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Abstract—Motif discovery is a fundamental step in data mining
tasks for time-series data such as clustering, classification and
anomaly detection. Even though many papers have addressed
the problem of how to find motifs in time-series by proposing
new motif discovery algorithms, not much work has been done
on the exploration of the motifs extracted by these algorithms.
In this paper, we argue that visually exploring time-series
motifs computed by motif discovery algorithms can be useful
to understand and debug results.

To explore the output of motif discovery algorithms, we
propose the use of an adapted Self-Organizing Map, the DTW-
SOM, on the list of motif’s centers. In short, DTW-SOM is a
vanilla Self-Organizing Map with three main differences, namely
(1) the use the Dynamic Time Warping distance instead of
the Euclidean distance, (2) the adoption of two new network
initialization routines (a random sample initialization and an
anchor initialization) and (3) the adjustment of the Adaptation
phase of the training to work with variable-length time-series
sequences.

We test DTW-SOM in a synthetic motif dataset and two real
time-series datasets from the UCR Time Series Classification
Archive [1]. After an exploration of results, we conclude that
DTW-SOM is capable of extracting relevant information from a
set of motifs and display it in a visualization that is space-efficient.

Index Terms—Dynamic Time Warping, Self-Organizing Map,
Motif discovery, Time-series, exploration

I. INTRODUCTION

In the last decade, motif discovery has become a fundamen-
tal step in many data mining tasks for time-series data, such
as clustering, classification or anomaly detection. In general,
a time-series motif corresponds to a over-represented segment
of a time-series and thus motif discovery involves extracting
all (or a specific subset) of these over-represented segments
[2]. Figure 1 illustrates an example of two motifs built from
dummy data.

Fig. 1. Toy example of two different motifs, each with two highly conserved
subsequences.

Due to its relevance, many methods and strategies have
been proposed to tackle motif discovery. However, the step
of exploring and visualizing motifs, which can be useful to
understand results of downward tasks, has not received as
much attention. To the best of our knowledge, papers that
address this question focus only on visualizing the actual time-
series subsequences that belong to each individual motif [3]–
[5]. We argue that, even though exploring individual motifs
can help to understand the individual patterns, these methods
cannot provide information about the overall relationships
between the extracted motifs. In other words, they are not ideal
to answer questions such as: Are motifs similar to each other?
Can we define clusters of motifs? Additionally, exploring
individual clusters is not tractable in the cases where a high
number of motifs is extracted.

In this paper, we propose the use of a widely-studied method
for feature reduction and visualization, the Self-Organizing
Map (SOM) [6], to explore the centers of motifs extracted by
any desired motif discovery algorithm. Taking into account
that these centers are time-series subsequences, with possibly
variable lengths and multiple dimensions, we adapted the
original SOM algorithm to apply the Dynamic Time Warping
(DTW) distance [7] as its similarity metric and added two
specific initialization routines for the SOM network.

The rest of the paper is organized as follows: section
2 introduces academic work related to (1) motif discovery
and (2) Self-Organizing Maps, section 3 describes our own
implementation of the Dynamic Time Warping Self-Organizing
Map (DTW-SOM), section 4 presents the experimental setup
and reports the results obtained on three different datasets and,
finally, section 5 concludes this paper and discusses future
work.

II. RELATED WORK

In this section, we’ll cover two areas which, although
seemingly unrelated, serve as basis for this paper - motif
discovery and self-organizing maps.

A. Motif Discovery

Despite, in general, the concept of motifs being associated
with significant time-series segments, there are two main
definitions of motifs that vary on the way they set the
concept of ”significance” [2]. Similarity-based motifs focus
on the similarity of the time-series segments and thus this
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definition results in highly similar motifs. On the other hand,
support-based motifs focus on the repetition of the segments
throughout the time-series and thus this definition leads to
highly frequent motifs.

