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Abstract—One way to analyse the behaviour of machine
learning models is through local explanations that highlight input
features that maximally influence model predictions. Sensitivity
analysis, which involves analysing the effect of input perturba-
tions on model predictions, is one of the methods to generate local
explanations. Meaningful input perturbations are essential for
generating reliable explanations, but there exists limited work on
what such perturbations are and how to perform them. This work
investigates these questions in the context of machine listening
models that analyse audio. Specifically, we use a state-of-the-art
deep singing voice detection (SVD) model to analyse whether
explanations from SoundLIME (a local explanation method)
are sensitive to how the method perturbs model inputs. The
results demonstrate that SoundLIME explanations are sensitive
to the content in the occluded input regions. We further propose
and demonstrate a novel method for quantitatively identifying
suitable content type(s) for reliably occluding inputs of machine
listening models. The results for the SVD model suggest that the
average magnitude of input mel-spectrogram bins is the most
suitable content type for temporal explanations.

Index Terms—Interpretable Machine Learning, Explainable
AI, Machine Listening.

I. INTRODUCTION

Recent years have witnessed a remarkable surge in the use
of machine learning (ML) models across different application
domains (e.g., computer vision, audio). However, due to
the “black-box” nature of the majority of high performing
ML models, there has been a growing concern about using
them in safety-critical applications (e.g., healthcare, finance).
Motivated by this, researchers have developed several post-
hoc methods to analyse the behaviour of pre-trained ML
models. Such methods help to validate whether ML models
satisfy hard-to-formalise auxiliary properties (e.g., trustworthi-
ness) [1]. The methods also help to identify dataset faults [2]
and help in improving deep neural network (DNN) architec-
tures [3].

We can group the existing post-hoc model analysis methods
into two high-level categories [4]. The first category includes
methods that aim to analyse the global behaviour of ML
models. There exist multiple ways to do this. For example,
some methods approximate the global behaviour of complex
ML models by interpretable (proxy) models (e.g., decision
trees) [5]. Other methods focus on analysing specific ML
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models. For example, researchers have proposed methods to
understand DNNs by analysing their latent representations [6],
[7] or by synthesising examples that maximally (or minimally)
activate their components (e.g., neurons, layers) [8], [9]. The
analysis of the global behaviour of ML models provides useful
insights, however, there are challenges. For example, in some
cases, the insights from the interpretable proxies may be
unfaithful due to the oversimplification of the complex ML
model. Moreover, the proxy models may themselves become
fairly complex (e.g., very deep decision trees) and hinder
interpretability [10].

The second category includes methods that aim to analyse
the local behaviour of ML models by explaining their predic-
tions. The explanations generated by such methods highlight
influential input features for a prediction. For example, for
an image classification DNN, a local explanation method
can generate heat maps that highlight pixels positively (or
negatively) influencing model predictions [11], [12]. Thus,
local explanations help gain insights into the behaviour of ML
models even with fairly complex global behaviour.

Recently, researchers have demonstrated that for the DNN-
based image classification models, the explanations from some
local explanations methods do not accurately reflect the under-
lying model behaviour [13], [14]. This suggests that validating
the behaviour of local explanation methods is essential to
prevent the generation of misleading insights from the local
analysis of ML models. Inspired by this research, this work fo-
cuses on analysing the behaviour of local explanation methods
in the context of machine listening models that automatically
process sounds (e.g., recorded music, natural sounds) using
computational models to extract meaningful information.

We can group the existing methods to locally analyse
machine listening models into two main categories. The first
category includes methods that are specific to analysing deep
machine listening models. For example, in [15], the authors
visualised and auralised saliency maps generated using the
deconvolution method [3] to explain predictions of a convolu-
tional neural network (CNN)-based music genre classification
model. Similarly, in [16], the authors proposed to invert fea-
tures from the deepest hidden layer of a DNN to identify input
regions (groups of time-frequency bins) maximally influencing
model predictions.

This work focuses on the second category of methods that
are model-agnostic. Thus, the insights from their analysis will
very likely generalise to all types of machine listening models.
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Specifically, we analyse the behaviour of SoundLIME (SLIME)
- a model-agnostic method that explains model predictions
by highlighting the temporal, spectral or time-frequency com-
ponents (segments) in inputs that maximally influence model
predictions [17]. SLIME extends the local interpretable model-
agnostic explanations (LIME) algorithm [18] to machine lis-
tening. Earlier works used SLIME to examine the predictions
of machine listening models [17] and to identify dataset
faults [2].

