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Abstract—Due to their proven efficiency, machine-learning
systems are deployed in a wide range of complex real-life
problems. More specifically, Spiking Neural Networks (SNNs)
emerged as a promising solution to the accuracy, resource-
utilization, and energy-efficiency challenges in machine-learning
systems. While these systems are going mainstream, they have
inherent security and reliability issues. In this paper, we
propose NeuroAttack, a cross-layer attack that threatens the
SNNs integrity by exploiting low-level reliability issues through
a high-level attack. Particularly, we trigger a fault-injection
based sneaky hardware backdoor through a carefully crafted
adversarial input noise. Our results on Deep Neural Networks
(DNNs) and SNNs show a serious integrity threat to state-of-the
art machine-learning techniques.

Index Terms—Machine Learning, Spiking Neural Networks,
Reliability, Adversarial Attacks, Fault-Injection Attacks, Deep
Neural Networks, DNN, SNN, Security, Resilience, Cross-Layer.

I. INTRODUCTION

Deep Neural Networks (DNNs) are known to be

resilient to numerical perturbations and architectural

imprecision [12][27][40][44]. This is demonstrated through an

established performance even after aggressive pruning [26],

quantization [30], and other compression techniques [10][14],

which significantly reduce the number of parameters in

the network. However, recent works [11][16][33][34] have

shown that these networks are vulnerable to surgical bit-flips

in specific locations. Moreover, system-level threats called

adversarial attacks [9] have shown effective ability to induce

behavioral anomalies in DNNs. In fact, DNNs are vulnerable

to malicious inputs modified to yield erroneous labels, while

being undetectable to human observers [13][28]. In safety-

critical applications such as transportation systems, adversarial

examples could be a non-negligible threat to public safety.

For this reason, attacks and defenses on adversarial examples

have drawn great attention in the scientific community. On the

other hand, due to the ubiquity of machine-learning, attacks

from the supply chain such as hardware Trojans emerged as a

threat to DNNs security. In [24], the authors use fault-injection

techniques on SRAM or DRAM to alter the single bit value or

few bit values in memory thereby leading to misclassification.

Spiking Neural Networks (SNNs) provide a biologically

plausible alternative to DNNs, because the neuron model as

well as the event-based communication model between neurons

resemble to the current understanding of the human brain’s

functioning. Compared to DNNs, SNNs show a different

*These authors contributed equally to this work.

response to the adversarial attacks [29]. Moreover, due to

their asynchronous and spike-based propagation, the SNNs

are naturally more energy-efficient than DNNs when deployed

in the hardware, as shown by neuromorphic chips like Intel

Loihi [7] and IBM TrueNorth [31].

Towards this, the focus of our paper is to show a new

attack vector that threatens the integrity of both the DNNs and

SNNs. We propose a cross-layer attack against neural networks

that transforms a circuit-level vulnerability to a system-level

security flaw. We exploit memory bit-flips in neural networks

synapses’ weights through a hardware Trojan triggered using

a surgical adversarial attack.

To the best of our knowledge, this is first end-to-end attack

against SNNs that exploits circuit-level backdoor through a

high-level input pattern.

In summary, the contributions of our paper are as follows:

• We analyze the resilience of SNNs to errors.

• We propose a methodology for triggering a bit-flip attack

remotely through an adversarial input pattern.

• We introduce NeuroAttack, a hardware Trojan triggered

by an input noise. We design and compare different

versions of the noise pattern that triggers the Trojan.

• We show the practicality of NeuroAttack on DNNs and

SNNs, by converting pre-trained DNNs into the spike

domain.

