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Abstract—Security maintenance of Supervisory Control and
Data Acquisition (SCADA) systems has been a point of inter-
est during recent years. Numerous research works have been
dedicated to the design of intrusion detection systems for se-
curing SCADA communications. Nevertheless, these data-driven
techniques are usually dependant on the quality of the monitored
data. In this work, we propose a novel feature selection approach,
called MSFS, to tackle undesirable quality of data caused
by feature redundancy. In contrast to most feature selection
techniques, the proposed method models each class in a different
subspace, where it is optimally discriminated. This has been
accomplished by resorting to ensemble learning, which enables
the usage of multiple feature sets in the same feature space. The
proposed method is then utilized to perform intrusion detection in
smaller subspaces, which brings about efficiency and accuracy.
Moreover, a comparative study is performed on a number of
advanced feature selection algorithms. Furthermore, a dataset
obtained from the SCADA system of a gas pipeline is employed
to enable a realistic simulation. The results indicate the proposed
approach extensively improves the detection performance in
terms of classification accuracy and standard deviation.

Index Terms—Feature selection, ensemble learning, intru-
sion detection, supervised learning, mutual information, cyber-
physical systems, SCADA

I. INTRODUCTION

Safe and reliable operation of SCADA systems can be
disrupted through the interference of intruders who launch ma-
licious attacks on the application layer of these cyber-physical
systems [1]. Catastrophic consequences of such intrusions, on
the other hand, necessitate prompt detection and isolation of
cyber-attacks [2]. For this mean, various Intrusion Detection
Systems (IDS) have been proposed and studied in the literature
[1], [3].

An IDS generally makes use of a data-driven approach, in
which a detection model is constructed based on the available
prior knowledge on the types of cyber-attacks [4], [5]. There
after, data patterns that resemble a type of cyber-attack can be
identified and classified in the traffic data w.r.t. the constructed
IDS model.

The performance of intrusion detection using the con-
structed model is heavily dependant on the quality of the
collected data [6]. On one hand, the recorded data may
contain non-informative features. On the other hand, raw
data measurements often require proper feature extraction [7],
[8], which usually produces redundant features along with

informative features [9]–[11]. This redundancy in the data
results in the shortage of efficiency by exposing excessive
computational burden to the system. Moreover, including non-
informative dimensions of the feature space usually deterio-
rates the accuracy of the IDS model.

Redundancy in data can be eliminated using Feature Selec-
tion (FS) and dimensionality reduction [11]–[14]. The former
is mainly used to find the best set of informative features
while disregarding the rest of the features. The latter, on the
other hand, aims to compute a transformation matrix that
transforms data onto a lower-dimensional feature space. While
both approaches aim to find a feature space, in which all
classes are well-discriminated, reaching this goal is usually
more challenging via FS, as it keeps the nature of features
intact rather than transforming them.

In this paper, we propose a novel FS algorithm, called
Multi-Subspace Feature Selection (MSFS), to improve the data
quality in terms of redundancy and relevancy. The main idea
behind MSFS is to find a set of feature subsets, each of
which obtained by focusing on separating a specific class from
others. By this mean, in contrast to the traditional approaches
that model all classes in a unified feature space, MSFS tries
to maximize the discrimination among classes by modeling
each class in a separate subspace, where only features that
optimally present this class are used. Note that MSFS is
different from Embedding FS methods [15], [16] that use
subspace clustering to learn clustering labels and a similarity
matrix in order to find an optimal feature set. To enable the
usage of multiple subspaces within the same feature space,
we propose an ensemble scheme. Another contribution of
this work is to design an IDS by employing the proposed
MSFS and a number of advanced FS algorithms to improve
the detection accuracy. This enables a comparative study that
shows the effect of FS on performance enhancement of the
IDS. For the sake of evaluation, we consider the case of
intrusion detection in the SCADA systems of a gas pipeline
[3]. Finally, the results are analyzed in terms of accuracy and
standard deviation.