In addition to the concept of significance, there are addi-
tional constraints a group of time-series segments must meet
to be considered a motif [8]. The first is a behavior constraint,
which determines that segments in a motif should have the
same general behavior, even if some level of noise or time
and amplitude shifts are allowed [9]. The second, the non-
overlapping constraint, aims to avoid trivial matchings [10] by
setting that motif segments cannot overlap in time. The third
is a distance constraint, which restricts all motif’s segments to
have a distance smaller than a radius R to the center of the
motif (i.e., the segment that represents that motif). Note that in
most motif discovery methods, the radius is a parameter that
needs to be set by the user. Finally, when the task is to extract
a set of motifs instead of the most significant motif, there is an
additional constraint with the goal of avoiding the extraction
of motifs with overlapping members. This last constraint states
that all the motifs’ centers must have a distance higher than 2
radius, 2R.

Independently of the exact definition, motif discovery is a
computationally intensive task as it involves computing dis-
tances between all possible pairs of time-series subsequences.
Therefore, much of the work related to motif discovery al-
gorithms has aimed at making the search more efficient. One
of the most common techniques to reduce the search space
is to convert the original time-series into a lower-dimensional
representation where the distance between subsequences in the
original representation is approximately maintained [2]. With
this strategy, motif candidates can be extracted in the low-
dimensional representation (which is more efficient) and the
final set of motifs can be computed with the real distance on
the smaller set of candidates. In motif discovery, the Symbolic
Aggregate approXimation (SAX) representation [11] is the
most used. This representation first extracts sliding windows
from the original time-series and then converts each sliding
window into a fixed-sized sequence of characters. Thus, the
time-series is split into a list of ”words”.

An important part of any motif discovery is the choice of
distance. Most authors use the Euclidean distance [12] or the
Dynamic Time Warping (DTW) distance [7] for comparing
subsequences. The advantage of the Euclidean is its effi-
ciency, which allows a faster comparison of motif candidates.
However, this efficiency comes with a loss of flexibility
as it is not robust to time-shifts, distortions, differences in
phase and variable-length sequences. On the other hand, the
DTW distance finds the optimal time alignment between the
subsequences that are being compared. Thus, it is much less
efficient but it can adapt to the shifts discussed before.

In terms of the algorithms for motif discovery, there are two
main types, namely fixed-length and variable-length. In the
fixed-length algorithms, users need to provide the length of
window and that parameter is used to extract all the possible
subsequences. Thus, all motifs contain subsequences of the

same size. The MK exact algorithm [13], the motif extraction
from the Matrix Profile [14] and the EMMA-SAX algorithm
[10] are all examples of methods that extract fixed-length
motifs.

The variable-length algorithms are a bit more flexible and
don’t required the user to set the window size beforehand.
However, this is a much harder problem as the search space
is bigger and more complex. Most variable-length algorithms
solve this problem by applying a fixed-length algorithm to
a range of window sizes and then choosing the most rep-
resentative motifs based on their motif definition and motif
ranking schemes [9]. The work of [15] and [16] are two
examples of this approach. On the other hand, Lin’s grammar-
based approach [17] and Tanaka’s EMD algorithm [8] already
take into consideration variable-length motif during the search
process by adapting the way subsequences are represented in
the low-dimensional representation.

B. Self-organizing map

Self-organizing Maps (SOM) were proposed by Tuevo Ko-
honen at the beginning of the 1980s [6], and constitute the
product of his work on associative memory and vector quan-
tization. The SOM’s basic idea is to map high-dimensional
data onto a low-dimensional discrete feature map, maintaining
the relations between data patterns [18]. Its main objective
is to ”extract and illustrate” the essential structures from a
dataset through a map resulting from an unsupervised learning
process [19], [20] and thus it can be used at the same time for
visualization and exploration of data and for clustering.

SOM is also considered a good method for extracting data
patterns and associations when the extraction of information
becomes a challenging task due to the number of parameters
or the use of a multidimensional dataset.