II. BACKGROUND AND RELATED WORK

A. Spiking Neural Networks

Spiking Neural Networks (SNNs) are considered as the

3rd generation neural networks. The previous generations

employed continuous values for the output signals of the

neurons, whereas SNNs use spike trains to encode the

information. Therefore SNNs, for their binary (spiking or no

spiking) operation, lend themselves well to fast and energy-

efficient implementation on hardware devices [15]. Each

incoming signal from an input neuron, which is encoded in the

SNN technology as a spike train, is multiplied by the weight of

the synapses, and all the results are added together to produce

the so-called membrane potential Vm, expressed as:

Vm =
N
∑

i=1

wi · si,

where N is the number of input synapses. When the membrane

potential reaches a particular value, called threshold, the output

neuron “spikes”, or “fires”.
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There are different ways in which the continuous values

can be coded as spikes in time domain. The most commonly

used are rate coding and time coding. In the first case, the

information is encoded by the number of spikes per second,

i.e., an higher number of spikes per second refers to an higher

analog value. In this case, the spike rate is determined by the

mean rate of a Poisson process [41]. Moreover, the pixels of the

images are converted to a constant current entering in the input

neurons, so that they will spike at constant rates depending on

the input pixel intensity. The time coding can be implemented

in different ways, for example the latency coding, in which the

analog value is inversely proportional to the spiking delay of

the neuron.

Many different models for the spiking neurons have been

studied. These models must be at the same time (1) biologically

accurate and capable of producing rich patterns, and (2)

computationally simple. The Hodgkin-Huxley biologically-

accurate model [2] is computationally expensive, whereas, on

the other hand the Leaky Integrate and Fire (LIF) model [42]

gives the opportunity, for its simplicity, to process lots of

neurons in real-time but its biological plausibility is very

low compared to the Hodgkin-Huxley’s model. Other models

have been developed to make a compromise between the two

extremes. An example of such a tradeoff is the Izhikevich

model [17]. However, we take advantage of the simple LIF

model (shown in Figure 1) to explain in the details the working

principles of a SNN, as it has been deployed in real-world

neuromorphic processors.
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Fig. 1: Input and output spikes, referred to the membrane potential for a
simple LIF model.

When a spike inputs the neuron, the associated synaptic

weight wi will be integrated on the membrane. When the

membrane potential Vm overcomes a threshold Vt, the neuron

fires and resets its membrane potential to a value VR, which is

considered to be zero in Figure 1. In addition, due to leakage,

the membrane potential decreases continuously at the leak rate

between two input spikes [4]. The sub-threshold dynamics of

LIF spiking neuron can be formulated as follows:

τm
dVm

dt
= −Vm + I(t),

where Vm is the membrane potential and τm is the time

constant for the membrane potential leakage [21]. Local

learning rules for unsupervised learning can be used to train the

network, as can be done also in the recent Loihi neuromorphic

processor [7]. The Spiking Time Dependent Plasticity (STDP)

local learning rule can be applied. The goal of such a

rule is to strengthen the synaptic weight of two neurons

whose spiking activity happens in a highly-correlated causal

dependency order, and to weaken it otherwise [5]. However,

learning through the unsupervised learning rules is found to

be effective just for shallow networks [22]. On the contrary,

the backpropagation mechanism used to train DNNs cannot

be applied as-is, due to the non-differentiabile nature of the

spiking function [21]. To overcome this problem two solutions

are typically employed: (1) take advantage of an approximate

derivative method, or (2) convert offline trained DNNs to

SNNs. The first solution has been extensively studied in many

works [3][21][23][32]. The second solution is exploited in the

following discussions. The neural networks are described as

Keras models, trained as DNN and then converted to SNN by

means of the SNNtoolbox [39], and implemented by means of

spiking neuron’s simulators through rate encoding. A built-in

simulator based on Keras, i.e., INIsim, is used, which features

the simple LIF neuron model. The duration of the simulation

is set to 50 milliseconds, one millisecond for each time step

while the other parameters are left with the default values.

B. Adversarial Attacks

An adversary, using information learnt about the structure of

the classifier, tries to craft the perturbations added to the input

to cause its misclassification, i.e., its incorrect classification.

For explanation purposes, we consider a generic DNN for

image classification. Given an original input image x and a

target classification model C(.), the problem of generating an

adversarial example xadv can be formulated as a constrained

optimization [43]:

xadv = argmin
xadv

D(x, xadv), s.t.