The remainder of this paper is organized as follows. Sec-
tion II conducts a brief literature review on the related FS
approaches. Section III explicitly proposes the novel MSFS
algorithm. The designed IDS is introduced in Section IV.
Section V reports and analyzes the obtained experimental
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results. Finally, the paper is concluded in Section VI.

II. RELATED WORKS

In this section, we briefly overview the FS algorithms
that are employed in this study. Unless stated otherwise,
the following algorithms are categorized under unsupervised
learning.

A. Infinite Feature Selection (InfFS)

InfFS [17] constructs a graph by considering an infinite
number of paths connecting all the features and uses the
convergence properties of power series of matrices. It evaluates
the importance and redundancy of a feature w.r.t. all the
remaining features.

B. Infinite Latent Feature Selection (ILFS)

ILFS [18] is a graph-based FS method that makes use of
an affinity graph. Considering features as nodes of this graph,
the importance of each node is evaluated w.r.t. Eigenvector
centrality, while considering this factor for nodes in the
neighbourhood as well. These nodes are then ranked similar
to InfFS. The main difference between ILFS and InfFS is the
the former models a relevancy latent variable.

C. Eigenvector Centrality Feature Selection (ECFS)

ECFS [19] follows a graph-based approach in the same
fashion as InfFS and ILFS. ECFS ranks features according
to a graph centrality measure. By this mean, the importance
of each feature is calculated by taking the importance of its
neighbours into account.

D. Relief Feature Selection (ReliefF)

ReliefF [20] is a supervised and randomized FS technique
that measures feature qualities in an iterative manner. To
do so, ReliefF determines to what extent features values
differentiate samples in a small neighbourhood. Nevertheless,
feature redundancy may not be perceived by this algorithm,
and, thus, the best feature set may not be attained.

E. Mutual Information Feature Selection (MutInfFS)

MutInfFS [21] finds the best set of features in a greedy
approach. In this process, a feature with the highest influence
on the class relevance is determined at each step. The selection,
on the other hand, is conducted based on a proportional term,
which indicates the intersection of the nominated feature and
the pool of features at hand.

F. Minimum Redundancy Maximum Relevance (mRMR)

mRMR [22] is a supervised search algorithm that uses an
efficient incremental approach. Given a subset of selected
features and a candidate feature, relevance scores are estimated
through maximizing the joint information that is mutual be-
tween them. mRMR uses Parzen Gaussian windows to enable
efficient estimations in this process.

G. Feature Selection via Concave minimization (FSV)

FSV [23] is an embedded FS technique that makes use of
linear programming approach to inject the FS procedure into
the training phase of a support vector machine.

H. Laplacian Score for Feature Selection

Laplacian Score (LS) [24] mainly relies on Laplacian
Eigenmaps and Locality Preserving Projection. LS uses the
locality preserving power of features in order to evaluate
their importance. This has been done by means of a nearest
neighbour graph, which is constructed to model the geometric
structure of data.

I. Multi Cluster Feature Selection Technique (MCFS)

MCFS [25] aims to find the most informative set of fea-
tures using cluster analysis. MCFS assumes that the selected
features should preserve the cluster structure of the data, for
which the manifold structure has been used. Additionally,
MCFS ensures that all possible clusters are covered using by
the selected features.

J. Recursive Feature Elimination (RFE)

RFE [26] is a wrapper FS algorithm that devises a sequential
and backward elimination scheme for selecting features. RFE
assigns a high rank to a feature if it results in significant
separation of the data points by means of a support vector
machine (SVM) with a linear kernel.

K. L0-Norm Feature Selection (L0-norm)

L0-Norm [27] penalizes those features that lead to more
regularization and parallel parameter estimation. This FS
method solves L0 penalty problem through the selection of
non-zero coefficients and regularization parameters at the same
time, and finds an approximation solution for the L0 penalty
problem.

L. Fisher Score for Feature Selection

Fisher filter [28] is a fast FS technique that calculates the
score of a feature w.r.t. the ratio of between-class separation
and within-class variance. The features are evaluated indepen-
dently within this process.

