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Abstract—Automatic classification algorithms are an important
component of expert decision support systems that are used in a
number of medical applications including diagnostic radiology
and disease detection. This study proposes a deep learning-
based framework for medical image classification using wavelet
features. Convolutional neural networks are incorporated to
discover informative latent patterns and features from a set of
X-ray images pertaining to human body parts. The features
are then passed to a classifier for labelling the respective X-
ray images. The experimental results show that the low-pass
filter wavelet-based convolutional model outperforms the original
convolutional network and some models for classifying X-ray
images. The performance of the proposed method implies that it
can be implemented effectively in practice for disease detection
using radiological images.

Index Terms—Convolutional neural network, deep learning,
classification, wavelet, medical imaging

I. INTRODUCTION

Medical image analysis deals with the extraction of the
most important features in health-related images to improve
clinical diagnosis. Correctly inferring positive and negative
conclusions based on medical image classification models
leads to a reliable content-based image retrieval (CBIR) system
[14], [52]. A wealth of studies have been conducted to examine
different classification algorithms that result in an appropriate
and effective retrieval scheme [3], [4], [12], [37], [42], [45],
[47].

In this regard, a hierarchical scheme for the character-
isation of human perceptual similarity in a CBIR system
was presented in [10]. Likewise, Ko et al. [21] studied a
CBIR system using the random forest classifier by utilising
the features extracted from wavelet-based symmetric binary
patterns. Additionally, Qasem et al. [40] introduced a radial
basis function network that evolves its centres and weights
simultaneously using a multi-objective optimisation method
to increase classification performance for medical disease
diagnosis. The method was applied to retrieve clinical mam-
mograms. Krawczyk et al. [23] developed a method to analyse
breast thermograms based on image features. They proposed a
hybrid multiple classifier technique using neural networks and
support vector machines (SVM) and devised a fuzzy measure
to assess the diversity of the ensemble. Also, Tsochatzidis

et al. [49] incorporated CBIR into computer-aided diagnosis
system to help radiologists in the mammographic masses
characterisation process. In this work, an ensemble of SVMs
was used during the retrieval stage to exploit the margin and
pathology type likelihood in input samples.

Among a variety of public domain image databases, Image-
CLEFmed 2005 dataset [53] is a popular benchmark collection
for categorization and retrieval of automated medical images
[54]. As illustrated in Fig. 1, it is extremely imbalanced
considering the distribution of train and test set sizes. This
database consists of 10,000 X-ray images including 57 cate-
gories captured by plain radiographies and classified by the
Image Retrieval in Medical Application (IRMA) group of the
University Hospital, Aachen, Germany [27].

The ImageCLEFmed 2005 dataset has been widely used in
literature for examining the performance of different classi-
fication methods. Particularly, a two-level hierarchical merg-
ing model utilising different shape and texture features was
introduced in [39] for classifying images in this dataset.
Nine invariant types of features were extracted individually,
and the best one for each class was identified through a
weighted scheme. Alternatively, Rahman et al. [41] intro-
duced a method to retrieve medical images using image
filtering, similarity fusion, and a relevance feedback procedure.
They also considered supervised and unsupervised methods

Fig. 1: Imbalanced training and testing sets of ImageCLEFmed
2005 dataset
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to associate low-level and high-level features in the image
retrieval process. On the other hand, Mohammadi et al. [33]
proposed a shape-texture feature extraction method to classify
radiological images. Different features and classifiers were
examined based on 4,402 X-ray images in 21 out of 57 classes
of the ImageCLEFmed 2005 database.

