

For each l ∈ L, we compute the expected posterior loss

g(l) = E[loss(S, X)] =

∫
{S:|S|=l}

loss(S, Xn)P̂ (S|Xn)dS.

Here we denote the shape set posterior probability distribution
for shape sets with a fixed number of shapes as P̂ (S|Xn). Then
we choose the number of shapes to minimize the expected
posterior loss:

l∗ = arg min
l∈L

g(l).

E. Our Shape Set Posterior Sampling Method

For a fixed shape set size |S| = l, we will draw samples
from the posterior P (S|Xn) ∝ P (Xn|S)P (S) using an
iterative procedure. Shape set samples S with a small value
for

− log(P (Xn|S)P (S)) = − log(P (Xn|S))− log(P (S))

should be more likely to occur.

VII. QUALITY ANALYSIS OF NETWORK STRUCTURE

Deep Neural Networks are characterized by numerous user-
definable parameters, like number of layers, size and type of
each layer, as well as transfer functions, just to name a few. For
our DR-RNN, the number of layers K is of most importance,
because it encodes the amount of historical data that is taken
into account.

Finding optimal or even suitable parameter settings for the
given task and the given training data is extremely difficult.
In many cases, practitioners therefore just use the default
parameter setting as provided with the learning software or
library. This can result in numerous problems ranging from

the use of unnecessary resources (too many layers or nodes)
and potentially dangerous over-training to poor learning and
generalization behavior. For V&V of DNN, a solid qual-
ity analysis of the network architecture is necessary. Only
then, information about suitability about the chosen network
parameters as well as the existence of “dangerous regions” is
available to designers and quality engineers.

We have extended our statistical testing framework
described in the earlier sections to support comparative quality
analysis for DNN architectures. Figure 4 gives a high-level
overview of the framework architecture. In this instantia-
tion, our systems-under-test are different DR-RNN networks,
DR-RNN1, . . . ,DR-RNNN , which have been set up using
different configuration parameters and have been trained using
potentially different training algorithms. Given new test cases
in the same manner as describes above, the results of the
DR-RNNs are compared against each other and deviations
between them are compared against a given threshold.

designerfeedback to

new test case

Design

Experimental

Computer

active learning

model
statistical

deviations ?

shape estimation

boundary

DR−RNNDR−RNN

1 N

..
.

Fig. 4. High level architecture for DNN Comparison

In this setting, our framework iteratively constructs a sta-
tistical model, which learns the boundaries of areas, where
the different DR-RNNs produce different results. Figure 5
illustrates this with a simple 3 dimensional dynamic system
(from [10]): when using a DR-RNN with K = 2, we obtain
results very close to the truth in a selected region, where
the deviation is very small. Outside this region, the deviation
grows very quickly, making the use of this DR-RNN problem-
atic in those areas (Figure 5A). In contrast, a DR-RNN with
K = 3 produces larger deviations throughout the entire space
(Figure 5B) but shows a substantially better behavior in the
outer parts. For a suitable threshold, we therefore characterize
boundaries between the areas, where both DR-RNNs show a
similar output, and potentially problematic areas. Figure 5C
shows a 2D projection of the boundaries and regions as found
by our algorithm. Due to our boundary-EI metric, new test
cases are massed close to the boundary – two non-linear
segments in this case.

If the behavior of the different DR-RNNs are very close
to each other in the operational envelope, then this is an

A
-0.11837

-0.036735x
2

0.044898

0.12653

0.2

-0.2 0.8

0

1
x

0.05

0.1

E

0.15

0.2

0.25

0.88163

0.96327

1.0449

1.1265

1.2

DR-RNN: 2 N
layers

=2

B
-0.11837

-0.036735x
2

0.044898

0.12653

0.2

-0.2 0.8

0

x
1

0.05

0.1

E

0.15

0.2

0.25

0.88163

0.96327

1.0449

1.1265

1.2

=3DR-RNN: 1 N
layers

C x2

x
1

Fig. 5. Projection of error surfaces for DR-RNN with K = 2 (A) and K = 3 (B). Projection of result with N = 400 test cases generated by our framework.
Circles correspond to test points in the initial data set N0 = 100.

indication that the parameter settings are suitable for the task.
This, of course, assumes that at least one of the DR-RNNs
has been tested against the truth, obtained by the high-fidelity
simulator as described above.

If, however, larger deviations exist, a deeper manual analysis
will be necessary. In particular, if deviations exist in the
“middle” of the operational envelope, this is an indication that
the parameter settings of the corresponding DR-RNN is not
set properly and might return, if used, unsafe results.