M. Unsupervised Discriminative Feature Selection (UDFS)

UDFS [29] is a L2,1-norm regularized discriminative FS
algorithm, which chooses the best subset of features from the
pool of features in the batch mode.

N. Correlation Based Feature Selection (CFS)

CFS [26] is a FS technique that ranks features with regards
to a correlation-based heuristic evaluation function. The bias
of this function is toward features that are highly correlated
with a class and also uncorrelated with each other.



III. MULTI-SUBSPACE FEATURE SELECTION

The main idea behind Multi-Subspace Feature Selection
(MSFS) is that different subspaces in the feature space can
be used for modeling each class of data, rather than using the
same set of features for all classes. To this aim, we devise
ensemble learning to use multiple subspaces for modeling a
unified dataset, as illustrated in Fig. 1. In this process, the
feature selection is inspired by mRMR due to its supervised
nature and compatibility with the case study at hand.

Given a dataset X ∈ Rn with m samples and n features, the
goal is to find a set of optimal features F̂ = {X1, X2, . . . , Xλ}
from the set of all features F = {X1, X2, . . . , Xn}, where λ
is the number of selected features. To ensure that each class
c is characterized in the best possible subspace, we aim to
find the optimal feature set F̂ for each class separately. By
this mean, given a set of unique classes C = {c1, c2, . . . , cκ},
data samples xi ∈ X are initially divided into different subsets
Sι (see Fig. 1). This has been done w.r.t the set of all labels
Y = {y1, y2, . . . , ym} corresponding to X , as follows:

Sι = {xi | 1 ≤ i ≤ mι}, mι = Card({xi | yi = cι}), (1)

where Card(·) returns the cardinality, mι is the number of
samples in Sι, i.e., number of samples in class cι, and 1 ≤
ι ≤ κ.

Once the subsets are formed, the search for F̂ can be
carried out w.r.t. two criteria, namely maximum relevancy
and minimum redundancy, which are defined based on mutual
information f as:

f(z, h) =

∫
Ωz

∫
Ωh

p(z, h) log
p(z, h)

p(z)p(h)
dzdh, (2)

where z and h are two random variables, Ωz and Ωh are the
random variable sample spaces, and p(·, ·) and p(·) are the
joint probability and marginal density function, respectively.
Equation (2) can cope with discrete variables by changing to:

f(z, h) =
∑
z∈Ωz

∑
h∈Ωh

p(z, h) log
p(z, h)

p(z)p(h)
. (3)

The relevancy JD is formulated as the average of all mutual
information between Xj ∈ F and cι ∈ C, as in the following:

JD(F̂ι, cι, Sι) =
1

λ

∑
Xj∈F̂ι

f(Φ(Sι, Xj), cι), (4)

where F̂ι is the optimal feature set to be determined for the
class cι. Also, Φ(X, F̂ ) returns the representation of X in
subspace F , i.e., only features in F̂ are used to present X:

Φ(X, F̂ ) : X 7−→ X̂, X̂ ∈ F̂ . (5)

The redundancy, on the other hand, measures the information
redundancy as:

JR(F̂ι, Sι) =
1

λ2

∑
Xi,Xj∈F̂ι

f
(
Φ(Sι, Xi),Φ(Sι, Xj)

)
. (6)
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Fig. 1. Block diagram of the Multi-Subspace Feature Selection (MSFS)
algorithm. Train and test phases are specified within the dashed boxes, and
the ensemble model is indicated with E. E is constructed during training and
used during the test phase.

The optimal F̂ι is then estimated through solving the following
optimization problem:

max JD(F̂ι, cι, Sι) + min JR(F̂ι, Sι), (7)

which can be simplified in terms of optimization into the
following form:

max J(JD, JR), J(JD, JR) = JD − JR. (8)

Once the training phase, i.e., specified within a dashed box
in Fig. 1, is over, test samples should be mapped onto their
optimal feature space. In order to determine the right subspace
for test samples, a classification model ψι is constructed for
each class cι in their corresponding subspace F̂ι. By this mean,
each classification model ψι returns the posterior probability of
a test sample x̃i belonging to the class cι within the subspace
F̂ι as follows:

ψι(x̃i) = p(cι | Φ(x̃i, F̂ι)), (9)

where xi∩ F̂ι denotes the representation of xi in the subspace
F̂ι ⊂ F .