Designing a deep convolutional neural network for a specific
problem is a nontrivial task because of a large number of
hyperparameters and algorithmic choices [2], [18], [43], [44].
In addition, the lack of interpretability of the CNNs brings
the opportunity to combine them with some well-studied tech-
niques from signal processing. The discrete wavelet transform
(DWT) can decompose an image into different frequency
levels which is useful in improving the feature extraction of
a CNN. Theoretical properties of wavelets in multiresolution
signal processing are well considered in CNNs [6], [13],
[17], [19], [20], [28], [46]. For example, Williams et al. [50]
fed the wavelet sub-bands of the original images as a new
input to CNNs. In addition, Oyallon et al. [36] proposed
a wavelet scattering network instead of the first layer of
ResNet. This hybrid network has the advantage of showing
comparable performance with ResNet with a considerably
smaller number of hyperparameters. In another work, Lu et al.
[29] studied an augmented CNN a dual-tree wavelet transform
to solve the organ tissue segmentation problem. Furthermore,
Williams et al. [51] used a second-level wavelet decomposition
to subsample features as a wavelet pooling algorithm. [25]
proposed a combination of CNN, DWT, and long short term
memory (LSTM) techniques in liver and brain tumor detection.
Also, [46] investigated a deep neural network by integrating
multiresolution analysis originating from utilising DWT. The
main motivation of this study is to investigate an effective
preprocessing stage to extract meaningful information for
CNNs.

In this work, we use wavelet decomposition to deep struc-
tural networks due to its ability to remove noise and outliers
from images. This combination proposes a robust classifier
for a CBIR system, classifying 35 categories of the Image-
CLEFmed 2005 benchmark. Therefore the main contribution
of this study is a CNN-based classification model which is fed
by approximate features extracted by a wavelet transform. The
rest of the article is organized as follows. Descriptions of the
technical and fundamental aspects of the proposed model and
other competing methods are presented in Section 2. Section
3 reports and discusses the experimental results. Performance
comparison between the proposed method with some existing
methods in the literature is presented in Section 4, followed
by conclusions and future work in Section 5.

II. THE PROPOSED MEDICAL IMAGE CLASSIFICATION
APPROACH

This study introduces a system to categorise 35 classes of
images corresponding to 35 different parts of human body in
the ImageCLEFmed 2005 dataset. The system includes three
fundamental stages. The first stage investigates the effect of

Fig. 2: The proposed method: Wavelet filter and CNN.

information extracted by a wavelet decomposition. A low-
pass wavelet filter is applied to obtain approximate coefficient
matrices. This stage reduces the number of dimensions of raw
images and thus increases the efficiency of the deep learning
methods. Dimension reduction helps computationally expen-
sive methods in dealing with high-dimensional image data.
As X-ray images encompass texture information, it is possible
using a high-pass filter may remove some texture information
[1]. Therefore, the coefficients matrices (horizontal, vertical,
and diagonal) achieved by a high-pass wavelet filter are not
considered. In the second stage, a LeNet structure [26] for
CNNs is utilised for further extraction of the deep structural
features of the information fed by the low-pass filter. Lastly,
the wavelet-based features extracted from the previous stages
serve as inputs into a SVM classifier, which is implemented
based on the sequential minimal optimization (SMO) kernel.

The key challenge of the proposed approach stems from
the large number of parameters that need to be learned in
a CNN. We aim to prune a deep CNN using the information
obtained from wavelet coefficients to reduce the load of finding
all the parameters. The proposed method creates a robust deep
wavelet-based learning model, which is able to extract and
learn effective features of medical images. As demonstrated
in Fig. 2, in the first stage, wavelet coefficient matrices are
extracted from the images. This procedure is performed by a
low-pass Haar wavelet filter, which is applied to the re-shaped
and normalised raw data. The orthogonality property of Haar
wavelet transforms (WT) enables an efficient representation
of features with limited number of wavelet coefficients [31],
[34], [35]. Accordingly, the proposed method extracts more
informative compact features to be convolved with deep neural
networks in the second stage. The CNN is used due to its
ability to tolerate translations over raw images. In addition, the
polynomial kernel of SMO-based SVM [38] is used to classify
the deep wavelet-based features extracted from the previous
stages. SVM is a classifiers aiming to split the data samples



into two or more categories. The SVM uses a kernel function
to transform the input data points into a higher dimensional
space and to classify them linearly. We examine two different
kernels here, i.e. the popular RBF kernel in SMO-type SVM
decomposition method developed by Fan et al. [11] and the
polynomial Kernel in SMO-based SVM as proposed in [38].
The SMO decomposes the optimisation problem into quadratic
programming sub-problems and solves the smallest possible
optimisation problem, involving two Lagrange multipliers, at
each step.

