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Abstract—Parkinson’s Disease (PD) is a neurodegenerative
disorder with increasing prevalence in the world population and
is Characterised by motor and cognitive symptoms. Although
cortical EEG readings from PD-affected humans have being
commonly used to feed different machine learning frameworks,
the directly affected areas are concentrated in a group of sub-
cortical nuclei and related areas, the so-called motor loop. As
those areas may only be directly accessed through invasive
procedures, such as Local Field Potential (LFP) measurements,
most data collection must rely on animal models. To the best
of our knowledge, no neural networks-based analysis centred
on LFP data from the motor loop was reported so far. In this
work, we trained and evaluated a set of deep neural networks
on a dataset recorded from marmoset monkeys, with LFP
readings from healthy and parkinsonian subjects. We analysed
each trained neural network with respect to its inputs and
representations from intermediate layers. CNN and ConvLSTM
classifiers were applied, reaching accuracies up to 99.80%, as well
as a CNN-based autoencoder, which has also shown to learn PD-
related representations. The results and analysis provided further
insights and foster research on the correlates of Parkinson’s
Disease.

Index Terms—Parkinson’s disease, LFP analysis, deep learn-
ing, attribution methods, computational neuroscience.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder and estimates indicate a prevalence between 1 and
2 per 1,000 individuals. Age is the most relevant factor to
influence such incidence [1]. The most common symptoms
are motor deficits, such as bradykinesia, rigidity, and resting
tremors, although cognitive symptoms, especially dementia,
may occur in later stages [2]. PD diagnosis is clinical (there
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is no feasible biomarker), and current treatments provide
symptomatic relief, but do not stop, revert, or slow disease pro-
gression [3]. In this context, machine learning techniques are
being used to characterise the neurophysiological correlates
of PD, which can contribute to unveil disease mechanisms as
well as non-trivial features that are present on neural data.
Ultimately, this may facilitate early diagnoses and support
novel therapies.

With few exceptions, human datasets are comprised of
non-invasive electroencephalography (EEG) recordings, which
capture the neural dynamics from cortex superficial layers.
However, the neural circuits directly associated with PD may
only be sampled by invasive electrodes, limiting the avail-
ability of human studies. Nevertheless, there are consolidated
animal models of PD, in which disease symptoms can be
elicited by administering neurotoxins [4]. From implanted
electrodes, Local Field Potential (LFP) signals are obtained
and these have a close relationship with EEG signals [5].
Furthermore, the basic anatomy and structure of the neural
circuitry relevant to PD are conserved across most vertebrate
species [6], thus supporting the use of such animal models.

In this paper, we designed a set of deep neural networks
able to learn explainable features from raw time-domain LFP
data with minimum preprocessing. The trained models were
evaluated for their ability to classify structured data segments
as belonging to healthy or PD animal subjects. Then, we
highlighted which properties of the segments contributed most
to the networks’ classifications. To accomplish that, we used
a marmoset monkey database [7] of simultaneous LFP record-
ings from PD-related brain regions, namely the basal ganglia-
thalamus-cortex (BG-T-C) system, known as the motor loop).
The network architectures include a fully-connected (FC)
network, used as a baseline method, a Convolutional Neural
Network (CNN), and an hybrid CNN with Long Short-Term
Memory (ConvLSTM). We also employ an autoencoder-based
unsupervised framework to analyse not only the consistency
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of the lower-dimension representation (i.e., embedding) with
respect to the two conditions - healthy or PD - but also the
suitability of the learnt features in regular classification.

Our deep learning models trained on LFP readings reached
accuracy above 99% and the learnt features resemble those
that were previously associated to PD. As the acquisition of
LFP data depends on inserting electrodes directly inside the
subject’s brain, the methods proposed are not directly suitable
for diagnosis, but rather to provide an additional framework
for better understanding of the underlying mechanisms of the
disease. To the best of our knowledge, this paper is the first
attempt to apply deep neural networks to better understand PD
features extracted from simultaneous multi-region LFP.