The ensemble model E, showed with a dash-dotted box in
Fig. 1, is then completed by adding pairs of feature sets and
classification models for each class to the ensemble as:

E =

λ⋃
ι=1

[F̂ι, ψι], (10)

where [·, ·] resembles a tuple. Thus, the output of ensemble for
each test sample x̃i ∈ X̃ would be the representation of x̃i in
an optimal subspace as shown in Fig. 1 and in the following:

E(x̃i) = Φ(x̃i, F̂α), α = arg max
1≤ι≤λ

ψι(x̃i). (11)
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Fig. 2. Design of the intrusion detection system. Here, F (·) denotes the optimal set of features that are selected from the pool of features F , using each FS
technique.

Notice that ψ(·) is defined as a general classification model.
The type of classification model, on the other hand, depends
on the user preference. Generally, the most efficient approach
is consider ψ(·) as a one-class model that simply determines
the posterior probability of the test sample belonging to the
selected class cι. Alternatively, a binary model can be used
through dividing classes into two categories of matching and
opponent classes. This is while, multi-class models are the
least efficient models that can be used in this process.

IV. INTRUSION DETECTION SYSTEM

The designed IDS aims to detect and isolate cyber-attacks
in a gas pipeline SCADA system [3]. In this scenario, the IDS
should distinguish between the safe traffic (or normal class)
and the data that is exposed to cyber-attacks. Additionally,
the type of cyber-attacks, if any, should be determined by
categorizing them in eight different groups, as described in
Table I.

TABLE I
DIFFERENT CLASSES OF CYBER-ATTACKS USED IN THE SIMULATION.

Class labels Types of Cyber-Attacks
0 Sample does not resemble any attack pattern.
1 Naive malicious response injection.
2 Complex malicious response injection.
3 Malicious state command injection.
4 Malicious parameter command injection.
5 Malicious function command injection.
6 Denial-of-service (DoS).
7 Reconnaissance.

The aforementioned classification problem is solved by
making use of Decision Tree (DT) and k Nearest Neighbours
(kNN) algorithms, as shown in Fig. 2. Although numerous
state-of-the-art classifiers exist in the literature that are more
advanced compared to DT and kNN, we selected these clas-
sifiers for two reasons. Firstly, the effect of feature selection
on the performance of classification is more noticeable using
simpler classifiers such as DT and kNN, as they are usually
less robust against redundant and non-informative features. In
other words, the more a classifier is sensitive to bad quality of
features, the more it shows the accuracy improvement obtained
via FS. Secondly, the selected techniques are computationally
less expensive than advanced methods such as Deep Neural
Networks.

As illustrated in Fig. 2, the designed IDS framework em-
ploys 14 advance FS techniques in addition to the proposed
MSFS algorithm. Each of these methods results in a set
of selected features that are obtained as the output of FS
algorithms, which is denoted by F (·) in Fig. 2.

To simulate the experiments, initially a training dataset is
attained from the given SCADA network and used to train all
FS techniques (see Fig. 2). Then, the classification models are
constructed w.r.t. each FS model. Once the the training phase is
completed, the testing phase is initiated by passing the network
traffic through the constructed FS models. These models will
reduce the size of data using the estimated optimal feature
sets. The improved samples are then fed to the corresponding
classification models to enable the attack identification. Notice
that MSFS makes use of ensemble learning, and, thus, it uses



an ensemble of FS models and classifiers in the described
framework.

Since the focus of this work is on FS, we do not consider
classification challenges such as the presence of non-stationary
environments. Nevertheless, the designed framework can be
adapted to the case of non-stationary environments by resort-
ing to available adaptive frameworks [30], [31] for dealing
with concept drift.