A. Haar Wavelet Transform

A 2-D multiresolutional decomposition of an image [30]
enables us to have a scale-invariant interpretation of the image
to extract its information. In particular, the details of an
image could be extracted by comparing information difference
between its approximations at defferent resolution levels. The
difference of information between two approximations at the
reolutions 2j+1 and 2j can be obtained by decomposing a
signal in a wavelet orthonormal basis which defines a wavelet
representation. For a 1-D signal, let φ(x) be the mother Haar
wavelet function, whose dilation and translation

√
sφ(sx− t)

for (s, t) ∈ R+ × R can be used to approximate functions
in L2(R), the vector space of measurable, squared-integrable
functions. It is shown that there exist wavelets φ(x) such that
their translation and dilation

√
2jφ(2jx− k), (j, k) ∈ Z2 (1)

provides an orthonormal basis of L2(R). In addition, this
model can be considered for higher dimensions, in particular,
two-dimensional image signals. A multiresolution approxima-
tions of an image at resolution 2j is constructed using a two-
dimensional wavelet φ(x, y) whose dilation and translation
gives an orthonormal basis of L2(R2). The wavelet decom-
position can be considered as a signal decomposition in a set
of independent and spatially oriented frequency channels and
is used as a feature reduction technique in highlighting low
frequency texture-level information [35].

B. The Components of a Convolutional Neural Network

A convolutional neural network has one or more blocks
of convolution, which consist of convolutional and pooling
layers followed by one or more fully connected multi-layer
perceptrons (MLP). The CNN networks have fewer connec-
tions and parameters compared to the standard feedforward
networks, resulting in an easier training process [24]. The
convolution layers convert the extracted information at a
higher resolution from an image to more complex features
at a coarser level. The feature map, i.e. the output of the
convolution layers, encompasses the convoluted information
of the previous layers. As a result, each feature map can be
created by applying an individual kernel into each patch of an
image.

A rectified linear unit (ReLU), as an activation function, is
a threshold operation, calculated by

ReLU(x) = max{0, x} (2)

where x is the input to a neuron. The output of this activation
function is zero if the input value is less than zero, otherwise
it returns the non-negative input value. Equation (3) shows
the feature map of the kth convolutional layer by using the
non-linear ReLU activation function

hkij = ReLU((W kx)ij + bk), (3)

where W k and bk are, respectively, the weights and biases of
the kth layer.

Max-pooling is a non-linear down-sampling technique, di-
viding the convolved information into m × n disjoint parts.
This layer is always followed by a non-linear activation
function, and is used to compute the final feature vector.
Equation (4) shows the output of layer k, i.e., the feature map
derived by the convolutional filter

hkij = ReLU(pool(xkij)), (4)

where hkij is known as the kth feature map of size (N −m+
1)× (N −m+ 1) of a given convolutional filter with a pixel
at coordinates (i, j), i, j ∈ 1, 2, ..., (N −m+ 1).

Drop-out is a regularisation technique introduced to avoid
over-fitting [48]. At each block of the convolutional layer, a
percentage of nodes are dropped to obtain a reduced network.
This technique can be applied during either the training or
testing phase, or both, in the convolutional layer.

C. Competing Methods

The performance of six learning models, including the
probabilistic neural network (PNN), a logistic regression, the
MLP, the deep belief network (DBN), the original CNN, and
the proposed method, are compared in classifying images in
ImageCLEFmed 2005 dataset. A description of the six models
is as follows.

Model 1: The PNN is a feed-forward neural network using
the radial basis function (RBF) as a non-linearity element in its
learning procedure. The Haar wavelet-based features, extracted
from the raw data, are fed to the PNN. This strategy has been
conducted in a variety of studies in medicine [31], [34].

Model 2: Logistic regression is considered in this study
as it is a widely used probabilistic technique for categorising
medical data [8].

Model 3: The MLP is also another commonly used tech-
nique in the medical domain [32].

Model 4: The DBN is an unsupervised greedy layer-wise
learning method where the output of each individual Restricted
Boltzmann Machine (RBM) serves as an input to the next
RBM layer [15], [16].

Model 5: The CNN is a hierarchical learning procedure
sharing the feature detectors over the entire region of the image
[13].