SLIME explains a prediction by using a set of synthetic
samples that it generates by perturbing an input. These pertur-
bations randomly occlude input components. Previous works
performed occlusion by replacing the content in occluded com-
ponents by the ‘zero’ value [2], [17]. However, it is not clear
if this is appropriate as it implicitly assumes that a machine
listening model is insensitive to the zero value, which may
not be correct [19]. Moreover, in [17], the authors discussed
a preliminary experiment suggesting that explanations from
SLIME are sensitive to the number of synthetic samples.
However, due to the use of a small number of inputs from a
single dataset, it is not evident if such a behaviour will extend
to a large number of inputs and to other datasets.

In this paper, we address the above challenges and make
the following contributions.

• We perform large-scale experiments to analyse the sen-
sitivity of SLIME explanations to changes in two input
parameters: the content of the occluded input components
and the number of synthetic samples. The results demon-
strate that SLIME explanations are sensitive to both
parameters, suggesting that a careful selection of suitable
values of these parameters is essential to generate reliable
explanations. This further suggests that it is highly likely
that such a behaviour will extend to other explanation
methods that use input occlusion in their explanation
pipeline.

• We introduce and demonstrate a novel method to generate
reliable explanations from SLIME. The method quantita-
tively selects suitable content type(s) by using ground-
truth.

• We introduce five content types for perturbing inputs (by
occlusion) of machine listening models.

The code for all the experiments is publicly available1.

II. SOUNDLIME

SLIME is a local explanation method that explains the
predictions of any machine listening model [17]. SLIME
generates three types of explanations that identify influential
temporal, spectral, and time-frequency content in input audio.
SLIME extends the LIME algorithm [18] to machine listening
by defining three interpretable sequences (temporal X t , spec-
tral X f , and time-frequency X tf ) for an input audio x ∈ Rn.
SLIME generates these sequences by segmenting x (uniformly
or non-uniformly) into a sequence of interpretable components

1https://github.com/saum25/local_exp_robustness
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Fig. 1. The plots depict how SLIME segments a mel-spectrogram into ten
interpretable components. (A) Temporal segmentation and (B) Spectral seg-
mentation. The colour bar depicts the indices of the interpretable components.

(ICs). For example, Fig. 1 depicts how SLIME segments a mel-
spectrogram2, temporally and spectrally into ten ICs (indexed
0 − 9). The temporal segmentation in Fig. 1(A) generates
a sequence of ten temporal segments (each called a super-
sample and denoted as Ti). Similarly, the spectral segmentation
in Fig. 1(B) generates a sequence of ten spectral segments
(each denoted as Ai). Thus, X t = (T0, T1, ....., T8, T9)
and X f = (A0, A1, ....., A8, A9). SLIME maps each of
the three interpretable sequences to the interpretable space
T = {0, 1}|X | and generates corresponding interpretable
representations x′ ∈ T .

SLIME explains a prediction from a classifier C : Rn →
[0, 1] by approximating C by a linear model3 γ(z′) = wT · z′
in the interpretable space, where z′ ∈ T represents a syn-
thetic sample. SLIME generates Ns synthetic samples by
randomly setting the dimensions of x′ to zero. For example,
a synthetic sample for the temporal sequence in Fig. 1(A) is
z′ = (1, 1, 1, 0, 0, 1, 1, 0, 1, 1), where 0 indicates the absence
of super-samples T3, T4, and T7. There exist 2Nc unique
synthetic samples for an interpretable sequence with Nc com-
ponents. The magnitude and polarity of the weights w of the
linear model constitute explanations for a prediction. Formally,
SLIME learns γ by the optimisation

arg min
γ

(L(C, γ, ρx) + ∆(γ)) (1)

where L(C, γ, ρx) is the locally-weighted loss function and
and ∆(γ) quantifies the model complexity (e.g., sparsity).
SLIME defines the loss function as the weighted squared
difference between classifier prediction C(z) and γ(z′), where
z ∈ Rn represents the perturbed version of an input and
is generated by mapping z′ to the input space. ρx(z) is
the distance between a synthetic sample z and the input x.
Formally, SLIME defines the loss function as

L(C, γ, ρx) =
∑

(z′
i,zi)∈Z

ρx(zi)[C(zi)− γ(z′i)]
2 (2)

III. MACHINE LISTENING USE CASE AND MODEL

We use singing voice detection (SVD) as the machine
listening use case for the experiments. SVD refers to the

2A mel-spectrogram is a perceptually motivated time-frequency represen-
tation of an audio signal [20].