Usually, SOM maps the original high-dimensional data to
a discrete feature map with one, two, or three-dimensions,
although 2-dimensions are the most common. The grid formed
by the units or neurons is usually referred to as output space,
as opposed to input space, which is the original space [21].
When the output space is 2-dimensional, it is usually formed
by a rectangular or hexagonal grid of units [6].

Each unit of the SOM, is represented by a vector mi =
[mi1...,min] of dimension n, where n equals the dimension of
the input space. In the training phase, a given training pattern
x is presented to the network, and the closest unit is selected.
This unit is called the best-matching unit (BMU). The unit’s
vector values and those of its neighbors are then modified in
order to get closer to the data pattern x:

mi = mi + α(t)hci(t)‖x−mi‖ (1)

where α(t) is the learning rate at time t, and hci(t) is the
neighborhood function centered in unit c, and i identifies each
unit. To allow SOM to converge to a stable solution, both the
learning rate α(t) and the neighborhood radius hci(t) should
decrease to zero during training. Usually these parameters
decrease in a linear fashion but other functions can be used.



Additionally, the update of both parameters can be done
after each individual data pattern is presented to the network
(iteration) or after all the data patterns have been presented
(epoch). The former case is known as sequential training and
the latter is usually known as batch training. The sequential
algorithm pseudo-code is presented bellow, in algorithm 1.

Algorithm 1: SOM Sequential Training
Input: X = {x1, x2, . . . xn}: training patterns

W = (wij) ∈ Rp×q: SOM network’s units
α ∈]0, 1[: initial learning rate
r ∈ R: initial neighborhood radius

Let h(wij , wmn, r) be the neighborhood function
repeat

for k = 1 to n) do
forall wij ∈W do

dij = ‖xk − xij‖
end
Select the unit that minimizes dij as the winner
wwin

Update wij ∈W : wij =
wij + αh(wwin, wij , r)‖xk − wij‖

end
Decrease the value of α and r

until α = 0;

For each randomly selected training pattern presented to
the network, the BMU (i.e. its closest unit) is found. The
BMU is then updated according to the weights of the training
pattern and the learning rate. Initially this learning rate is
high allowing bigger adjustments of the units. The unit’s
mobility will decrease proportionality with the decrease of
the learning rate. Based on the neighborhood rate, a group of
surrounding units is also moved closer to the training pattern.
There are several ways to visualize the SOM and improve
the understanding of the data patterns [22]. Two of the most
important visualization tools are the component planes [6] and
the U-matrix [23].

In a component plane, each unit is colored according to
the weight of each variable in the SOM. Through the analysis
of the component planes, data distribution can be evaluated.
For instance, it is quite simple to identify variables which are
correlated (their component planes will have the same shape),
and it is also possible to have an improved understanding of
the contributions of each variable to the SOM. By comparing
two or more component planes, one can visually identify
correlations between variables, both globally and at a local
scale.

The U-matrix is one of the most used methods to visualize
SOM [23]. U-matrices are computed by finding the distances
in the input space of neighboring units in the output space.
There are two ways to visualize a U-matrix. The most common
is to use a color code to depict distances, corresponding to
the values of the U-matrix. Usually a grey-scale is used, with
the highest value being represented with black and the lowest
with white. Another possibility is to plot these distances in

the form of a 3D landscape with mountains and valleys. A
mountain region indicates large distances between units, while
low distances between the units form valleys.

Some of the challenges in applying SOM to motif discovery
in time-series are related to the fact that not all dimensions are
equally relevant and the different size of motifs. Some work
has been developed to overcame these problems [24]–[26].
One example is the Local Adaptive Receptive Field Dimension
Selective Self-organizing Map (LARFDSSOM), proposed in
[25], where the application of different weights for each input
dimension and for each cluster is proposed, as well as the
use of a Time-Varying Structure of the SOM. In [26] the
authors propose VILMAP to allow the use of different sizes
of samples and consequently the discovery of Motifs with
different lengths.