Model 6: This is our proposed method, which employs the
Haar wavelet transformation on the raw medical image data.
The similar architecture of the CNN described in model 5 is
utilised to extract deep structural features from the wavelet
filters. The CNN structure, as depicted in Fig. 2, includes four
convolutional layers, consisting of different filters and pooling



TABLE I: The deep CNN details
Name Filter size Filter dimension Stride Padding
Conv1 3 10 1 2
ReLU1 1 1 0

Pooling1 2 2 0
Conv2 3 32 1 0
ReLU2 1 1 0

Pooling2 2 2 0
Conv3 3 64 1 0
ReLU3 1 1 0

Pooling3 2 2 0
Fc4 1 625 1 0

Classifier5 1 35 0 0

sizes, which is followed by a fully-connected layer to classify
the X-ray images from ImageCLEFmed 2005 (see parameter
details in Table I).

In addition, we used the Kruskal-Wallis H-test [9] to
compare performance of six competing models in terms of
the accuracy rates. The H-test is a non-parametric test, in
which the null hypothesis evaluates whether the probability
of a random sample from a group is equally likely to be
above or below a random sample from another group. In other
words, the test can be used to determine whether two groups
obtained form an independent variable on a continuous or
ordinal dependent variable are significantly different from a
statistical perspective.

III. EXPERIMENTAL RESULTS

The experiments are performed using the IRMA’s Im-
ageCLEFmed 2005 dataset. The dataset consists of 10,000
radiographs. The imagery represents different ages, genders,
view positions, and pathologies. The quality of images varies
significantly. The images have been categorised into very
imbalanced 57 classes by reference coding using a mono-
hierarchical coding scheme [27]. We choose 35 out of 57
categories for experiments in this study.

The images are split following the 10-fold cross valida-
tion method to evaluate the performance of all models. The
training, testing, and validation sets consist of 80%, 10%, and
10% of the data respectively. In this experiment, all models
are ran 200 times and their accuracy are recorded. As the
images are in different shapes and sizes, a gray-scale model
with two dimensions is considered to reduce the computational
load. Therefore, in the pre-processing stage, all images are
represented in two dimensions, re-sized to 56 × 56, and re-
shaped into row images with 3136 features.

Fig. 3 compares the performance of all competing methods
with the proposed method. The figure shows the box plots,
representing distributions of accuracy results obtained by 200
runs of each individual classification model. As shown in
the figure, the original CNN and the proposed model are
more accurate and robust than the other models considering
the median and the length of interquartile range. In addition,
the H-test rejects the null hypothesis, since the p-values are
smaller than 0.05 (95% significance level) in favour of the
proposed model.

The PNN achieved about 79% accuracy after adjusting 400
latent nodes in one neural network along with 784 extracted
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Fig. 3: Accuracy comparison among different models.

features obtained from WT. A range of hidden neurons be-
tween 50 to 450 is examined to obtain the best performance
of the PNN that uses the discriminative coefficients obtained
by WT. The average accuracy yielded by logistic regression
is 76.9%.

Deep neural networks without and with wavelet features
achieve 89% and 94.2% accuracy rates, respectively. The
former feeds the raw data to the CNN, while the latter applies
the low pass filter to the convolution layer of the CNN. The
proposed method increases the performance by 5.2%. The
experiment reveals that the approximated coefficients matrix,
derived by a low pass filter, conveys more useful features than
the original information. Note that the 94.2% accuracy rate
is achieved by feeding the approximated coefficients matrix
to the CNN. However, the accuracy rate decreases by 13.3%
once the approximation matrix is merged with the detail
information. The main reason for the loss of accuracy is that
sharp features and edges are key information recognised by
deep CNNs.

To achieve a robust model, three different parameters, i.e.
(1) the depth in terms of the number of layers and filters, (2)
the number of convoluted features and drop-out probabilities,
and (3) different classifiers are analysed statistically.