II. RELATED WORK

Recent research has shown that deep neural networks may
be promising machine learning algorithms for studying bio-
logical systems. In [8], classification of Alzheimer’s disease
was performed based on magnetic resonance brain images fed
into a CNN. In [9], the intention to perform certain movements
was detected from EEG signals, by generating time-frequency
maps through wavelet transforms and feeding them to a CNN.

Regarding PD, in [10], EEG data was collected from 15
patients in early stages of PD, ranging from Hoehn and Yahr
(H&Y) [11] stages 1 to 2, and 15 healthy subjects with a
similar age profile. They applied the autoregressive Burg and
the Wavelet Packet Entropy (WPE) methods to characterise the
resulting signals in terms of frequency bands and to identify
cortical patterns that may be indicative of PD at its early
stages, and found significant differences between the affected
patients and the control subjects.

Yuvaraj, Acharya, and Hagiwara [12] provided a machine
learning (ML) framework to diagnose the disease in an EEG
dataset produced by 20 affected patients with H&Y stage
ranging from 1 to 3, though most of them were in stages 2 or
3, and a control group of 20 other subjects with no history
of mental illness. They extracted the Higher-Order Spectra
(HOS), a well-established technique for feature extraction
from biomedical data, and introduced a feature ranking method
before applying several classical classifiers, obtaining a state-
of-the-art diagnosis with Support Vector Machines (SVM).

An important development in the Brain-Computer Interfaces
(BCI) domain was the EEGNet [13], based on the application
of a compact CNN in diverse motor tasks. Besides providing
a classification framework, the authors explored the interpre-
tation of features by analysing filter outputs, convolutional
kernel weights, and single-trial relevance. The SyncNet [14]
was another CNN-based deep network capable of handling not
only EEG, but also LFP signals from public datasets. When
processing EEG data, the framework generated visualisations
of the spatial patterns recognised by the network filters with
heat maps representing learnt amplitude and phase in different
bands of the frequency spectrum. Their work did not describe
a visualisation approach for features learnt from LFP data.

In [15], different CNN architectures were employed in order
to classify public EEG datasets focused on commands for

initiating movement. For visualisation, two types of correlation
maps were considered: input-feature unit-output, consisted of
bandpass-filtering the input signal to each frequency band
of interest and checking the outputs of each unit of the
network, and input-perturbation network-prediction, based on
perturbations on the network inputs. A paradigm derived from
research on video classification was proposed in [16], in which
the spatially-coherent readings of the EEG electrodes at a
given timestep were represented as a regular 2D image, and
stacks of such images were interpreted as sequential frames
in a video. The data was collected during a working memory
experiment, and different architectures were considered for
feature extraction and classification, especially neural net-
works.

Regarding research aimed at PD diagnosis, [17] presented
a thirteen-layer CNN that was applied directly to EEG data
from 20 PD patients and 20 healthy subjects from similar age
groups for classification. The accuracy obtained was lower
than that reported in related work with handcrafted features,
though direct comparisons are difficult to make due to the lack
of standardised datasets. A different technique was presented
on [18], which applied Echo State Networks (ESN) to classify
data collected from patients with REM-sleep Behaviour Dis-
order (RBD), a risk factor for PD, and healthy controls, with
promising results. Both papers focused on classification, with
few considerations regarding the representations learnt.

Research on learning feature representations from brain
signals through unsupervised techniques presented two autoen-
coder architectures to learn short-time features from EEG data
from a public dataset [19]. Each trial was represented as a 2D
image whose pixel intensities were related to the power of
different EEG frequency bands at the spatial location of each
particular electrode in the scalp surface, and channel-wise, in
which each EEG electrode was treated as a different channel.
The embeddings learnt were fed to fully-connected layers to
perform classification tasks, leading to state-of-the-art results
in the cross-subject experiments. Another autoencoder-based
framework was proposed by Wen and Zhang [20], designed
to learn representations related to epilepsy with the so-called
AE-CDNN model.