C(x) = l, C(xadv) = ladv, l 6= ladv

Where D is a distance metric used to quantify the similarity

between two images, and the goal of the optimization is to

minimize the added noise, typically to avoid the detection of

the adversarial perturbations. l and ladv are the two labels

of x and xadv , respectively. Here, xadv is considered as an

adversarial example if and only if the label of the two images

are different (C(x) 6= C(xadv)) and the added noise is bounded

(D(x, xadv) < ǫ where ǫ > 0).

C. Fault-Injection

The outputs of a DNN depend on both the input images

and its internal parameters. By inserting errors in the internal

parameters of a network, it is possible to misclassify a given

input image. Since the parameters of the network, when

implemented in hardware, are stored in memory units as SRAM

or DRAM, with the development of precise memory fault-

injection techniques, such as laser beam fault-injection [38]

and row hammer attack [18], it is possible to launch effective

fault-injection attacks on DNNs [24]. Shattering the accuracy

of a DNN in a significant way, with a low amount of faults,

is a challenging task. This is due to the high resilience of

neural networks which will be analyzed in section III. Towards



this, an efficient fault-injection technique will be used in

Section III-B, and it will be shown that few tens of faults (bit-

flips), associated to network’s internal parameters, are sufficient

to cause a considerable reduction of performances. The results

of this analysis will be used to build up an efficient attack

methodology through the hypothesis of an hardware Trojan

insertion in the supply chain plus a well-crafted input Trojan

trigger pattern, which can threaten the security properties of

both the DNNs and the SNNs. Unlike previous works, our

NeuroAttack is a cross-layer attack that exploits a hardware

backdoor through a carefully crafted adversarial input noise.

III. BIT-FLIP RESILIENCE ANALYSIS OF SNNS

A. Statistical Analysis of Random Bit-Flip

In this section, we analyze the resilience of SNNs to random

bit-flips in its internal parameters. Two different networks,

whose structures are reported in Table I and Table II, have

been chosen.

TABLE I: Structure of the Multilayer Perceptron network.

Layer Output shape

Input 784
Dense 1200
Dense 1200
Dense 10

TABLE II: Structure of the LeNet network [20].

Layer Output shape Output maps Kernel size Strides

Input (28, 28, 1) - - -
Conv2D (28, 28, 32) 32 (5,5) (1,1)

MaxPool2D (14, 14, 32) - - (2,2)
Conv2D (10, 10, 48) 48 (5,5) (1,1)

MaxPool2D (5, 5, 48) - - (2,2)
Dense 256 - - -
Dense 84 - - -
Dense 10 - - -

The first one is the so called Multilayer Perceptron (MLP).

The perceptron is a basic neuron, which receives as input the

signals multiplied by the synaptic weights. These signals are

summed together with a bias θ, and a non-linear function is

applied [8], as expressed by the following formula:

f

(

N
∑

i=1

xi · wi + θ

)

.

These neurons are connected in a dense (or fully-connected)

fashion, so that each neuron in layer l receives as inputs the

outputs of each neuron in the previous layer l-1. The amount

of synapses and related weights connecting one layer to the

previous one is given by nl−1 · nl, where nl is the amount of

neurons in a given layer l. For instance, for a simple 4 layer

MLP, like the one in Table I, the number of parameters is

about 2 millions. This huge amount of parameters is related to

an inherent resilience of DNNs to errors or approximations, as

it has been studied in prior works [12][36][37].

With Convolutional Neural Networks (CNNs), additional

types of layers are introduced, i.e., the convolutional layers

to extract features from the input image and the pooling layers

to reduce the size of the data. The so-called feature maps

(a) Analysis for MLP

(b) Analysis for LeNet

Fig. 2: Accuracy vs bit-flip probability for (a) MLP, and (b) LeNet network.

of the convolutional layers sweep the input image with a

certain stride, and have shown excellent capabilities to extract

features in the images given as inputs. This trait led to reach

an outstanding performance in many image-recognition and

classification tasks. One example of CNN is the LeNet-5,

whose structure is shown in Table II. It achieves excellent

capabilities in classifing images belonging to the MNIST

dataset.