V. EXPERIMENTAL RESULTS

Here, the experimental setting is initially explained in
Subsection V-A. The obtained results are then analyzed and
discussed in terms of accuracy and standard deviation in
Subsection V-B.

A. Experimental Setting

The employed intrusion detection dataset has originally 26
features and 97020 samples. The optimal number of features
to be selected is estimated via the naive search, where the
search ranges are obtained empirically.

A nested 10-fold cross-validation procedure is used to the
statistical reliability of the experiments. This nested structure,
enables the parameter tuning of classifiers, such as the value of
k for kNN and depth of tree for DT, and hyper-parameters of
the FS algorithms. For this mean, the grid search algorithm is
utilized to ensure the optimal classification accuracy achieved
by using the outputs of the FS algorithms.

B. Results Analysis

Fig. 3 shows the obtained accuracies through the cross-
validation iterations for each FS method. Considering the
results of DT, Fig. 3(a) indicates that MSFS has outperformed
the other methods. This is while mRMR and ECFS are ranked
second and third, albeit with a slight difference. Furthermore,
ReliefF, ILFS, UDFS, MutInfFS, InfFs, CFS, Fisher, L0-norm,
RFE, Laplacian, MCFS, and FSV are ranked from fourth to
15-th, respectively. Although FSV improves the variance of
the classification results, i.e., see Fig. 3(a), it seems that it
is not compatible with the existing distribution in this case
study, as it results in accuracy deterioration. Moreover, based
on Fig. 3(a), the combination of DT with any of the selected
FS algorithm will always improve the classification variance in
this case study. Nonetheless, the achieved variances through
the combination of FSV, Laplacian and MCFS and DT are
considerably higher than that of other FS techniques.

Fig. 3(b) illustrates the obtained accuracies using the com-
bination of kNN with FS algorithms. Similar to the results
of DT, which is shown in Fig. 3(a), MSFS, mRMR, ECFS,
ReliefF, ILFS and UDFS are ranked from first to sixth,
respectively. Nevertheless, the rest of FS methods exhibit
different performances, when combined with kNN. Here, CFS,
RFE, L0-norm and Fisher are ranked from seventh to tenth. On
the other hand, the accuracy resulted through the combination
of kNN with Laplacian, MutInfFS, InfFS, MCFS and FSV fall
under the baseline accuracy, which imply the incompatibility
of these combinations with the case study at hand. Moreover,
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Fig. 3. Obtained accuracies over a 10-fold cross-validation w.r.t. the combi-
nation of FS methods with classifiers. Solid circles, solid squares, and plus
signs indicate recorded accuracies, mean values, and outliers, respectively.

employing InfFS and MutInfFS significantly increases the
classification variance of kNN. FSV, Laplacian and MCFS also
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Fig. 4. Average performance of FS methods. Panels (a–c) show the averaged classification errors and standard deviations obtained using different classifiers.
Panel (d) shows overall improvements resulted by DR methods in terms of accuracy and standard deviation.

deteriorate the classification variance of kNN, however, not as
severe as InfFS and MutInfFS.

The overall accuracies obtained through the cross-validation
are estimated by considering the results of both classifiers, as
shown in Fig. 3(c). Similar to the previous analysis, MSFS,
mRMR, ECFS, ReliefF, ILFS and UDFS are ranked from first
to sixth, respectively, in terms of overall accuracy. On the
other hand, CFS, RFE, Fisher, L0-norm, MutInfFS, InfFS and
Laplacian have the seventh to the 13-th ranks. This is while
MCFS and FSV, which are ranked as the last two, result in
an overall classification performance lower than the baseline
accuracy. In terms of overall variance, all FS methods, except
InfFS, MutInfFS, FSV, Laplacian and MCFS, are followed by
a desirably low classification variance.