The above-mentioned literature focused on learning repre-
sentations based on EEG signals from humans by applying
different sorts of neural networks, with accurate results in
comparison to other approaches. PD-related work was also
relied on this modality of data, however work on this subject
did not provide an in-depth analysis on the interpratability
of the features learnt. Also, LFP data has not been a focus
of ML efforts in understanding PD, though we have found
research addressing this modality for other purposes. This
paper attempts to fulfil those gaps by providing a comparative
study via a set of deep networks that learned from a PD-related
dataset of marmosets’ LFP measurements, in both supervised
and unsupervised manners.



III. THE MOTOR LOOP

The motor loop of the mammals’ brain is formed by the
motor cortex (M1), the thalamus (TH), and the basal ganglia
(BG), the latter composed of a subset of structures: the
striatum, which itself includes the putamen (PUT) and the
caudate nucleus, the globus pallidus, divided into pars interna
(GPi) and pars externa (GPe), the subthalamic nucleus (STN),
and the substantia nigra, divided into pars compacta (SNc)
and pars reticulata (SNr). McGregor and Nelson [21] provided
a discussion about the mechanisms of this loop and presented
models to describe it. The most useful model to explain the
connections affected by PD is the so-called classic model,
illustrated in Fig. 1, which highlights the relationships between
the projections of neurons from the SNc to the BG structures,
mainly striatum, where dopamine is released.

Striatum

GPi GPe

SNc

STN

Motor cortex

dMSN iMSN

THVL, VPL, etc.

PUT, etc.

Fig. 1: Excitatory (blue) and inhibitory (red) connections from
the circuitry of the motor loop. PD is caused by the loss of
neurons of the substantia nigra pars compacta (SNc), which
weakens the connections represented by the dashed lines. This
causes malfunction on both the direct and indirect pathways.

The pathways begin with an excitatory connection from
the cortex to the striatum, which projects its output neurons,
named medium spiny neurons (MSN), to other structures inside
the BG. In the direct pathway, the direct MSN (dMSN) inhibits
the GPi, which reduces its inhibition to the TH, which then
excites the motor cortex. In the indirect pathway, the indirect
MSN (iMSN) inhibits the GPe, which reduces its inhibition to
the STN, which excites the GPi. Thus resulting on inhibition of
the TH and absence of excitatory outputs to the motor cortex.
Hence, in summary, the direct pathway excites the cortex (i.e.,
positive feedback loop), while the indirect pathway inhibits
it (i.e., negative feedback loop). PD is characterised by the
progressive loss of dopaminergic neurons, especially in the
SNc, which causes malfunctions to both pathways.

IV. METHODS

This work consists of applying deep neural networks to LFP
data collected from marmoset monkeys. We have considered
networks for classification, trained to distinguish between
healthy and PD-induced individuals, and autoencoders, trained
in an unsupervised manner. To explore the representations
learnt by each model, we applied attribution methods to
segment the input sequences and to look for the most relevant
features. All implementations were developed using the Ten-
sorFlow/Keras framework. The experiments were performed

on a desktop equipped with an Intel Core i7-7700 CPU and a
NVidia Titan-V GPU.

A. Datasets

Four adult males and one adult female common marmosets
(i.e., Callithrix jacchus), weighing 300–550 g, were used in
the study performed on [7]. The animals were housed in
pairs in a vivarium with a natural light cycle (12/12 hr)
and outdoor temperature. All animal procedures followed ap-
proved ethics committee protocols (CEUA-AASDAP 08/2011,
11/2011, 02/2015, and 03/2015) strictly in accordance with
the NIH Guide for the Care and Use of Laboratory Animals.
PD symptoms were elicited in all four male animals with
injections of 6-OHDA toxin under deep anesthesia. LFPs were
sampled at 1000 Hz and recorded using a 64 multi-channel
recording system (Plexon) with fully-awaken animals behaving
freely. Electrode coordinates and dopaminergic lesions were
verified in all animals.