A. The Depth Analysis

The 56×56 image patches are selected to be the input to the
low pass filter, which is followed by a series of 4 convolutional
layers, one fully connected layer, and a classifier at the top of
the proposed architecture. This structure is conducted based on
the layer patterns of AlexNet [24] and LeNet [26]. It is found
that LeNet performs better than AlexNet on the experimental
dataset. Note that the architecture of AlexNet is similar to the
architecture of LeNet, but it is deeper and larger in size. In
LeNet, a pooling layer is constructed immediately after each
convolutional layer. Different kernel sizes of 2× 2, 3× 3, and
4 × 4 are considered to choose the best kernel size. Table II
shows some of the experiments with different architectures.
The accuracy results reported are based on the median of the
prediction rates from ten-fold cross validation. As can be seen
in Table II, by increasing the kernel size to 4× 4, a reduction



TABLE II: The prediction rates of different models on test set.
Architecture Input Size Description Kernel size FC Acc.%

AlexNet(5layers) 56× 56 Conv-Conv-Pool 3× 3 2 FC layers 91.75
AlexNet(6layers) 112× 112 Conv-Conv-Pool 3× 3 2 FC layers 92.5
AlexNet(6layers) 56× 56 Conv-Conv-Pool 2× 2 2 FC layers 93
LeNet(6layers) 112× 112 Conv-Pool 3× 3 1 FC layer 92
LeNet(4layers) 56× 56 Conv-Pool 4× 4 1 FC layer 93.3
LeNet(5layers) 56× 56 Conv-Pool 3× 3 1 FC layer 94.2

TABLE III: CCD for 3D-variables

Trail no. Coded values of the variables
Feature no. Drop-Out Conv. Drop-Out Pool.

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1
9 -1.682 0 0

10 1.682 0 0
11 0 -1.682 0
12 0 1.682 0
13 0 0 -1.682
14 0 0 1.682
15 0 0 0

Fig. 4: Central composite design for the optimization of three
variables where points of factorial design are in black, star
points are in blue and central point is in red.

of about 1% accuracy is observed. Decreasing the kernel size
to less than 3× 3 results in a deeper structure and a reduction
of 1.2% accuracy is observed.

B. Drop-Out and Wavelet-Based Feature Selection Analysis

The model has three main hyper parameters, including
the number of features used for classification, the drop-out
convolutional parameter and the drop-out pooling parameter.
As one does not know which combination of these parameter
values would result in the best result, the central composite
design (CCD) is used for this problem. A CCD for examining
f factors (variables) comprises a full factorial design (2f

experiments), a star design (2f experiments), and a centre
point [22]. Fig. 4 shows the rotatable circumscribed CCD used
in this study where the distance α from centre point to star
points is determined by |α| = (2f )1/4 = 1.682 with f = 3
variables. The total of N = 15 experiments are therefore
needed to examine 3 variables. Table III shows the coordinates
of the points in Fig. 4 where the experiments are run. To

TABLE IV: Parameter settings of the classifiers
Classifiers Classifier Settings

RBF kernel SVM [11]
C-SVC type SVM with a RBF Kernel, trained by

SMO, Gamma=0.28, cost of C=1, and data is
subject to Normalisation

Polynomial Kernel SVM [38]
Trained by SMO, polynomial kernel with exponent exp=2.5,

the complexity of parameter of C=1, and data is
subject to Normalisation

Naive Bayes Using kernel estimator function
Random Forest The number of trees to be generated = 10
Logistic Regression Softmax function with cross entropy loss function

TABLE V: A comparison among different classifiers.
Precision Recall F-measure

Naive Bayes 0.914 0.9100 0.91
RBF kernel in SMO-based SVM 0.933 0.924 0.924

RBF Network 0.907 0.901 0.902
Random Forest 0.914 0.91 0.908

Logistic Regression 0.925 0.927 0.921
Polynomial kernel in SMO-based SVM 0.935 0.932 0.931

implement CCD in our study, we need to assign actual values
of the variables to the coded values shown in Table III. We
allow the number of features used for classification to vary
in the range [525, 725] whilst the drop-out probabilities for
the convolutional and pooling layers both to change in the
range [0.0, 0.6]. The experiment achieves the best result when
the number of features is at 625 and 30% and 40% drop-
out rates are applied for the convolutional and pooling layers,
respectively.