The reported rankings for the achieved accuracies can be
also seen in Fig. 4(a–c), in terms of classification error.
In order to perform a precise study on the stability of the
FS methods, we devise the averaged standard deviations of
classification that is resulted using each algorithm. To begin
with, Fig. 4(a) implies that MSFS, ECFS and mRMR are
ranked as the first three in terms of standard deviation, when

DT is used for classification. This is while RFE, ILFS, ReliefF,
InfFS, MutInfFS, L0-norm, CFS, Fisher, UDFS, FSV, MCFS
and Laplacian are ranked from fourth to 15-th, respectively,
as shown in Fig. 4(a).

The averaged standard deviations resulted by means of kNN
are illustrated in Fig. 4(b). Based on this figure, ECFS, mRMR,
MSFS, L0-Norm, ILFS, ReliefF, CFS, RFE, UDFS, Fisher,
FSV, Laplacian and MCFS are ranked from first to 13-th. On
the other hand, in contrast to the rest of FS techniques, InfFS
and MutInfFS increase the standard deviation compared to the
baseline, and gain the last two ranks.

The overall standard deviation w.r.t. both classifiers can be
seen in Fig. 4(c). In this figure, MSFS outperforms other FS
methods in terms of the overall standard deviation. However,
ILFS, ReliefF, ECFS and mRMR, which are ranked from
second to fifth, have a negligible difference with MSFS in
terms of standard deviation. RFE, CFS, L0-Norm, UDFS and
Fisher are ranked from sixth to tenth with a higher difference
with the first five ranks. The rest of the FS methods, result in
a lower overall standard deviations compared to the baseline.
These methods, namely Laplacian, MCFS, FSV, InfFS and
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MutInfFS are ranked from 11-th to 15-th, respectively.
The overall improvement achieved using each FS method

is shown in Fig. 4(d). MSFS results in the highest overall
improvement in terms of accuracy and standard deviation,
as shown in Fig. 4(d). mRMR, ECFS, ReliefF, ILFS and
UDFS are ranked from second to sixth in terms of accuracy
improvement. It is worthwhile to mention that the obtained
improvement by these methods are considerably higher than
the rest of techniques. On the contrary, FSV is the only
algorithm that results in the accuracy deterioration. However,
we find this due to the incompatibility of this method to the
structure of the utilized data. On the other hand, the achieved
improvements in terms of standard deviation are almost similar
for most of the algorithms, except for FSV, Laplacian and
MCFS that brought about less stability improvement compared
to the others.

Another issue of concern is the dimensionality size of
the data when performing FS. While FS algorithms aim to
increase the performance using the selected features, they
also endeavour to minimize the dimensionality size as much
as possible in order to enhance the computational efficiency.
In this regard, Fig. 5 shows the number of features that are
selected and disregarded by FS methods. It can be seen that
MCFS, Laplacian and FSV that were generally outperformed
by other techniques have selected the least number of features.
Thus, their lower performance may be the due to the failure
in detecting some of the important features, which brings
about information loss. On the other hand, MSFS robustly
recognizes the informative features and select them for the
sake of classification. In other words, although algorithms
such as MCFS, Laplacian and FSV may seem more desirable
than MSFS in terms of efficiency, this efficiency is followed
by accuracy deterioration in this case study, which is not
desirable.

VI. CONCLUSION

A novel feature selection algorithm, called MSFS, is pro-
posed in this paper. The proposed MSFS finds a different sub-
space for a selected class, where it is optimally discriminated.
Estimated multiple subspaces based on mutual information
estimation, an ensemble model is then formed to enable
classification via multiple subspaces. In order to evaluate
the proposed method, the case of cyber-attack identification
in a SCADA network of a gas pipeline is considered. For
this mean, an IDS is designed to distinguish between seven
types of cyber-attacks and the normal state in the SCADA
system. Moreover, fifteen advanced FS techniques, including
the proposed MSFS, are employed within the designed IDS
to enable a comparative study on the selected case study. The
experimental results indicate the superiority of the proposed
method in terms of accuracy and standard deviation for iden-
tifying injected cyber-attacks in the given SCADA system.
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