3γ can be any interpretable model, but in this work γ is a linear model.
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Fig. 2. The figure depicts the application of a singing voice detection (SVD)
algorithm to a 10-second musical audio clip. The SVD algorithm segments
the input (left) into temporal sections, indicating the presence or absence
of singing voice (right). NV and V refer to the labels corresponding to the
beginnings of non-vocal and vocal segments, respectively.

automatic detection of the presence (or the absence) of the
singing voice (or vocals) in short-duration (e.g., 200 ms) audio
frames (or excerpts) [21]. The application of SVD to musical
audio recordings segments them into vocal and non-vocal
(instrumental) sections. Fig. 2 depicts the output from an SVD
algorithm for a 10-second musical audio.

We select the SVD method proposed in [22] as the model is
open-sourced4 and is the state-of-the-art on publicly available
benchmark datasets. In this work, we refer to this model as
‘SVDNet-R0’. The model is a nine layer deep CNN with
an architecture consisting of the convolutional, max-pooling,
and fully-connected layers. Each convolutional layer performs
convolutions using 3× 3 filters with 1× 1 stride and no zero
padding. Each max-pooling layer performs 3×3 max-pooling
with 3×3 stride and no zero padding. The inputs to the model
are normalised log-scaled mel-spectrogram excerpts of around
1.6-second duration (115 frames). A single sigmoidal output
neuron provides the probability of the presence of vocals in
the central frame of a musical audio excerpt using 57 frames
on either side as context.

The authors trained SVDNet-R0 using mel-spectrogram
excerpts and ground-truth labels from the Jamendo training
dataset [23]. The Jamendo dataset consists of 93 full-length
songs with Creative Commons license collected from the
Jamendo free music sharing website5. The dataset comes pre-
partitioned into subsets of 61 (training), 16 (validation), and 16
(testing) songs, respectively. Each song has sub-second anno-
tations indicating the start and end of the vocal and non-vocal
segments. The training methodology minimises the binary
cross entropy loss between CNN predictions and ground-truth
labels. Additionally, the training uses three data augmentation
methods (pitch shifting, time stretching and random filtering)
to tackle the problem of the smaller training dataset.

The authors trained SVDNet-R0 using the Theano and
Lasagne frameworks, but for this work, we train SVDNet-
R0 using the Tensorflow framework. We call the new model
‘SVDNet-R1’. Table I reports the performance of both the
SVD models on the Jamendo test dataset. The performance
metrics of the two models differ in the order of 10−1,
suggesting that the models have similar prediction capabilities.

4Available at https://github.com/f0k/ismir2015
5https://www.jamendo.com

TABLE I
PERFORMANCE OF THE SVD MODELS ON THE JAMENDO TEST DATASET.

SVDNet-R0 SVDNet-R1

Threshold 0.66 0.50
Error 8.1% 8.4%

Precision 0.901 0.896
Recall 0.926 0.925

Specificity 0.912 0.908
F-score 0.913 0.910

Framework Theano & Lasagne Tensorflow

IV. ANALYSING THE ROBUSTNESS OF SLIME

We now analyse whether SLIME explanations for SVDNet-
R1 predictions are sensitive to the synthetic sample generation
process. SLIME synthesises samples in the interpretable space
by randomly occluding ICs in an input. SLIME occludes ICs
by replacing them with synthetic components. We analyse
whether SLIME explanations change with changes to the
content of the synthetic components.

Earlier work has demonstrated that SLIME explanations are
sensitive to the number of synthetic samples Ns [17]. Thus,
we first select an appropriate Ns and then analyse SLIME’s
behaviour for five types of input perturbations, each modifying
the content of the synthetic components.

A. Selecting an appropriate Ns
An experiment in [17] demonstrated SLIME’s sensitivity to

Ns for SVDNet-R0 using a dataset of 80 randomly selected
audio excerpts from the Jamendo test dataset. The results
of the experiment suggested that SLIME generated stable
explanations for Ns ≥ 5000, where the stability of an expla-
nation is defined to be inversely proportional to the number of
unique interpretable components Un in a set of k explanations,
obtained by applying SLIME k times to the same input. Un
computation ignores the order of ICs in an explanation. The
experiment used k = 5.