SOM can, as shown in the previous references, be used
to identify and extract time-series motifs. In this paper, we
propose the use of this technique not to perform such tasks
but to analyze the motifs extracted by others motif discovery
algorithms.

III. DTW-SOM
As explained in previous sections, the goal of the DTW-

SOM method is to serve as an auxiliary tool in motif discovery
and, as such, it needs to be flexible enough to deal with a
different range of motif discovery methods and definitions.
Particularly, it should:

1) Be able to compare time-series segments.
2) Receive all types of motifs, meaning fixed-length and

variable-length motifs.
3) Represent multi-dimensional motifs (i.e., motifs ex-

tracted from a multi-dimensional time-series).
4) Take into account an given order of significance in the

motifs of a provided set of ”most significant” motifs.
5) Provide a visualization from which a user can get

insights into the general relationships between the motifs
and their shapes.

To achieve these goals, we extended the vanilla batch-
training SOM algorithm that was implemented in the Py-
Clustering python package [27] to process variable-length
multidimensional time-series subsequences. The idea is that
when someone wishes to investigate a set of motifs previously
extracted, he just needs to collect the center subsequences
of each motif and feed that list of centers to the DTW-
SOM. For readability, from now on, we’ll refer to these center
subsequences that are the input to the DTW-SOM as patterns.

Firstly, we added two network initialization routines, namely
a random sample initialization and an anchor initialization.
In the random sample initialization, each unit is randomly
assigned to one input pattern in such a way that no two units
are exactly the same. In other words, a random sample is taken
from the input patterns to initialize the network. In the anchor
initialization, a list of patterns must be provided by the users
(the anchors) and each anchor will be set to a single unit. Note
that the provided list cannot have more anchors than units and,
in the case of an input with less anchors then units, a random



sample will be taken from all the input patterns to initialize the
remaining units. In the case of having less anchors than units,
we tried to spread out the first anchors (as we are assuming that
they are ordered by significance) by first filling the diagonals
of the network and just after that filling the rest of the network.

Note that the anchor initialization was designed to address
the fourth requirement presented above. If the motif discovery
method provides an ordering of the motifs or a subset of most
significant motifs, one can use these motifs as the anchors
and thus the DTW-SOM will more easily focus on these more
important motifs.

The second adjustment we implemented to the vanilla SOM
was the swap of the distance function from the Euclidean
distance to the DTW distance, which allows us to process
patterns with different lengths and with multiple dimensions.
Finally, the last big change implemented was in the Adaptation
phase of the training. Since we are comparing patterns and
units with variable lengths, we had to adapt the way each unit’s
values are updated. When computing the distance between
two segments, the DTW distance finds an optimal alignment
in time between the segments and uses this optimal match
to compute the distance between individual points along the
segments. Thus during the adaptation phase of training we
leverage this matching to guide the update of the BMU’s vector
values.

Fig. 2. Example of the time-alignment between an input pattern and an unit
computed by the DTW algorithm. The black points are the actual time-series
observations while the red and dashed lines represent the alignment matching
returned by the DTW algorithm.

As an example, figure 2 shows the DTW alignment between
an input pattern and its BMU. In the DTW-SOM, the vector
values of an unit are simply the sequence of time-series
observations as presented in figure. During Adaptation, every
vector value needs to move slightly closer to the pattern as
defined by equation 1. In this case, the first BMU’s value,
which is the point marked as A, will move closer to the its
matching point in the pattern, which is the point A′.

Due to warping, we can have cases where one point in the
BMU can be matched to more than one point in the pattern, as
is the case with points B, B′ and B′′. In these cases, equation
1 needs to be changed to equation 2:

wi = wi + α(t)hcw(t)

 1

n

∑
j≤n

xj − wi

 (2)

where i is the index of the unit’s sequence, t is the training
epoch, α(t) is the learning rate at epoch t, hcw(t) is the
neighborhood function, n is the number of pattern points that
where matched to the BMU’s vector value wi and the xj are
the pattern point’s values.