B. Data Preprocessing

The only healthy individual had recordings from the M1,
PUT, GPe, and GPi regions, thus we limited our analysis
to those regions. In total, 14 and 16 recording sessions
were obtained for the healthy and for the PD conditions,
respectively, considering hemispheres independent from each
other. Each recording session was segmented in 2-second
data segments. As multiple electrodes were recorded for each
region, a preprocessing pipeline was required before providing
a standardised data structure, as with other approaches in the
literature [22]. For each channel, our pipeline began with
a low-pass filter (cutoff frequency of 250 Hz), a high-pass
filter (cutoff frequency of 0.5 Hz) and a hum notch filter at
60 Hz, 120 Hz, and 180 Hz frequencies. Each signal was then
scaled according to a z-score normalisation. The next step was
to compute the cross-correlation matrix of each region and
discard channels with mean correlation coefficient below the
threshold of 0.7. Finally, all channels within a brain region
were averaged, which provided a matrix with dimensions
4× 2000.

After that, to reduce the amount of noisy or non-meaningful
data, we imposed additional criteria to decide whether to
keep or discard each resulting instance. An upper threshold
of 0.2 was set for the module of the mean of the signal over
time at each region, and a lower threshold of 0.1, for the
standard deviation. Also, each window was required to show
a minimum of 10 peaks.

C. Network Architectures

We considered the classification task of distinguishing be-
tween healthy and PD-induced individuals and elaborating
embedding representations through an autoencoder [23], which
could be analysed on its own or coupled with supervised
techniques to check its ability to enhance the classification pro-
cedure. The different architectures considered are illustrated
in Fig. 2. The number of layers and its numbers of neurons
were chosen based on literature on EEG classification and



exploratory experiments. The complexity of each model is
shown in Fig. 3.

Fully-connected
Layers: 2
Dropout rate: 50%
Units: {1024, 256}

Softmax

(a) Fully-connected architecture. The two fully-connected lay-
ers, both provided with dropout, are followed directly by the
softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

Global Avg. 
Pooling

Softmax

(b) CNN architecture. All convolutional layers within a Conv1d
+ MaxPool block were set to the same kernel size, with one
convolutional layer being interspersed with a max-pooling layer.
At the top, the features map are processed through global
average pooling and fed to a softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

LSTM layer
Units: 128

Softmax

(c) ConvLSTM architecture. The Conv1D + MaxPool block is
similar to that of the CNN architecture, however its output is
fed to a LSTM layer, whose output is fed to the softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

Global Avg. 
Pooling

Embedding

Conv1D + Upsampling
Layers: 4
Kernel size: 11x1 (up. 2x1)
Units: {378, 256, 192, 128}

Conv1D
K. size: 11x1
Units: 4

(d) Autoencoder architecture. The convolution/upsampling
block and the top convolutional layer with the output with
the same dimension as the input signal, used for training the
autoencoder, is removed and replaced by a global average
polling for providing the embeddings.

Fig. 2: Network architectures. The input signals are processed
by the intermediate layers, which would be a stack of fully-
connected, convolutional, pooling or upsampling, depending
on the architecture (icon by Freepic, from www.flaticon.com).

1) Classification Networks: Three different architectures
were considered for classification. All of them were endowed
with a readout layer made of two neurons, each related to
one of the two possible classifications - healthy or PD -
and softmax activation function. The baseline, Fig. 2a, was
a shallow, fully-connected (FC) neural network, consisted of
two intermediate layers with dropout set to 50%. We also
considered a 4-layered CNN, Fig. 2b, with the convolutional
layers composed of 1-dimensional filters with receptive field

Number of parameters (M)

FC
CNN

ConvLSTM
Autoencoder

0 2.5 5 7.5 10

Fig. 3: Complexity of each model, given by the number of
parameters, in millions.

of size 11 and interspersed with max-pooling layers with filter
size 2, and a ConvLSTM, Fig. 2c, inspired by literature on
activity recognition from inertial sensors [24], which consisted
of the CNN architecture provided with an additional LSTM
layer at the top, right before the softmax layer. The number
of units at each layer is depicted in Fig. IV-C1.