C. Classification Performance

Several classification models are considered as the last stage
of our system’s architecture. The classification performances
of naive Bayes, RBF, random forest, logistic regression, and
the two SVM kernels are analysed and compared. Table IV
shows the parameter setting of the classifiers. These results are
obtained by passing the raw data through the low pass filter
of a single-level two-dimensional transformation. The Haar
wavelets is utilized to select the best information of the pre-
processed raw data. Then, LeNet is utilised by using those
classifiers with 35 nodes for classification. The experimental
results show that it is useful to utilise the polynomial kernel
of the SMO-based SVM. This kernel outperforms the RBF
kernel-based SVM in terms of both accuracy and computa-
tional cost.

All the experiments are implemented within the Theano
library [5], [7]. It is a framework based on Python developed
by the LISA group at University of Montreal. To conduct
the experiments, all datasets are employed to obtain the
performance of the classification model implemented using
Theano built on Linux OS on an NVIDIA Titan Black GPU.

D. Performance Comparisons of Competing Methods

Table V presents the results of the classification models
on the ImageCLEFmed 2005 dataset. The features extracted
using the CNN model with Haar wavelet are fed into all
the models. Polynomial kernel in SMO-based SVM achieves
the best performance among all classifiers on the same input
features. In addition, Table VI shows the performance of each
category in terms of prediction rate, recall, and precision for



Fig. 5: Boxplot analysis per class of the proposed method (ten-fold cross-validation).

the best classifier. More specifically, the box plot per class,
in terms of variation of prediction rates on a ten-fold basis is
also depicted in Fig. 5. As can be seen in the figure, 30 out
of 35 classes have achieved an accuracy score of more than
80%.

From the computational time viewpoint, applying a low-pass
filter to the deep CNN significantly reduces the computational
cost, as compared with the original CNN. The computational
cost for extracting the test features takes 0.29 seconds, which
is less than 0.63 seconds of the original CNN. The shorter
execution time originates from feeding the most relevant
features and discriminative coefficients, captured by the Haar
wavelets. This contribution also reduces the data dimension
significantly, from 56× 56 = 3, 136 to 28× 28 = 784.

IV. COMPARISONS WITH LITERATURE RESULTS AND
DISCUSSIONS

A major challenge faced in this experimental study is to
handle the imbalanced data. As detailed in Table VI, the
number of samples for each class varies, for instance, there are
only 61 samples for class 16, while there are 3587 samples
for class 8, which affects the overall accuracy. In addition,
different versions of the dataset with different image numbers
have been used in the literature, which makes a direct compari-
son difficult. However, the proposed model outperforms some
reported results on the ImageCLEFmed 2005 dataset. Table
VII shows examples of some studies using almost the same
dataset, as presented in [39] and [21]. A merged-based scheme
used in [39] to cope with the low accuracy rate, i.e., 64% for
classifying 40 classes. In that experiment, a total of 27 out of
40 classes exhibited an accuracy lower than 60%. As such,
some classes were merged based on some similarities, which
produced 90.83% accuracy for 25 merged classes, but with the
cost of losing critically useful and important information. In
their work, the low prediction accuracy for the three categories
of “Lower leg”, “Forearm”, and “Upper Leg” are owing to
insufficient number of images for a deep structural network to
learn a model. Moreover, the other reason is that, as shown in
Fig. 6, these categories semantically and visually have more
similarity with some other categories. Therefore, the authors in
[39] merged all images of “Lower leg” category with images in
the “Knee” category, in order to achieve a better performance.
However, it might not be useful in the real medical domain.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 6: Classes merged by [39]

Fig. 6 shows a sample of the classes merged in [39]. Fig.
6a, 6b, and 6c are from three different classes 4, 14, and
34 respectively are considered in the same group in [39].
Similarly, Fig. 6d, 6e, and 6f are from three different classes
6, 17, and 28, and are collected in the same class. In addition,
same story happened to Figs. (6g, 6h, 6i), (6j, 6k), and
(6l, 6m). However, our proposed model achieve an overall
median accuracy rates above 82% for those categories without
merging. Our results confirms that there is no need to merge
several categories to improve the accuracy of classification
models.