IV. EVALUATION

To test DTW-SOM, we did three experiments. In the first,
we generated synthetic motif data and explored visually the
results. In the second, we used a widely used classification
dataset from the UCR Time Series Classification Archive [1],
the GunPoint dataset [28]. Particularly, we adapted the dataset
to be suitable for the motif discovery task, we used the Matrix
Profile [14] to efficiently extract all the motifs and we explored
the resulting motifs with our method. Finally, in the third
experiments, we used the same approach as in the second
experiments, but used a dataset from the UCR Time Series
Classification Archive with more classes and more extracted
motifs, namely the UWaveGesture dataset [29].

A. Experiment with the synthetic motif dataset

To build this synthetic dataset, the idea was to create a
dataset of motifs centers that formed 3 clear clusters. If we
were able to detect these clusters in the final visualization,
then the DTW-SOM was working as expected. The synthetic
dataset included 180 motif centers which were generated using
the following heuristic:

1) We chose three general behaviors sequences for the
clusters, namely, low-middle-high, high-middle-low and
middle-middle-middle.

2) For each behavior (low, middle and high), we defined
intervals from which we could sample points exhibit-
ing that behavior. Particularly, the low interval was
[−3,−1.5], the middle interval was [−0.5, 0.5] and the
high interval was [1.5, 3].

3) For each motif center, we set the length of which
behavior by randomly selecting an integer between 5
and 10. In other words, for each motif center, we’ll
sample three integers that define the lengths of each of
its behavior subsequences and the sum of those integers
will be the total length of that motif center.

4) For each motif center, we create its time-series sequence
by sampling values from the predefined behavior inter-
vals. As an example, if we were creating a motif center
for the low-middle-high cluster and if we had previously
sampled the behavior lengths (3, 7, 4), then we would
sample three values from the interval [−3,−1.5], seven
values from the interval [−0.5, 0.5] and four values from
the interval [1.5, 3].

Figure 3 shows some examples of the generated sequences.
After generating the dataset, we build a DTW-SOM network
with a 3X3 layout and default parameters and we trained
it during 30 epochs. We also tested the random sample
initialization and the anchor initialization (using one motif
from each cluster as the anchors). We noted that even though
the random sample initialization was able to obtain the desired



Fig. 3. Plot with three examples of generated motif centers, one for each
cluster. The orange belongs to the low-middle-high cluster, the blue to the
high-middle-low cluster and the red to the middle-middle-middle cluster

clusters, the results among different training runs were much
more unstable. On the other hand, the anchor initialization
converged to the desired clusters much more consistently and
different runs did not change too much the results.

Fig. 4. U-matrix and Winner Matrix obtained from the DTW-SOM trained
on the synthetic motifs and using an anchor initialization.

Figure 4 shows the U-Matrix and the Winner Matrix ob-
tained with the anchor initialization. Note that the winner
matrix only encodes the number of input patterns that had each
units as its BMU. We also plotted the sequence values of the
nine units, which can be observed in figure 5. From both plots,
we can see that the diagonal of the network captures almost
all the motifs as expected and that the rest of the units capture
some other patterns between the middle-middle-middle cluster
and the low-middle-high cluster.

B. Experiment with the GunPoint dataset

The GunPoint dataset [28] was built from the hand motion
of two actors that are performing two different actions - the
first is to draw a gun (which corresponds to the class ”Gun”)
and the second is to point a finger (which corresponds to
the class ”Point”). The time-series correspond to the measure-
ments in the x-axis of tracking the centroid of the actor’s right
hand. Because the setup was a classification task, we have a
train and a test sets with 50 and 150 time-series sequences,
respectively. Each time-series sequence includes the whole
action of either the gun draw or the finger pointing and every
sequence has a length of 150.