2) Autoencoder: The autoencoder, Fig. 2d, reproduced the
CNN architecture and endowed it with a reconstruction block.
At training time, four convolutional-upsampling pairs were
introduced to reverse the encoding produced, followed by a
convolutional readout layer to reconstruct the input shape. At
test time, the 378 × 125 encoding following the last max-
pooling layer would be processed by global average pooling
and turned into a flat feature vector composed of 378 units,
which we call embedding.

This embedding was employed in two other classification
settings. The first consisted of simply feeding the embedding
to a fully-connected network, just like the one illustrated in
Fig. 2a, and training the fully-connected network regardless of
the original CNN that generated the embedding. The second
consisted of inserting a softmax layer at the top of the global
average pooling layer, resulting in an architecture identical to
that of the CNN depicted in Fig. 2b, and fine-tuning all its
weights.

D. Attribution Methods

Algorithms to assign a value to the contribution of each
input to a given output of a neural network may be called
attribution methods. A comprehensive summary of differ-
ent methods was presented on [25]. Formally, given an in-
put X = [x1, . . . , xN ] ∈ RN and an output S(X) =
[S1(X), . . . , SC(X)], where N is the number of input neurons
and C is the number of output neurons, the problem consists
of assigning an attribution RC = [RC

1 , . . . , R
C
N ] ∈ RN of

each input feature x ∈ X with respect to a given output
Sk(X) ∈ S(X). The Integrated Gradients method [26],
adopted in this work, is based on the gradients obtained
through a single backward pass through the network.

Here, we applied the DeepExplain framework [25] to the
outputs for computing the attributions of each instance with
respect to the input signals and to all intermediate layers. The
outcome, in the case of the inputs, may be represented by
the example in Fig. 4, which presents the attribution of each
timestep of the input channels as colour maps. It is worth
mentioning that negative attributions, represented in blue, are



also present, and might be interpreted as evidence against the
output analysed.
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Time (ms)

1
0
1
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Fig. 4: Example of attributions at the input layer with respect
to a given output. Contributions of each timestep are repre-
sented in a colour map, with red points corresponding to pos-
itive attributions, and the blue points, to negative attributions.
In other words, red (blue) points relate to increased (decreased)
probability of correct classification.

V. RESULTS AND ANALYSIS

After preprocessing, 14 sessions from the healthy condition
and 11 sessions from the PD condition were kept. Based on
that, the data was split following the rule that segments that
belonged to the same recording session would always belong
to the same fold. This policy allowed the data to be split into
11 folds, each consisting of one healthy and one PD recording
session, preventing the ML algorithms from achieving high
accuracy by simply learning session-specific artifacts. The
classification networks were trained to optimise the softmax
cross-entropy loss, while the autoencoder was trained to opti-
mise the mean squared error (MSE). All neural networks were
trained using stochastic gradient descent (SGD), with learning
rate 10−2 and decay 10−4, for 30 epochs. We have chosen
to apply SGD without momentum because this was the most
stable training algorithm, generally leading to convergence on
both train and test sets. The number of epochs was actually
overestimated, since convergence appeared to happen around
epoch 10, though it was kept for safety, since the loss remained
stable after achieving an optimal set of parameters. The
trained models were evaluated with regular evaluation metrics,
but they were also analysed with respect to its features, as
presented in the next subsections.