The two networks have been trained for 30 epochs to

reach the top accuracy of 95.54% and 99.05% on the MNIST

dataset for the MLP and the LeNet, respectively. Weights and

biases are then quantized to 8 bits. The first investigation is

a statistical analysis of both networks. The bit-flip probability

is set between 0% and 95% to have 20 different points, and

it represents the probability for which a weight is subjected

to bit-flip. The results are averaged over 5 different iterations.

The results of accuracy against the bit-flip probability for both

the MLP and the LeNet are shown in Figures 2-a and 2-b,

respectively.

These results show that in the MLP, the accuracy is reduced

significantly also for a low bit-flip probability. However, for

networks with huge amount of parameters, a higher number

of parameters undergo bit-flip also for low values of bit-flip

probability. The situation is clear looking at Figure 3-a and

Figure 3-b which depict the average accuracy (red line, right

axis) compared to the average number of bits flipped (blue

line, left axis), for MLP and LeNet respectively. The number

of bits flipped with the same bit-flip probability appear to be

at least one order of magnitude less in the LeNet with respect

to the MLP. This analysis shows the high resilience of a neural

network whose performance is degraded just for a huge amount

of errors in the network parameters. However, these networks,

as demonstrated in the following section, are resilient only for

probabilistic attacks, while showing very different behavior in

case of well-targeted errors that can be applied by an adversary.

B. Bit-Flip with Gradient Search Algorithm

Analysis for the MINIST Dataset: In this section, we

describe a way to reduce the accuracy of a network by applying

errors on the lowest possible amount of bits. The gradients of

the loss function with respect to the parameters of the network

are analyzed in a similar way to what is done during the



(b) Accuracy vs. Reliability Analysis for LeNet

(a) Accuracy vs. Reliability Analysis for MLP

Fig. 3: Accuracy and number of bit-flips vs bit-flip probability for (a) MLP
and (b) LeNet network.

learning, while taking an inspiration from the work of [35]. The

computation of gradients returns a list of n-dimensional arrays

of the same shape of the parameters. The highest gradient

in absolute value is taken and the corresponding parameter

is considered as the target parameter. One of the bits of the

target parameter is flipped to have the maximum reduction of

accuracy. The target parameter is then masked, so that it is

not considered at the next iteration. The results show that the

accuracy is highly reduced for very low number of bit-flips for

the MLP (see the blue line in Figure 4) and for the LeNet (see

the red line in Figure 4), considering a global analysis of the

parameters. Note, only 30 bit-flips are sufficient to completely

crush the accuracy of the two considered networks.

Analysis for the CIFAR10 Dataset: Similar experiments

have been performed also for the CIFAR10 dataset [19], which

is composed of 60,000 training and 10,000 test RGB 32x32

images. The CNN used in our experiments, whose structure is

reported in Table III, reaches 79% of accuracy after 50 epochs

of training.

TABLE III: CNN structure providing 79% accuracy on CIFAR10.

Layer Output shape Output maps Kernel size Strides

Input (32, 32, 3) - - -
Conv2D (32, 32, 32) 32 (3,3) (1,1)
Conv2D (30, 30, 32) 32 (3,3) (1,1)
MaxPool2D (15, 15, 32) - - (2,2)
Dropout 0.25 (15, 15, 32) - - -
Conv2D (15, 15, 64) 64 (3,3) (1,1)
Conv2D (13, 13, 64) 64 (3,3) (1,1)
MaxPool2D (6, 6, 64) - - (2,2)
Dropout 0.25 (6, 6, 64) - - -
Dense 512 - - -
Dropout 0.25 512 - - -
Dense 10 - - -

The gradient search algorithm is applied on all the

parameters of the network, and similar results w.r.t. the

previous cases are obtained. However, as shown by the orange

line in Figure 4, the accuracy drop is far more emphatic. In

fact, the accuracy reaches a plateau around 10% for just 4 bit-

flips, which is a more critical result than the one obtained with

the LeNet and the MLP working on the MNIST dataset.
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Fig. 4: Accuracy vs number of bit-flips for MLP@MNIST, LeNet@MNIST
and CNN@CIFAR10.