Due to the nature of this dataset, we had to adapt it to the
task of motif discovery. For simplicity, we concatenated the
50 sequences from the train set into a single time-series and
use this time-series as input to the motif discovery algorithm.

Fig. 5. Sequence values of the units after training the DTW-SOM with
synthetic motifs. The position of each unit’s plot in the grid is consistent
with its position in the network. Thus, the U-Matrix and the Winner matrix
plots are consistent with this grid plot.

Figure 6 includes a visualization with the original sequences
and a subset of the final concatenated time-series.

Fig. 6. Right plot: original sequences from GunPoint’s train set. The
colors indicate the different labels, ”Gun” and ”Point”. Left plot: first 500
observations of the time-series built as a concatenation of the fixed-size
sequences from GunPoint’s train set.

The algorithm we used was the one based on the Matrix
Profile [14]. Firstly, since we had the original lengths of the
sequences, we could pose the problem as a fixed-length motifs
discovery. Secondly, the Matrix Profile is known to be very
efficient and, thirdly, its parameters are few and easy to tune.

Note that this method expects to receive as input the max
number of motifs to find and thus this is actually a k-motif
algorithm. However, if we set this parameter larger than
expected (e.g. 1000 in our case), then the algorithm will return
all the motifs it can find. This is exactly what we did and the
algorithm managed to extract 25 motifs.

Finally, we built a DTW-SOM network with a 3X3 layout,
default parameters and a random sample initialization. We
then rained that network with the list of the motifs’ centers
during 50 epochs. Figure 7 shows the U-Matrix and the Winner
Matrix obtained from this DTW-SOM network and Figure 8
has the plots of the units’ sequence values.

In this dataset, we can observe that DTW-SOM was capable
of extracting some interesting information about the original
25 motifs computed with the Matrix Profile algorithm. Firstly,
we can see two clear clusters around the units 2 and 6 (i.e. in



Fig. 7. U-matrix and Winner Matrix obtained from the DTW-SOM trained
on the motifs computed from the concatenated time-series of GunPoint
sequences.

Fig. 8. Sequence values of the units after training the DTW-SOM with motifs
from the GunPoint dataset. The position of each unit’s plot in the grid is
consistent with its position in the network. Thus, the U-Matrix and the Winner
matrix plots are consistent with this grid plot.

the down-left and the up-right corners of the network).
Unit 2 corresponds to a pattern of raising the hand (either

with a gun or not) and lowering the hand. Its neighbors, units
1 and 5, have the same pattern and since they were the BMU
of a single input motif, they are essentially a cluster with unit
2.

Unit 6, on the other hand, has the pattern of lowering the
hand and raising it again. It corresponds to the end of one of
the original sequences and the start of the next one. Units 3 and
7 also have the lowering-raising patterns, however unit 3 has
more time of the raising while 7 has more time of lowering.

Finally, units 0, 4 and 8 have their own specific pattern.
Unit zero seems to have the original sequences of raising the
hand a bit lower than the rest of sequences. In other words,
they are the flat sequences in figure 6 that peak at the value
1. Unit 4 is the BMU of a single motif and encodes the ”no
action” pattern. Unit 8 has a quicker lowering pattern and thus
encodes the end of the sequences with a quicker movement.

C. Experiment with the UWaveGesture dataset

The UWaveGesture dataset [29] corresponds to accelerom-
eter recordings of right-hand gestures performed with the Wii
remote. The dataset was built from eight participants doing
eight specific gestures, which are presented on the left side

of Figure 9. The remote collects acceleration measurements
from its three axis, as presented in the right side of Figure
9, and the UCR Time Series Classification Archive has one
time-series dataset for each axis.

Fig. 9. Right plot: Gesture vocabulary and related labels used in the
UWaveGesture dataset, as presented in [29]. Left plot: Positioning of the
accelerometer axis in the Wii remote.