For the experiments in this paper, we use a different model
(SVDNet-R1) and comparatively much larger datasets. Thus,
before analysing SLIME’s behaviour for different types of
input perturbations, it is essential to recompute an appropriate
Ns using the new model and datasets. This will ensure that
any changes in SLIME explanations while experimenting with
different input perturbation methods are not the result of
using an inappropriate Ns. Moreover, the identification of an
appropriate Ns will also help validate if the observation about
SLIME’s sensitivity to Ns generalises to other datasets.

To select an appropriate Ns, we apply SLIME to generate
temporal explanations for SVDNet-R1 predictions for 400
mel-spectrogram excerpts (25 randomly selected excerpts from
each song in the Jamendo test dataset). SLIME generates
ICs by segmenting each excerpt along the temporal axis
into 10 temporal segments (see Fig. 1) and occludes ICs
by synthetic components with content set to the zero value.
Each explanation highlights the three most influential ICs (we
call it the ‘top-3’ case) positively or negatively influencing
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Fig. 3. The violin plots depict the influence of the number of synthetic
samples on the stability of SLIME explanations for mel-spectrogram excerpts
from the (a) Jamendo and (b) RWC datasets. Un represents the number of
unique interpretable components.

a prediction, where the influence of an IC is determined by
the magnitude of the linear model weight associated with it.
We compute Un for each excerpt using an aggregated set of
temporal explanations constructed by applying SLIME five
times to the same excerpt. We perform the experiment for
nine different values of Ns ranging from 1000 to 70000.

Fig. 3 (a) presents the results of the experiment. The results
demonstrate that similar to the preliminary experiment in [17],
SLIME explanations stabilise (have lower median Un) for
higher Ns values. Moreover, for the new model and dataset,
appropriate values of Ns seem to be ≥ 50000, as for those
values, the Un distribution has the median value of four and
a high likelihood of Un = 3.

We repeat the above experiment for excerpts from the RWC
popular music dataset [24] to analyse if the above observations
extend to other datasets. The RWC dataset contains 100 full-
length popular music songs out of which 80 songs are in
Japanese and 20 songs are in English. The dataset is not
available pre-partitioned into separate subsets. Thus, we create
a test set (we call this ‘RWC-test’) for experiments in this
paper by randomly sampling 20 songs from the dataset. For the
experiment in this section, we randomly sample 500 excerpts
from RWC-test (25 excerpts from each song in RWC-test).
Fig. 3(b) presents the results of the experiment. Similar to
Jamendo, Ns ≥ 50000 seems to generate stable explanations
for the RWC dataset.

B. Analysing explanation sensitivity to synthetic content

We now analyse if SLIME explanations are sensitive to the
content of synthetic components. For example, we examine
whether SLIME explanations change if instead of the zero
value, SLIME uses Gaussian noise to occlude ICs? Such an
analysis will help understand whether the selection of the
content of synthetic components is critical for SLIME to
generate reliable explanations.

SLIME aims to utilise the effect of the removal of randomly
selected ICs on model predictions. However, as machine
listening models predict using fixed-size inputs, SLIME ap-
proximates the “removal effect” by filling the selected ICs
with synthetic content, hypothesising that the occluded ICs
have minimal influence on model predictions [25].

In this section, we examine whether the above hypothe-
sis depends on the synthetic content type. To do that, we
propose five different types of synthetic content and group
them into two categories: (1) content that generates very low
energy (near silent) components and (2) content that generates
components with non-discriminatory audio features. The first
category includes three types of input content:

1) the zero value
2) the minimum bin magnitude across a dataset (mindata )
3) the minimum bin magnitude in an input (mininp).

It is conceivable that audio feature extraction from the above
very low energy components will result in insignificant fea-
tures with minimal influence on model predictions. The second
category includes two types of input content:

1) the average bin value in an input (meaninp)
2) zero-mean unit-variance Gaussian noise (Ng).

These contents will generate ICs lacking dominant structures
and feature extraction from such ICs will generate non-
discriminatory audio features with limited influence on model
predictions. Fig. 4 depicts a mel-spectrogram excerpt from the
Jamendo dataset and its five perturbed versions generated by
occluding the temporal interpretable components with indices
2 and 7 with the proposed content types. It is important to note
that in this work, we use the standardised version of Ng , we
call it Nnorm

g . This involves normalising each frequency bin
in Ng using the mean and standard deviation computed across
each frequency band over the Jamendo training dataset.