VIII. CASE STUDY

We have applied our testing framework to a DR-RNN,
which has been trained to model the six degrees-of-freedom
aircraft dynamics of a Boeing 747-100. The DR-RNN and
the application is described in [21] and we have been able to
obtain the trained network and models from the authors. We
are considering the DR-RNN as our “black-box” DNN-under-
test.

The trained DR-RNN is adopted to predict the responses
of the Boeing 747-100 aircraft under arbitrary disturbances
and control inputs. Given initial states, disturbances, and
control inputs (optional), the DR-RNN can efficiently provide
predictions of the AC state over an extended period of time
(800s in [21]) without costly numerical integration of the
aircraft dynamics (Equation 1). Details of setup and results
are described in detail in [21].

We used our testing framework to analyze the behavior of
the DR-RNN against the true AC dynamics, given different ini-
tial disturbances of the state vector. For illustration purposes,
we used the DR-RNN for the pitch aircraft axis and varied
the disturbance with respect to pitch angle θ, the pitch rate
q = dθ/dq, angle of attack α, and normalized speed v/v0.

As an example system requirement, we defined a passing
accuracy if

10s∑
t=0

(xdyn − xDR−RNN)2 < Θ (7)

for a given Θ = 0.001 and x is the 4-dimensional state vector
[v/v0, α, q, θ].

Using our testing framework using an initial uniformly
distributed set of test cases D0 with 200 test cases, we were
generating 800 new test cases guided by the iteratively con-
structed surrogate model and our boundary-aware EI metric.

Angle of attack

P
it
c
h

 a
n

g
le

Speed

Fig. 6. Results of DR-RNN evaluation projected into axes of θ, α, v/v0.
Green points correspond to runs that fulfill the requirement (Equation 7), blue
dots to violations of the requirement. The 4D surrogate model was initialized
with N0 = 200 test cases; active learning generated Nt = 800 new test
cases.

Figure 6 shows a 3D projection of the test cases into the
space of pitch angle, angle of attack, and speed. The parameter
values are normalized to the interval [0 . . . 1]. Green dots show
test cases, which pass our requirement (Equation 7), blue dots
represent failing test cases. As expected, all test cases near
nominal values (i.e., 0.5 normalized) of θ and α yield DR-
RNN output values that are close to the results obtained by
the reference simulator. Further away from that center, the
accuracy of the network is lower, causing the requirement to
fail. Parameter variations of the speed v/v0 within the given
parameter range does not have a substantial influence on the
network accuracy (not clearly visible in the shown perspective
of Figure 6) Pitch rate q also does not show changes in
fulfilling the requirement over the given parameter range (not
shown in this projection).

Note that in this experiment, we chose extremely large
parameter variations in order to illustrate the boundaries.
Realistic flight envelopes are well within the “green area”,
indicating that the DR-RNN has been properly trained and
can be used to efficiently emulate the aircraft dynamics [21].

For the analysis, our focus is on the boundary between
regions, where the requirement (Equation 7) is met and where
it fails, i.e., the boundary between green and blue dots. As
Figure 6 shows, our boundary-aware active learning placed a

large majority of data points (= newly generated test case)
near the boundary. Only few test cases (most of them from
the initial data set) are deeply within the green zone or
outside and away from the boundary. This makes it easy to
visually recognize the boundary as a cylinder (along the speed
axis). Our shape detection algorithm estimated the center as
(αc, qc) = (0.415, 0.516) and r = 0.22 (shown as a red line
in Figure 6).

Obviously, that boundary shape could be detected by sys-
tematic parameter exploration or Monte Carlo simulation.
However, a hugely increased number or required test cases
makes these approaches prohibitively expensive. Figure 7
shows a projection of a Monte Carlo run with the same number
of test cases N = 1000 into the axes of θ, α, v/v0. It is
easy to see that the test points are spread out throughout the
entire space, making the detection and characterization of the
boundary extremely hard. A proper detection would require
substantially more test cases.

P
it
c
h

 a
n

g
le

SpeedAngle of attack

Fig. 7. Results of DR-RNN evaluation using a Monte Carlo run with N =
1000 projected into θ, α, v/v0.

IX. CONCLUSIONS

In this paper, we presented a framework to support testing
and analysis of DNNs. Using advanced techniques from statis-
tical modeling and active learning, our framework efficiently
generates test cases to model and characterize boundaries
separating areas where safety requirements are met and not
met. Geometric shape estimation of the boundaries can provide
valuable feedback to the designer.