A. Performance Evaluation

The classification results are presented in Table I, including
the shallow FC network applied to the autoencoder embedding
and the pre-trained CNN, which is actually a fine-tuned

autoencoder. Accuracy and macro F1-score (i.e., the harmonic
mean between macro precision and recall) were close for
all models, which suggest an equilibrium between true and
false classifications across both classes. The results show that
the CNN performed expressively better than the baseline FC
network, with a 5.98% accuracy rise from 93.65% to 99.63%
and standard deviation an order of magnitude lower. The
ConvLSTM presented a perceptible improvement towards the
CNN: the error rate, the opposite of accuracy, dropped from
0.37% to 0.20%, with even lower standard deviation. The
FC applied to the autoencoder’s embedding presented a slight
improvement when compared to the baseline FC, despite an
increase at the standard deviation, especially regarding the
F1-score, which may suggest worse performance at certain
circumstances. Pre-training the CNN had little effect on the
classification metrics, as the accuracy of the CNN and the
pre-trained CNN changed only 0.02%.

TABLE I: Classification metrics for each network architecture,
with window size t = 2, 000 points. Means and standard
deviations between all folds.

Accuracy (%) F1-score (%)

Fully-connected 93.65± 6.03 93.39± 6.14
CNN 99.63± 0.78 99.61± 0.83
ConvLSTM 99.80± 0.40 99.79± 0.45

AE / FC 95.76± 7.93 94.49± 10.57
Pre-trained CNN 99.65± 0.68 99.63± 0.75

The dataset in which we performed the experiments is not
public, thus there are no related work to which we can directly
compare these results. Also, PD-related LFP data is not readily
available for most research on the issue, even considering data
from rodents. If compared to EEG datasets, collected under
more controlled circumstances, our results would be consistent
with the state-of-the-art, in which accuracy of up to 99.62%
can be found with HOS features and SVM-RBF classifier [12].
Regarding deep neural networks, the CNN of [17] hit an
accuracy of 88.25%, while [18] reported an accuracy around
85% with ESN classifiers.

The autoencoder’s embedding went through an additional
performance evaluation. Three clustering methods were ap-
plied to the feature vector - K-means, agglomerative hierarchi-
cal clustering and DBSCAN - and the clusters were evaluated
according to entropy-based evaluation metrics [27], which take
into account the labels of the instances assigned to each cluster.
Those metrics were the Homogeneity of the clusters, according
to which each cluster contains only instances of a single class,
the completeness, according to which all instances of a given
class are assigned to the same cluster, and the V-measure, the
harmonic mean between the other two. The results, shown in
Table II, give a measurement of whether the features learnt
by the autoencoder and grouped by the clustering algorithms,
both without considering the annotations, were informative of
whether the instance corresponded to a healthy or PD subject.

K-means and agglomerative clustering performed better
when the number of clusters was set to n = 4. In particular



TABLE II: Entropy-based metrics on clustering methods ap-
plied to the autoencoder’s embedding. The number associated
with the K-means and agglomerative clustering rows refer to
the number of clusters n, set as a hyper-parameter of the
algorithm.

Homogeneity (%) Completeness (%) V-Measure (%)

K-means 2 53.00± 25.84 54.79± 24.66 53.63± 25.53
K-means 4 86.54± 14.19 56.15± 9.81 67.91± 10.99
Aggl. 2 48.84± 30.27 51.99± 28.07 49.98± 29.58
Aggl. 4 91.27± 14.22 59.85± 12.36 72.05± 12.87
DBSCAN 69.64± 41.65 53.83± 27.42 59.42± 34.87

considering the proportionally high standard deviations of the
other approaches, which indicates that, for some folds, the
embedding was not informative with respect to the labels. Even
the completeness measurement, which could be expected to be
lower when the number of clusters is higher than the number
of classes, has actually improved. The homogeneity reached
91.27% with agglomerative clustering, an evidence in favour
of the autoencoder’s features as discriminative towards detec-
tion of PD. The density-based DBSCAN showed intermediate
results, though with the highest standard deviations.

B. Feature Analysis

Features learnt by each model were analysed based on the
attribution methods (Section IV-D) and spectral analysis. We
have considered the input features and the internal representa-
tions at the intermediate layers of the convolutional networks.