V. CONCLUSIONS AND FUTURE WORK

This study addresses the issue of the curse of dimensionality
by introducing a hybrid method combining Haar wavelet
features along with the deep CNN structure. While the CNN
model helps handle complex and noisy images, it imposes high
computational burdens for training and testing. Therefore, the
Haar wavelet features provide a set of discriminative features
for accelerating the learning process of the CNN model. Two
main motivations behind this study are (1) applying the low
pass filter of a single-level two-dimensional transformation
utilizing the Haar wavelet to extract the discriminative and
compact features leading to a significant reduction in the
computational burden of the CNN model; (2) utilising deep
neural network model to capture the highly convoluted features
from 35 categories of the benchmark, which is challenging
with respect to the nature of the X-ray images.

By considering the existence of a semantic gap and strongly
imbalanced categories, the investigation on a large number of
categories is difficult. However, the techniques of augmenta-
tion could be a solution, and a proper investigation is required.
The difficulty stems from a high level of similarity among
many classes. Hence, as a future work, with respect to the



TABLE VI: Performance of the proposed model on the categories.

Class Name Anatomic Direction Train # Test # Median Precision Recall
1 Cranium Coronal 328 83 98.80% 98.80% 98.80%
2 Cervical Coronal 224 56 96.43% 97.28% 96.43%
3 Lumbar spine Coronal 230 58 96.55% 94.96% 96.55%
4 Hand Coronal 450 113 86.73% 86.63% 86.73%
5 Radio carpal joint Coronal 108 27 90.74% 91.83% 92.59%
6 Elbow Coronal 106 27 74.07% 80.71% 74.07%
7 Shoulder Coronal 184 47 89.36% 82.65% 89.36%
8 Chest Coronal 2869 718 99.86% 99.51% 99.86%
9 Chest bones Coronal 145 37 83.78% 84.62% 83.78%
10 Abdomen Gastrointestinal system 170 43 86.05% 95.06% 87.21%
11 Thoracic spine Coronal 110 28 92.86% 90.00% 92.86%
12 Shoulder Sagittal 82 21 76.19% 85.36% 78.57%
13 Pelvis Coronal 212 53 96.23% 97.16% 96.23%
14 Foot Coronal 289 73 91.10% 90.86% 91.10%
15 Ankle joint Coronal 193 49 95.92% 90.18% 95.92%
16 Lower leg Coronal 48 13 53.85% 66.67% 50.00%
17 Knee Coronal 205 52 92.31% 88.57% 92.31%
18 Upper leg Coronal 72 19 57.89% 72.38% 57.89%
19 Hip Coronal 112 29 82.76% 80.95% 81.03%
20 Left breast Other orientation 68 18 91.67% 91.61% 88.89%
21 Cervical spine Sagittal 215 54 98.15% 93.04% 98.15%
22 Thoracic spine Sagittal 123 31 87.10% 90.16% 87.10%
23 Radio carpal joint Sagittal 110 28 82.14% 77.03% 82.14%
24 Forearm Sagittal 85 22 56.82% 63.30% 56.82%
25 Elbow Sagittal 106 27 92.59% 92.86% 90.74%
26 Chest Sagittal 833 209 100.00% 99.05% 100.00%
27 Ankle joint Sagittal 166 42 97.62% 95.24% 97.62%
28 Knee Sagittal 180 45 85.56% 87.93% 85.56%
29 Right breast Axial 64 16 93.75% 88.89% 93.75%
30 Left breast Axial 68 17 94.12% 89.47% 94.12%
31 Knee Axial 98 25 100.00% 92.59% 100.00%
32 Facial cranium Other orientation 240 60 88.33% 93.15% 88.33%
33 Right breast Other orientation 67 17 88.24% 88.56% 88.24%
34 Hand Other orientation 103 26 84.62% 91.67% 84.62%
35 Neuro cranium Sagittal 292 73 100.00% 97.98% 100.00%

TABLE VII: Examples of studies using the ImageCLEFmed
2005 database

Approach #Images #Classes ImageCLEFmed Acc.%
[39] 9100 40 2005 64.00%
[39] 9100 25 2005 90.83%
[21] 2400 30 2007 93.10% precision, 89.43% recall
[33] 4402 21 2005 94.2%
[41] 5000 20 2004 81.96%

nature of the data, proper augmentation techniques would be
utilized to allow incorporate all categories separately.
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