We apply SLIME to explain SVDNet-R1 predictions by
performing input occlusion using the five content types from
above. We analyse if the modification of the content of
synthetic components changes SLIME predictions. We gen-
erate top-3 explanations for eight randomly selected mel-
spectrogram excerpts from four audio files in the Jamendo
and RWC test datasets. We sample a vocal and a non-vocal
instance from each audio file. SLIME generates temporal
explanations for two excerpts from each dataset and generates
spectral explanations for the remaining four excerpts. SLIME
uses Ns = 70000 as it generates stable explanations for the
new model (see Section IV-A). SLIME generates the temporal
and spectral explanations by segmenting an input into ten ICs
along the time and frequency axes, respectively (see Fig. 1).
All other parameters for executing SLIME are same as the
ones in Section IV-A.

Table II reports the results of the experiment. Each explana-
tion presents the top-3 ICs arranged in the decreasing order of
their influence on the prediction. The results suggest that for
all the eight instances, there is little overlap in explanations
generated using different content types. For example, for each
of the first six instances, there are no common ICs among the
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Fig. 4. Visualisations depicting an input mel-spectrogram from the Jamendo test dataset and its five perturbed versions, each generated by SLIME by occluding
input temporal components with indices 2 and 7 by synthetic components filled with five different content types.

TABLE II
SLIME EXPLANATIONS FOR RANDOMLY SELECTED MEL-SPECTROGRAM EXCERPTS FROM THE JAMENDO AND RWC DATASETS FOR FIVE CONTENT

TYPES. INDEX: INSTANCE INDEX; Vprob : MODEL CONFIDENCE ABOUT THE PRESENCE OF SINGING VOICE; Etype : EXPLANATION TYPE; EXPLANATIONS:
TOP-3 INTERPRETABLE COMPONENTS MAXIMALLY INFLUENCING A PREDICTION; AND zero , mindata , mininp , meaninp , AND N norm

g REFER TO THE
CONTENT TYPES THAT OCCLUDE AN INPUT BY USING THE ZERO VALUE, MINIMUM BIN MAGNITUDE ACROSS A DATASET, MINIMUM BIN MAGNITUDE IN

AN INPUT, AVERAGE BIN MAGNITUDE IN AN INPUT AND, STANDARDISED ZERO-MEAN UNIT-VARIANCE GAUSSIAN NOISE, RESPECTIVELY.

Dataset Audio file Index Vprob Etype
Explanations

zero mindata mininp meaninp N norm
g

Jamendo 03 - School.mp3 435 0.023 temporal 4, 3, 6 4, 1, 5 1, 3, 5 6, 9, 1 1, 0, 9
Jamendo 03 - School.mp3 3162 0.915 temporal 1, 4, 3 4, 7, 2 5, 4, 2 5, 7, 8 1, 8, 2

Jamendo 03 - Une charonge.ogg 19291 0.017 spectral 4, 6, 8 4, 5, 7 5, 1, 4 6, 8, 3 8, 5, 1
Jamendo 03 - Une charonge.ogg 1888 0.861 spectral 2, 4, 8 6, 2, 3 7, 2, 6 2, 6, 9 7, 6, 1

RWC RWC-MDB-P-2001-M01/016 Audio Track.aiff 4732 0.233 temporal 1, 5, 0 2, 5, 4 4, 2, 7 1, 0, 8 6, 5, 4
RWC RWC-MDB-P-2001-M01/016 Audio Track.aiff 701 0.871 temporal 5, 1, 8 2, 5, 3 5, 2, 4 1, 2, 0 6, 7, 9

RWC RWC-MDB-P-2001-M04/4 Audio Track.aiff 1578 0.019 spectral 7, 8, 9 1, 2, 4 5, 1, 0 7, 8, 9 1, 4, 2
RWC RWC-MDB-P-2001-M04/4 Audio Track.aiff 12794 0.966 spectral 1, 7, 8 3, 2, 1 1, 2, 6 1, 7, 8 5, 7, 1

explanations generated for the five content types. The expla-
nations for those instances do include some ICs that are more
frequent, but their influence in a prediction (their occurrence
order) keeps changing. For example, for the instance with
index 1888, the IC with index 6 is present in four explanations,
but there is a lack of consistency about how much the
component influences the prediction. The spectral explanations
for RWC are comparatively more coherent. For example, for
the instance with index 1578, all the three ICs and their
ordering match between the explanations generated using the
zero and meaninp content types. However, for this instance,
such behaviour does not generalise to explanations for the
other content types. Similarly, the instance with index 12794
has the IC with index 1 common among all the explanations,
but with varying influence in the prediction. These results
suggest that for the selected excerpts SLIME explanations are
sensitive to the content of synthetic components.