1) Input Features: The attributions with respect to the
input channels (i.e., regions of the motor loop) were used
to determine the 1-second segments that show the highest
accumulated attributions at each instance (i.e., the highest sum
of 1,000 subsequent elements within a given channel of a given
input), with the constraint that only segments whose sum of
attributions is above a threshold of 1.0 were considered. The
power spectral density (PSD) of those segments was computed
using the Welsh method [28], and the mean µPSD of the spectra
of each class C = {H,PD}, where H means ”healthy” and
PD, ”parkinsonian”, was considered to calculate the ratio R
of Equation 1. The rationale is that a peak at the beta frequency
band (13-30 Hz) is a relevant marker of PD brain signals [29].

R =
µPSD(C = PD)

µPSD(C = H)
(1)

Results for each model are presented in Fig. 5, alongside
a baseline spectrum corresponding to random segments of
each instance. The beta frequency peak can be clearly seen in
random segments, and was enhanced on all models except for
the autoencoder without fine-tuning. The autoencoder situation
was expected, since the gradients were not updated with
respect to the inputs of the network, but only to the encoding
produced after the convolutions. The M1 and GPi ratios were
close to zero because few segments of PD individuals with
relevant attributions were present in the analysis.

As expected, the CNN and pre-trained CNN elicited high
attributions to segments with similar spectral densities. The
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Fig. 5: Ratio between the mean PD and healthy PSD of the
1-second snippets with the highest accumulated attribution per
input segment, above a given threshold of 1.0.

FC network was also consistent with the literature, with even
a more acute beta peak in GPi. In the ConvLSTM spectrum,
this peak was very high in M1, though less prominent in GPe
and GPi. These differences in spectra show that each model
make predictions based on different input features, however
all of them were in consonance with previous PD literature.

To verify the contribution of each region for the models’
performance, we evaluated the total number of regions with
at least one 1-second segment whose sum of attributions was
above the threshold of 1.0, across all folds. In Fig. 6, this
evaluation is shown in terms of the proportion of segments
above such threshold with respect to the total number of
segments within each given region.

This evaluation suggests that the PUT and GPe regions were
generally more relevant for recognising the healthy condition
for all models, and also for recognising the PD condition for
the ConvLSTM and the autoencoder-based network. There-
fore, the particularly high frequencies for the GPi spectrum at
the baseline FC and for the M1 spectrum at the ConvLSTM,
previously shown in Fig. 5, does not imply that those regions
have given the highest contributions for the classifications.

2) Intermediate Convolutional Layers: We also evaluated
the features at the intermediate convolutional layers. Given the
internal representation that followed each max-pooling layer,
our analysis computed the spectral power at the delta (1-3 Hz),
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Fig. 6: Proportion of segments above threshold for each
classification model (mean between all folds). In the graph,
the pretrained CNN was named AE-CNN.

theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma
(30-100 Hz) bands of the LFP. We considered feature maps
whose sum of attributions is above a threshold of 0.5 for the
pre-trained CNN and 0.7 for the other models. The average
spectral power of those representations is shown in Fig. 7.

Differences on the features learnt at each layer were also
verified at a given power band. As the number of samples
is massive in all of the considered cases, the outcome of a
significance test would provide a very low p-value even if the
effect of the significance detected was only trivial [30]. In fact,
we got p ≈ 0.00 for all ANOVA tests applied. Hence, in order
to understand the effect size of this statistical significance, we
measured the η2 measure [31], also reported in Fig. 7. A small
effect size is determined by η2 ∈ [0.01, 0.09], a medium one,
by η2 ∈ [0.09, 0.25], and a large one, by η2 > 0.25.

Except for the autoencoder, the evaluations of all models
shared most of its properties. Regarding the sub-alpha waves
(i.e., delta and theta), CNN, ConvLSTM, and pre-trained CNN
produced feature maps with higher amplitudes the deeper the
layer was, with medium to large effect sizes. This pattern
started to reverse at the alpha band, with layer 4 producing less
power at such frequency interval than layer 3. At the beta band,
the pattern was less uniform across models, though relevant
(i.e., large effect size for CNN and ConvLSTM). At the gamma
frequency, the tendency of the lower bands was reverted, with
first layers producing less of those waves. The high effect size
was possibly due to the lower resolution at layer 4, which
penalises spectral analysis of higher frequencies.