IV. NEUROATTACK METHODOLOGY

A. Threat Model

The attack phase is supposed to be within the supply chain

where a malicious actor can insert hardware Trojans. In fact,

modern integrated circuit design often involves a number of

design houses, fabrication houses, third-party IP, and electronic

design automation tools that are all supplied by different

vendors. Such a horizontal business model makes the security

extremely difficult to manage during the supply chain [1][6].

Moreover, the attack is in a grey-box setting, i.e., the attacker

has a complete knowledge of the system architecture and

internal parameters but is not aware of the training set and

training hyperparameters.

B. Hardware Trojan Design

The hardware Trojan is designed to perform fault-injection

(i.e., bit-flips) in the network parameters to undermine its

integrity and degrade its accuracy. The malicious behavior is

triggered from the input through a specifically crafted input

noise. The idea is to trigger a fewer number of hardware

Trojans hidden in the circuit during the supply chain. Taking

advantage of the analysis carried on in Section III-B, hardware

stealthy Trojans are inserted at appropriate locations. Each

Trojan consists of a 2-way multiplexer with one input which is

the original bit, whereas the other input is the complemented bit

obtained through an inverter. The multiplexer’s selection signal

is a signal which is at logic value high only when a trigger is

added to the input image. In this way, the network will behave

correctly when an untouched input is supplied, providing high

accuracy for the original dataset. However, when a trigger is

inserted in the input image in form of hidden noise, the fault-

injections will be activated, and therefore the accuracy will be

degraded significantly. The setting is explained in Figure 5,

in which the thick orange arrows represent the synapses with

bit-flip applied, and the grey neuron is the target neuron. To

produce the selection signal of the multiplexers, the output of

a selected neuron is compared against a threshold through a

comparator, chosen according to the results of our experiments.

Note, the goal is for the output of the neuron to exceed the

threshold when the trigger is added to the dataset, and not

when the original dataset is given as an input. The first step

of the work is to select a particular neuron to satisfy the

desired behavior. To transfer the methodology from the DNN

to the SNN domain, a counter that accumulates the number

of spikes is needed at the input of the comparator. Moreover,

the threshold must be transferred from its analog value to the

corresponding value of spike rates. The counter is cleared at

the end of the processing of each input.



C. Trigger Pattern Design

Since there can be a direct relationship between the analog

output value of a neuron and the corresponding spike rate,

the knowledge obtained through the analysis of the DNN can

be transferred to the SNN implementation. Moreover, a good

correlation between analog output value and spike rate is a

necessary condition when using the SNN toolbox for DNN-to-

SNN conversion. Our goal is to embed the trigger inside one

neuron of the network, which we call the target neuron. In

other words, the goal of our proposed technique is that such a

target neuron is activated by a carefully designed mask in the

input image.

1) Choosing the target layer: The selection of the target

neuron strongly depends on the target layer. In case of a CNN,

the choice of the layer is directly connected to the choice of

the size of the trigger mask. This is due to the fact that neurons

belonging to deeper convolutional layers are related to a larger

area of the input image. For example, by looking at Figure 6,

the gradients of a neuron belonging to the first and second

convolutional layers are reported. The higher the order of the

layer is, the larger the area of the image that will account for

the trigger. At the first convolutional layer, the shape, position

and value of the gradients are quite clear, and corresponds to

the feature map of the neurons. For neural networks which have

only dense layers (e.g., MLPs) the gradients cover the entire

image. In this case, if a smaller trigger is desired, a mask that

does not comprehend all the area covered by the gradients can

be crafted.

2) Choosing the target neuron: The target neuron is chosen

as the one with thehighest value among the sum of absolute

values of weights connected to the neurons of the previous

layer. This is modeled by the following equation:

argmaxt(
N
∑

i=1

ABS(Wlayeri,t)).