It is important to note that the sensitivity of SLIME expla-
nations to the content of synthetic components in the above
experiment may still be the result of an inappropriate Ns
as the experiment in Section IV-A identified appropriate Ns
values only for temporal explanations generated using the zero
value as the content type. We verify this by analysing whether
Ns = 70000 is also an appropriate value for the other content
types and spectral explanations across both the datasets. Thus,
for an excerpt sampled randomly from one of the test datasets

and a content type, we apply SLIME to first generate five
temporal and five spectral explanations and then calculate Un
for each explanation type by aggregating the corresponding
explanations. To limit the computational time, we execute the
above steps for two randomly selected excerpts from each song
in the Jamendo and RWC test datasets. Thus, we analyse the
explanation stability for 32 and 40 randomly selected instances
from the Jamendo and RWC test datasets, respectively.

Fig. 5 depicts the results of the experiment. Fig. 5(a) and
(b) depict the Un distribution for the temporal and spectral
explanations, respectively from Jamendo. Similarly, Fig. 5(c)
and (d) depict the Un distribution for the temporal and spectral
explanations, respectively from RWC. The results demonstrate
that except mindata , the explanations for the other content
types across both the datasets have Un distributions similar
to those for the zero content type. For example, Fig. 5(c)
suggests that for temporal explanations from RWC, the most
likely values of Un are 4 or 3, suggesting that except for
mindata , Ns = 70000 is also an appropriate value for the other
content types. Interestingly, the explanations for mindata seem
unstable (have high Un) for all except the spectral explanations
for RWC excerpts (Fig. 5(d)). These results suggest that
Ns = 70000 is not an appropriate value for mindata and this
may have contributed to the sensitivity of explanations for this
content type in Table II. The experiment also demonstrates that
for all the other content types, Ns = 70000 is an appropriate
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Fig. 5. The violin plots depict the influence of content type on the stability
of SLIME explanations for four cases. (a) and (c) depict results for temporal
explanations from Jamendo and RWC, respectively. (b) and (d) depict results
for spectral explanations from Jamendo and RWC, respectively. Un represents
the number of unique interpretable components.
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Fig. 6. The violin plots depict the influence of content type on SLIME
explanations for four cases. (a) and (c) depict results for temporal explanations
for Jamendo and RWC, respectively and (b) and (d) depict results for spectral
explanations for Jamendo and RWC, respectively. Nce refers to the number
of common interpretable components between the explanation with content
type zero and the explanation with content type given on the horizontal axis.

value and thus does not contribute to the explanation sensitiv-
ity for those content types.

We further analyse the effect of different content types on
SLIME explanations on a large scale to verify whether the
conclusions about the sensitivity of SLIME explanations to
the content type generalise. To do that, we first randomly
sample 50 excerpts from each song in each test dataset,
generating subsets with 800 and 1000 excerpts corresponding
to Jamendo and RWC, respectively. We then generate temporal
and spectral explanations for the SVDNet-R1 predictions for

excerpts in each subset. Each explanation highlights the top-3
ICs (positive or negative) maximally influencing a prediction.
We generate four explanations for each excerpt, where each
explanation corresponds to one of the four content types
(zero, mininp , meaninp , and N norm

g ) that generated stable
explanations for Ns = 70000.

Fig. 6 depicts the results of the experiment. The subplots (a)
and (b) correspond to the temporal and spectral explanations,
respectively, for the Jamendo excerpts and subplots (c) and (d)
correspond to the temporal and spectral explanations, respec-
tively, for the RWC excerpts. Each plot depicts the distribution
of the number of common interpretable components Nce

between explanations generated using two different content
types, one of which is the reference content type. We use the
zero content type as the reference. Thus, for each explanation,
we compute how many ICs remain the same when SLIME
replaces the reference content type with the other content types
(mininp , meaninp , and N norm

g ).
The analysis of the results provides interesting insights

into the behaviour of SLIME. For example, the explanations
generated using meaninp are closer to those generated using
the reference content type with low likelihood of no overlap
in explanations, although for temporal explanations for the
Jamendo excerpts, there exists a fair likelihood of Nce = 1.
On the other hand, the explanations generated using the
other content types have comparatively lower overlap with
the explanations using the reference content type. Moreover,
for the content type N norm

g , the likelihood of no overlap in
explanations is fairly high. Overall, the results demonstrate
that for both the explanation types and datasets, SLIME ex-
planations are sensitive to the content of synthetic components.
This suggests that selecting suitable content type(s) is critical
for generating reliable explanations from SLIME.