For this experiment, we chose to use the dataset with the x-
axis recordings, which corresponds to the lateral movements
of the Wii remote. Because in this axis the gestures 5 and
6 have a zero acceleration (and thus are only noise), we
excluded the subsequences with these classes. In order to
accelerate computation, we also sampled 400 sequences from
the train set. Finally, similarly to the previous experiment, we
concatenated the sampled sequences into a single time-series
from which we could extract motifs. Figure 10 contains the
original sequences, split by the gesture, and a subset of the
time-series that resulted from the sequences’ concatenation.

Fig. 10. Blue plots: Original sequences sampled from UWaveGesture’s
train set, split by the gesture class. Orange plot: First 1600 observations
of the time-series built as a concatenation of the fixed-size sequences from
UWaveGesture’s train set

In this experiment, we used again the Matrix Profile [14]
with a larger than expected max number of motifs in order to
extract all the fixed-length motifs. In this dataset, the algorithm
extracted 125 motifs. We then trained a DTW-SOM network
with a 4X4 layout, using the default parameters, a DTW
maximum window of 100 (to limit the warping level) and a
random sample initialization, which resulted in the U-Matrix,
the Winner Matrix and the units shown in Figure 11 and 12.



Fig. 11. U-matrix and Winner Matrix obtained from the DTW-SOM trained
on the motifs computed from the concatenated time-series of UWaveGesture
sequences.

Fig. 12. Sequence values of the units after training the DTW-SOM with
motifs from the UWaveGesture dataset. The position of each unit’s plot in the
grid is consistent with its position in the network. Thus, the U-Matrix and the
Winner matrix plots are consistent with this grid plot.

From the U-matrix we can distinguish different regions of
the DTW-SOM network. Unit 0, which forms its own cluster,
has a simple shape similar to the third gesture. This is a simple
gesture of moving the Wii remote to the right. Units 12 and 13
are far from their neighboring units and have a shape similar
to the fourth gesture, or the gesture of moving the Wii remote
to the left. These are the simplest gestures involving lateral
movement of the Wii remote and it is expected that our motif
detection algorithm would pick on these shapes.

The visually biggest cluster in the U-matrix is centered at
units 6 and 7. These units have a shape similar to the first
and eighth gestures. These gestures are made of a right lateral
movement followed by a left lateral movement. And so we
can see that the motif detection algorithm is being capable of
extracting more complex shapes.

Even though they don’t form a visually striking cluster in
the U-matrix, units 1, 2 and 5 have very similar shapes and
are the only units with a shape consistent with the left-right
lateral movement present in the seventh gesture.

Interestingly, unit 15 forms its own cluster in the lower-
right corner of the DTW-SOM network, but it has a shape
consistent with the third gesture. In other words, we have two
clusters in the network, one in unit 0 and another in unit 15,

with the same shape. This is due to the random initialization.
Because these two similar motifs were randomly assigned to
far away places in the network, they had no option but to form
two independent clusters.

V. CONCLUSION

In this paper, we argue that visually exploring the time-
series motifs computed by motif discovery algorithms can be
useful to understand and debug results. To the best of our
knowledge, no other papers investigate the problem of explor-
ing relationships between motifs and answering questions such
as: Are motifs similar to each other? Can we define clusters
of motifs?

To conduct these investigations, we propose the use of an
adapted Self-Organizing Map on the list of motif’s centers. We
called the adapted method DTW-SOM and the main changes
are (1) the use the Dynamic Time Warping distance to compute
distances between the units and the input patterns, (2) the
introduction of two new network initialization routines and
(3) the adjustment of the Adaptation phase of the training to
work with variable-length time-series sequences.