The autoencoder model was considerably different than
other models, as one may expect due to its different, unsu-
pervised optimisation strategy. It produced the same pattern at
all sub-gamma frequency bands, with a higher prevalence of
those frequencies the lower down was the layer. We highlight
that only small effect sizes were detected at the delta and
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Fig. 7: Average frequency power bands over the spectrum of
each max-pooling layer and η2 effect size over all pairs of
layers with summed attributions above a given threshold of
0.5 for the pre-trained CNN or 0.7 for the other models.

theta bands, and medium effects, at the alpha and beta ones.
The layers were less specialised regarding the gamma waves.
In common with the other models, the autoencoder has also
shown a sharp drop of gamma waves at layer 4.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a deep framework to extract
features related to Parkinson’s Disease (PD) from Local Field
Potential (LFP) brain signals of a marmoset monkey dataset.
Different neural networks were applied as machine learning
techniques, both as classifiers and autoencoders, and results
were reported in terms of accuracy and properties of the
representations learnt by each model.

The deep networks presented classification metrics higher
than the shallow networks, with accuracy up to 99.80% for the
ConvLSTM model. The autoencoder embedding has shown
to be informative of the PD-related features, with clustering
approaches reaching homogeneity up to 91.27%, and higher



classification metrics when fed to a fully-connected network,
in comparison to the raw input (e.g., 95.76% accuracy, against
93.65%). Pre-training the CNN, on the other hand, had little
effect compared to training from scratch.

Even though the convolutional networks extract features in
the time domain, the input segments with higher attributions
presented an enhanced peak at the beta frequency range of
the average spectrum of the PD individuals when compared
to the healthy ones. Regarding the intermediate representations
of the convolutional layers, we have analysed the average
power spectra at five frequency bands of feature maps with the
highest attributions. Although LFP readings are not a feasible
source of data for diagnosing PD, the proposed methods and
analysis may contribute for a better understanding of the
mechanisms underlying Parkinson’s disease.

Future work includes the use of the same deep learning
approach to simulated data originated from computational
models of PD. This will assist on the validation of artificial
models of the motor loop, apart form enhancing our current
understanding of the PD neurophisiology. We will also embed
such models into a robot, given rise to a neurorobotics model
which could simulate the symptoms of this disease and provide
a platform to perform preliminary experiments on proposed
new therapies. A better understanding of the BG-T-C cir-
cuitry might give further insights on related systems regarding
decision-making, homeostasis and learning [32]–[35], which
are of particular interest to the field of robotics.
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[18] G. Ruffini, D. Ibañez, M. Castellano, S. Dunne, and A. Soria-Frisch,
“EEG-driven RNN classification for prognosis of neurodegeneration in
at-risk patients,” in ICANN. Springer, 2016, pp. 306–313.

[19] Y. Yao, J. Plested, and T. Gedeon, “Deep feature learning and visual-
ization for EEG recording using autoencoders,” in ICONIP-LNCS-vol.
11307, 2018.

[20] T. Wen and Z. Zhang, “Deep convolution neural network and
autoencoders-based unsupervised feature learning of EEG signals,” IEEE
Access, vol. 6, pp. 25 399–25 410, 2018.

[21] M. M. McGregor and A. B. Nelson, “Circuit Mechanisms of Parkinson’s
Disease,” pp. 1042–1056, 3 2019.

[22] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K. M. Su, and K. A. Robbins,
“The PREP pipeline: Standardized preprocessing for large-scale EEG
analysis,” Frontiers in Neuroinformatics, vol. 9, pp. 1–19, 6 2015.

[23] M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in
autoencoder-based representation learning,” in NIPS), 2018.
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