V. GENERATING RELIABLE EXPLANATIONS

We now propose a novel method for identifying suitable
content type(s) for generating local explanations from SLIME.
The method involves two steps. Step 1 uses domain knowledge
to select a list of ‘relevant’ content types, as a content type
relevant to one domain or explanation type may not be relevant
to the other. For example, the zero value may be a relevant
content type for an RGB image with pixel values between 0
(lowest intensity) to 255 (highest intensity), but may not be
relevant for a log-scaled mel-spectrogram with values between
-min to +max, as it may make quieter regions louder.

Step 2 involves using the ground-truth annotations for
selecting suitable content type(s) from the list of relevant
content types. For example, for SVD, ground-truth indicates
temporal segments containing vocals. SLIME can use this
information to select suitable content type(s) for temporal
explanations by first generating temporal explanations using
all relevant content types and then selecting content type(s)
that generate temporal explanations having high overlap with
ground-truth. For example, say for an input excerpt with
five temporal segments, the ground-truth annotations denote
that temporal segments 2 and 4 contain vocals and the other



temporal segments contain non-vocals. Further assume that an
SVD model is 95% confident that the input excerpt contains
vocals. The temporal explanations from SLIME highlighting
the top-2 super-samples positively influencing the prediction6

for three relevant content types are {1, 2}, {2, 4}, and {3, 5}.
This suggests that the content type two is the most suitable as
its explanations completely overlap with ground-truth.

We now demonstrate the proposed method for temporal
explanations for the SVDNet-R1 predictions. However, instead
of using audio excerpts and the ground-truth annotations from
the Jamendo and RWC datasets, we synthesise audio excerpts
and the corresponding ground-truth annotations. This approach
has two main benefits. First, it allows to synthesise a large
dataset for experimentation which is not possible with the
existing SVD datasets. This is due to the short duration of
the SVD model inputs (around 1.6 secs), causing the majority
of input excerpts to contain either vocals or non-vocals and
thus making them not useful for experimentation. Second, the
ground-truth annotations for the Jamendo and RWC datasets
may be noisy and thus, using a synthesised dataset helps
perform controlled experimentation.

We generate a synthetic dataset using the ccMixter
dataset [26] that includes a vocal and a non-vocal stem for each
of the 50 songs it contains. The vocal and non-vocal stems
contain all the vocal and non-vocal (instrumental) sounds in a
song, respectively. We synthesise the dataset by first randomly
selecting ten mel-spectrogram excerpts from each stem file
corresponding to a song. We select excerpts from the same
temporal locations in both the stem files. Thus, we sample ten
pairs of excerpts, where each pair contains excerpts belonging
to the vocal and non-vocal stems and sampled at the same time
index. We segment each excerpt in a pair into ten temporal
segments. We randomly select three temporal segments from
the vocal stem and use their content to replace the content
of corresponding temporal segments in the non-vocal stem.
We repeat this process four times and generate four excerpts,
where each excerpt contains seven non-vocal segments and
three vocal segments. Thus, for each song in the dataset, we
generate 40 mel-spectrograms and executing the method on
the whole dataset generates 2000 mel-spectrograms and their
annotations that indicate the temporal segments containing
vocals. We aim to analyse only the true positive excerpts, i.e.,
those excerpts that contain vocals and are correctly predicted
by the SVDNet-R1 model. Thus, the final dataset we use for
selecting suitable content type(s) has 656 excerpts.

We use SLIME to generate the temporal explanations for
the prediction of each excerpt in the synthetic dataset. The
temporal explanations highlight the top-3 ICs positively in-
fluencing SVDNet-R1 predictions. SLIME generates temporal
explanations for each of the four content types (zero, mininp ,
meaninp , and N norm

g ) that resulted in stable explanations
for Ns = 70000 (see Section IV-B). The proposed method
selects suitable content type(s) by computing Nce between the

6The super-samples are the output of input segmentation at the ground-truth
boundaries.
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Fig. 7. The plots depict the influence of the content types on temporal
explanations from SLIME for instances from the synthetic dataset. The
top plot depicts the distribution of the number of common interpretable
components Nce between the ground-truth explanation and the temporal
explanation generated with the content type given on the horizontal axis. The
bottom plot depicts the proportion of audio excerpts for different Nce values
corresponding to all the four content types.

ground-truth-based explanations and the temporal explanations
for each content type. Fig. 7 presents the results of the experi-
ment. Fig. 7 (top) presents Nce distributions corresponding to
each content type. Fig. 7 (bottom) presents the proportion of
excerpts for each Nce corresponding to each content type.