We tested DTW-SOM in a synthetic motif dataset and two
real time-series datasets called GunPoint and UWaveGesture,
respectively. From an exploration of results, we can conclude
that DTW-SOM is capable of extracting relevant information
from a set of motifs and display it in a space-efficient way.
During the experiment with the synthetic dataset, we observed
that the random sample initialization was not as robust as the
anchors initialization. Additionally, this random initialization
can also lead to the creation of distinct clusters that have the
same shapes, which is not optimal. Thus, as future work, we
propose an investigation on more robust initialization schemes
to cover the case when the user does not wish to provide
anchors.
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Eds. Berlin, Heidelberg: Springer, 2014, pp. 468–472.

[6] T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin: Springer, 2001.
[7] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find

Patterns in Time Series,” in Proceedings of the AAAI Workshop on
Knowledge Discovery in Databases, 1994, pp. 359–370.



[8] Y. Tanaka, K. Iwamoto, and K. Uehara, “Discovery of Time-Series
Motif from Multi-Dimensional Data Based on MDL Principle,”
Machine Learning, vol. 58, no. 2, pp. 269–300, Feb. 2005. [Online].
Available: https://doi.org/10.1007/s10994-005-5829-2

[9] S. Torkamani and V. Lohweg, “Survey on time series motif
discovery,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 7, no. 2, p. e1199, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1199

[10] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding Motifs
in Time Series,” in Proceedings of the Second Workshop on
Temporal Data Mining, Jul. 2002, pp. 53–68. [Online]. Available:
http://citeseer.ist.psu.edu/lin02finding.html

[11] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel
symbolic representation of time series,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, pp. 107–144, Oct. 2007. [Online]. Available:
https://link.springer.com/article/10.1007/s10618-007-0064-z

[12] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth,
“Rule Discovery from Time Series,” in Proceedings of the Fourth
International Conference on Knowledge Discovery and Data Mining,
ser. KDD’98. New York, NY: AAAI Press, 1998, pp. 16–22. [Online].
Available: http://dl.acm.org/citation.cfm?id=3000292.3000296

[13] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact
Discovery of Time Series Motifs,” in Proceedings of the 2009 SIAM
International Conference on Data Mining, ser. Proceedings. Society for
Industrial and Applied Mathematics, Apr. 2009, pp. 473–484. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611972795.41

[14] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix Profile I: All Pairs Similarity
Joins for Time Series: A Unifying View That Includes Motifs, Discords
and Shapelets,” in 2016 IEEE 16th International Conference on Data
Mining (ICDM), Dec. 2016, pp. 1317–1322, iSSN: 2374-8486.

[15] P. Nunthanid, V. Niennattrakul, and C. A. Ratanamahatana, “Parameter-
free motif discovery for time series data,” in 2012 9th International
Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology, May 2012, pp. 1–4.

[16] Y. Gao and J. Lin, “Exploring variable-length time series motifs in one
hundred million length scale,” Data Mining and Knowledge Discovery,
vol. 32, no. 5, pp. 1200–1228, Sep. 2018. [Online]. Available:
https://doi.org/10.1007/s10618-018-0570-1

[17] J. Lin and Y. Li, “Finding approximate frequent patterns in stream-
ing medical data,” in 2010 IEEE 23rd International Symposium on
Computer-Based Medical Systems (CBMS), Oct. 2010, pp. 13–18, iSSN:
1063-7125.

[18] R. Henriques, F. Bacao, and V. Lobo, “Artificial Intelligence in
Geospatial Analysis: applications of Self-Organizing Maps in the
context of Geographic Information Science,” Ph.D. dissertation, Lisboa,
2010. [Online]. Available: http://hdl.handle.net/10362/5723

[19] S. Kaski and T. Kohonen, “Exploratory data analysis by the self-
organizing map: structures of welfare and poverty in the world,” in
Neural Networks in Financial Engineering, N. Apostolos-Paul, Yaser
Refenes, Yaser Abu-Mostafa, John Moody, and A. Weigend, Eds.
Singapore: World Scientific, 1996, pp. 498–507. [Online]. Available:
http://www.cis.hut.fi/ sami/therest.html
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