We presented results of a case study on a physics-based deep
recurrent neural network, which has been trained to emulate
the aerodynamic behavior of a Boeing 747-100 aircraft.

We also illustrated how our framework can be used to effi-
ciently compare different DR-RNNs and characterize bound-
aries of regions where the network output deviates from each
other. Such boundaries can provide feedback to the designer
and help selecting suitable DR-RNN architectures. For future
work, we will extend out framework to allow the active
learning search among the structural parameters of the network
(e.g., number of layers, kind of non-linearity, etc.). Here, a low

number of required test cases is extremely important, since
each test case requires a training operation.

REFERENCES

[1] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran,
Christoffer Levandowski, Shenjian Gao, Yanwen Tan, Henrik Kaijser,
Henrik Lönn, and Jonas Törnqvist. Safely entering the deep: A review
of verification and validation for machine learning and a challenge
elicitation in the automotive industry. CoRR, abs/1812.05389, 2018.

[2] Adrian Carrio, Carlos Sampedro, Alejandro Rodriguez-Ramos, and
Pascual Campoy. A review of deep learning methods and applications
for unmanned aerial vehicles. Journal of Sensors, 2017(3296874):13,
2017.

[3] D. A. Cohn. Neural network exploration using optimal experimental
design. Advances in Neural Information Processing Systems, 6(9):679–
686, 1996.

[4] Paula Fraga-Lamas, Lucı́a Ramos, Vı́ctor Mondéjar-Guerra, and
Tiago M. Fernández-Caramés. A review on iot deep learning uav
systems for autonomous obstacle detection and collision avoidance.
Remote Sensing, 11(18), 2019.

[5] R. Gramacy and N. Polson. Particle learning of Gaussian process models
for sequential design and optimization. Journal of Computational and
Graphical Statistics, 20(1):467–478, 2011.

[6] Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed gaussian
process models with an application to computer modeling, 2007.

[7] Yuning He. Variable-length Functional Output Prediction and Boundary
Detection for an Adaptive Flight Control Simulator. PhD thesis,
University of California at Santa Cruz, 2012.

[8] Yuning He. Online detection and modeling of safety boundaries for
aerospace applications using active learning and bayesian statistics. In
2015 International Joint Conference on Neural Networks, IJCNN 2015,
Killarney, Ireland, July 12-17, 2015, pages 1–8. IEEE, 2015.

[9] D. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black box functions. Journal of Global Optimization, 13:455–
492, 1998.

[10] J. Nagoor Kani and Ahmed H. Elsheikh. DR-RNN: A deep residual
recurrent neural network for model reduction. CoRR, abs/1709.00939,
2017.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[12] Max Kochurov, Timur Garipov, Dmitry Podoprikhin, Dmitry Molchanov,
Arsenii Ashukha, and Dmitry P. Vetrov. Bayesian incremental learning
for deep neural networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Workshop Track Proceedings. OpenReview.net, 2018.

[13] D. J. C. MacKay. Information–based objective functions for active data
selection. Neural Computation, 4(4):589–603, 1992.

[14] Duane T. McRuer, Dunstan Graham, and Irving Ashkenas. Aircraft
Dynamics and Automatic Control. Princeton University Press, Princeton,
NJ, USA, 1972.

[15] Ram Prasad Padhy, Sachin Verma, Shahzad Ahmad, Suman Kumar
Choudhury, and Pankaj Kumar Sa. Deep neural network for autonomous
uav navigation in indoor corridor environments. Procedia Computer
Science, 133:643 – 650, 2018. International Conference on Robotics
and Smart Manufacturing (RoSMa2018).

[16] Pritam Ranjan, Derek Bingham, and George Michailidis. Sequential
experiment design for contour estimation from complex computer codes.
Technometrics, 50(4):527–541, 2008.

[17] RTCA. DO-178C/ED-12C: Software considerations in airborne systems
and equipment certification, 2012.

[18] Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. Online deep
learning: Learning deep neural networks on the fly. In IJCAI, 2018.

[19] Matthew A. Taddy, Robert B. Gramacy, and Nicholas G. Polson.
Dynamic trees for learning and design. Journal of the American
Statistical Association, 106(493):109–123, 2011.

[20] H. Wickham. Practical Tools for exploring data and models. PhD thesis,
Iowa State, 2008.

[21] Yang Yu, Houpu Yao, and Yongming Liu. Physics-based learning for
aircraft dynamics simulation. In Proc. Conference of the Society for
Prognostics and Health Management (PHM), 2018.