3) Choosing the triggering mask: A random initial image is

created and the network is inferred with that image, leading to

a value initialOUTPUTk
at the output of the target neuron. The

parameter targetOUTPUTk
is chosen to be much higher than

initialOUTPUTk
. A cost function is then defined as follows:

cost =

∑N
i=1

δ2i
N

,

Where δi = targetOUTPUTi
− initialOUTPUTi

, i is the index

of each neuron in the target layer. Being k the index of the

target neuron, we rewrite the expression as:

cost =
δ2
1
+ δ2

2
+ ...+ δ2k + ...+ δ2N

N

For each δi it is imposed that targetOUTPUTi
=

initialOUTPUTi
except for δk, where targetOUTPUTk

6=
initialOUTPUTk

. The derivative of the cost function is

computed with respect to the pixels of the random input image,

to understand which part of the input image influences the

target neuron. Based on this, a mask M is created and a random

initial trigger is generated by the dot product between the mask

and the random initial image. The mask can also be chosen

differently, but it must have some overlap with the gradient

matrix, otherwise the loop that has to be described, will not

work.

4) Generating the trigger: The trigger generation algorithm

(see Algorithm 1) is inspired by the work of Liu et al.

on Trojan attacks [25]. In the first rows, some initialization

parameters are set. valmin and valmax are useful to manage

the imperceptibility characteristics of the trigger, but should

always lay in the range (0,1). The loop proceeds until the cost

reaches a particular threshold, or until a maximum number of

iterations. The gradients ∆ are first calculated and then limited

by a mask that can be suited for the gradients (in that case,

line 4 of Algorithm 1 can be skipped), or can be decided in

another way. Compared to algorithm in [25], line 6 is added

to limit the maximum and minimum values for the pixels in

the trigger.

Algorithm 1 Trigger generation loop

1: INIT(valmin, valmax, lr, epc, epochs, th, cost)
2: while cost < th and epc < epochs do

3: ∆ =
∂cost

∂x
4: ∆ = ∆ ·M
5: x = x− lr ·∆
6: x = clip(x, valmin, valmax)
7: epc = epc+ 1

8: return x;

At the end of the loop, a new trigger is generated with pixels’

values optimized to provoke the saturation of the target neuron.

If the parameter targetvaluek is set too high, in general, the

target neuron will not reach that value but a lower value, which

we call finalvaluek . A threshold is chosen, such as that if the

neuron’s output value exceeds it, the output of the comparator

is set to high and the multiplexers are switched. Then, for

each targeted weight, the selected bit is complemented. The

threshold is calculated through the following formula:

threshold = finalvaluek − ξ,

where ξ is a parameter, which can be chosen according to the

parallelism of the network and the method of the attack.

5) Trigger application: The trigger can be applied on the

image in mainly two ways: (1) as a stamp in the image, or

(2) as a noise in the image. In the first case, the values of

the pixel in the trigger area are exactly the optimal ones as

generated by the loop described in the lines 2-7 of Algorithm 1.

However, this solution could be less imperceptible, and in that

case a careful choice of the layer and/or a careful choice of the

trigger mask parameters (position, dimension, maxval) should

be taken into consideration. The second case could be of a more

general interest and it produced good results, due to a better

imperceptibility, as it will be shown in the following Section V.

Moreover, supposing to have some general knowledge about

the pixel intensity distribution on the image dataset targeted

by the network, the choice of the trigger parameters can rely

also on this information.
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Fig. 5: Scheme of the Trojan attack for the MLP network with the counter added present only in SNN implementation.