The results provide useful insights into the behaviour of
SLIME for the different content types and assists in selecting
suitable content type(s). The results demonstrate that for
around 34% of the excerpts, the temporal explanations corre-
sponding to meaninp completely match the ground-truth-based
explanations7. For the content types zero, mininp , and N norm

g ,
this number is 23.9%, 7.16%, and 18.44%, respectively. This
suggests that among all the content types, meaninp gener-
ates the most accurate temporal explanations. The accuracy
of SLIME seems low even for the most suitable content
type, but it is important to note that SLIME explanations
depend on model predictions to the perturbed versions of
an input. Thus, less accurate model predictions will result
in less accurate SLIME explanations. In this experiment, the
predictions from SVDNet-R1 will be less accurate for the
synthetic excerpts as we do not train SVDNet-R1 on ccMix-
ter, and thus, the synthetic samples are out-of-distribution
samples. An example of the difference in the training and
test distributions is the composition of the vocal category. In
the Jamendo dataset we use to train SVDNet-R1, the vocal
category contains a mix of the vocal and non-vocal sounds,
however, in the synthetic dataset, the vocal category contains
only vocals. Thus, using the same data distribution for training
and testing may result in more accurate SLIME explanations.

7The indices of the ICs in the explanations match, but their occurrence
order may differ.



The results also suggest that the likelihood of matching two
out of the three ICs in the temporal explanations from SLIME
is high for all the content types. Specifically, the proportion of
instances whose temporal explanations have at least two ICs in
common with the ground-truth-based explanations is 80.79%,
62.65%, 83.68%, and 80.03% for the content types zero,
mininp , meaninp , and N norm

g respectively. This suggests that
the content types zero, meaninp , and N norm

g perform equally
in reliably identifying at least two ICs positively influencing
a prediction. Moreover, the results for these content types
also suggest that SLIME accurately identifies at least two
influential ICs even though the inputs are out-of-distribution
samples. The extremely low likelihood of no overlap between
the ground-truth-based explanations and the temporal expla-
nations generated using the different content types further
supports the previous statement about the accuracy of SLIME.

The results of the experiment suggest that the content
type meaninp is the most suitable content type in generating
temporal explanations that perfectly match the ground-truth.
This suggests that SVDNet-R1 is comparatively more sensitive
to the other content types [19], and hence, the hypothesis
that occluding ICs with those content types is equivalent
to removing the corresponding input segments, seems weak.
Moreover, the results also suggest that except for mininp , all
the other content types accurately identify two influential ICs.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we analysed the behaviour of the SLIME
method for explaining the predictions of machine listening
models. SLIME perturbs inputs by randomly replacing their
ICs with synthetic components. We analysed if SLIME expla-
nations are sensitive to the content of synthetic components.
To do this, we applied SLIME to generate temporal and
spectral explanations for the predictions of a state-of-the-art
deep SVD model. We randomly selected instances from two
publicly available benchmark datasets and generated expla-
nations corresponding to four appropriate content types. The
results demonstrated that SLIME explanations are sensitive to
the content type. This further suggests that it is highly likely
for any local explanation method using input occlusion in its
explanation generation pipeline to exhibit such a behaviour
(e.g., [3], [18]). We also validated that SLIME explanations
are sensitive to the number of synthetic samples. These results
suggest that careful selection of Ns and the content type is
essential for generating reliable SLIME explanations.

We further proposed a method that uses the ground-truth
annotations for selecting suitable content type(s) for SLIME.
We demonstrated the method for temporal explanations for the
deep SVD model predictions. The results suggested that the
average bin magnitude of an excerpt is the most appropriate
content type as the temporal explanations corresponding to
it have at least two ICs matching with ground-truth-based
explanations for around 84% of excerpts.

Future work will extend this work by investigating whether
other local explanation methods that perturb the input by oc-
clusion [3], [18] also exhibit this sensitivity to the content type.

Moreover, we plan to examine the behaviour of SLIME for
inputs transformed through label-preserving transformations
(e.g., increasing the loudness of an input).
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