V. RESULTS AND DISCUSSION

A. Experimental Setup

Both the original and the modified dataset are used for

inference, and the amount of times for which both dataset

make the target neuron exceed the threshold is recorded. There

is the possibility that some images from the original dataset

produce the saturation of the neuron, causing an unwanted

activation of the Trojans for an exceedORIGINAL amount

of times. However, for a stealthy attack purpose, a carefully

crafted trigger should lead to a situation in which this value is

kept to almost zero. Therefore, the accuracy is not noticeably

reduced when the input trigger is not present, i.e., the presence

of hardware Trojans is stealthy. We call dimDATASET the

number of images in the dataset, exceedORIGINAL the number

of images from the original dataset for which the threshold

for the target neuron is exceeded, and exceedMODIFIED

the number of images from the modified dataset for which

the threshold for the target neuron is exceeded. Hence, the

attack aims at being both effective and stealthy, and thereby to

simultaneously satisfy the following conditions:

1) exceedORIGINAL << exceedMODIFIED

2) exceedORIGINAL << dimDATASET

3) exceedMODIFIED ≃ dimDATASET

In the following, the results obtained using the MNIST and

the CIFAR10 datasets are discussed.

1) Results on the MNIST dataset: Targeting the first

convolutional layer of the LeNet-5 with parameters listed in

the first row of Table IV, the trigger shown in Figures 7 (d) is

produced.

Fig. 6: Gradient representation of a random neuron from (left) the first and
(right) the second convolutional layer of the LeNet.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 7: From top-left to bottom-right: (a) initial input trigger, (b) gradients of
the selected neuron, (c) mask created through gradients, (d) final trigger after
loop, (e) and (f) two images with applied trigger.

In Figure 7 (a), (b) and (c), the random initial image, the

initial gradients and the mask M are shown respectively. The

mask is crafted to follow the shape of the gradients. The

images from both the original and the modified test set (two

examples from this last image set are shown in Figures 7 (e)

and (f)) are inferred and the results, as reported in Table IV:

exceedORIGINAL = 0 and exceedMODIFIED = 10000.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 8: From top-left to bottom-right: (a) initial input trigger, (b) gradients of
the selected neuron, (c) mask created through gradients, (d) final trigger after
loop, (e) and (f) two images with applied trigger.

Targeting the second convolutional layer, the produced

results are significantly different. In fact, the trigger is far more

perceptible and superimposed with a significant part of the

images, as can be seen in Figure 8. In this case, with the same



experimental settings as explained earlier, the obtained statistics

about the threshold exceeding are: exceedORIGINAL = 5 and

exceedMODIFIED = 7585, as also reported in Table IV. This

demonstrates that targeting a neuron belonging to the second

convolution layer leads to a relatively worse result. In fact, it

can be pointed out that the gradients are, on average, higher

than the gradients corresponding to a target neuron belonging

to the first convolution layer. We define the correlation between

the target neuron and the masked part of the image S as follows:

S =

∑N
i,j γi,j

M2
,

Where γi,j is the gradient corresponding to the pixel with

indexes i,j in the trigger mask, and M is the size of the side

trigger, in case of a square trigger. It can be seen that in the

first convolution layer S = 2.21 · 10−5, whereas in the second

convolution layer S = 1.4 · 10−6. This clearly shows that, for

a neuron in the 2nd layer, the variation with the input pixel is

much lower. If we call ρ the value

ρ = exceedMODIFIED − exceedORIGINAL,

we can see that it is getting lower when choosing target neurons

belonging to deeper layers.

Taking into consideration the MLP, a square mask is created

and put in the bottom-right corner. Its side is varied between 5

and 17 pixels, with steps of 2 pixels. Since, at the beginning,

the area of the trigger is too small, there are not enough pixels

to optimize the saturation of the target neuron. The difference

between initialvaluek and finalvaluek results in a small value.

Moreover, a huge number of images from the original dataset

make the target neuron exceed the threshold, leading to a small

value of ρ. A larger area of the trigger, on one hand, increases

ρ as can be seen in Figure 9 and, on the other hand, leads to

a less stealthy trigger.

Fig. 9: Plot of ρ with respect to the trigger size.

In the case of the MLP network, an interesting result is

obtained with a lower value of maxval = 0.1. Even though

we are targeting the first layer, the gradients are covering the

complete image (Figure 10 (b)), since it is a fully-connected

layer. Hence, we create a mask suited for the gradient, which

spans across the whole image, as shown in Figure 10 (c). In

this case, the second method described in Section IV-C5 is

used to apply the trigger. Due to the low value of valmax, the

trigger results to be imperceptible, as shown in Figures 10 (e)

and (f). We obtained a very high ρ, shown in Table IV, and

high imperceptibility, at the expense of a harder applicability.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 10: From top-left to bottom-right (a) initial input trigger, (b) gradients
of the selected neuron, (c) mask created through gradients, (d) final trigger
after loop, (e) and (f) two images with applied trigger.

2) Results on the CIFAR10 dataset: In this case, targeting

the first layer, with parameters set as shown in Table IV, the

trigger shown in Figure 11 (d) is produced. The superposition

of the trigger on the original images (two examples) is shown

in Figures 11 (f) and (h)).

(a) (d)(b)

(e)

(c)

(f) (g) (h)

Fig. 11: From top-left to bottom-right: (a) initial input trigger, (b) gradients
of the selected neuron, (c) mask created through gradients, (d) final trigger
after loop, (e) first image from the dataset (f) first image with trigger applied
(g) second image from the dataset (h) second image with trigger applied.

B. Hardware Overhead

Given the amount M of bit-flips applied, the hardware

overhead is constituted as the following.

1) M inverters, constituted by 2 transistors each.

2) M 2-way multiplexer, constituted by 16 transistors each

in a 4 NANDs implementation.

3) In the case of a DNN, a digital comparator, whose

complexity depends on the parallelism of the neuron’s

output result, which is connected to the target neuron’s

output.

4) In the case of an SNN, a counter, to count the spikes,

plus a compartor which is set when the counter reaches a

particular value.

The overhead of multiplexers and inverters can be estimated as

(2+16)×M . From the experiments reported in Section III-B,

it is clear that an amount of about just 30 bit-flips is enough

to completely crash the performances of the DNN for the two

networks operating on MNIST dataset, or 4 bit-flips in the case

of the CNN operating on the CIFAR10 dataset. The hardware

overhead of inverters and multiplexers, calculated in terms of



TABLE IV: Structure of the networks, parameters and results for our experiments.

Net Layer valmax ξ targetOUTPUTk
initialV ALk

finalV ALk
exceedORIGINAL exceedMODIFIED

MNIST LeNet 1st Conv2D 0.3 0.1 100 0.04 0.21 0 10000

MNIST LeNet 2nd Conv2D 0.3 0.1 100 0.08 1.56 5 7585

MNIST MLP 1st Dense 0.1 0.1 100 0.05 1.21 15 9904

CIFAR10 CNN 1st Conv2D 0.3 0.1 100 0.02 0.23 4 10000

transistors, is about (2 + 16) × 30 = 540 in the first case,

whereas it is just (2+ 16)× 4 = 72 in the second case. In the

case of a SNN, a counter is added, whose module should be at

least as much as the maximum spiking rate a neuron can have.

The amount of transistors needed for a module N counter are

given by #transistors = (N −2)×6+(N ×4)×4, where the

first addend gives the contribution of the AND gates, whereas

the second gives the contribution of the T-type flip-flops.

VI. CONCLUSION

In this paper, we propose NeuroAttack, a cross-layer

attack against DNNs and SNNs, that exploits a circuit-

level vulnerability to threaten security. In particular, we

demonstrated that NeuroAttack can drastically degrade the

accuracy of a DNN or an SNN by applying a few number of

bit-flips on its parameters, through a hardware Trojan triggered

externally by an adversarial input noise. The security issue is

made more severe by the stealthiness of the attack, since it

is only effective when triggered by the external adversarial

noise, and practically imperceptible elsewhere. Due to the

linear relationship between DNN activations and SNN spike

rates, the obtained results are transferred to SNN models to

corroborate the fact that the demonstrated attack presents a

clear threat to both SNNs and DNNs.
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