
Asymmetric Loss Functions for Deep Learning
Early Predictions of Remaining Useful Life in

Aerospace Gas Turbine Engines
Divish Rengasamy1, Benjamin Rothwell 1, Grazziela P Figueredo2,3

1 Gas Turbine and Transmissions Research Centre
2The Advanced Data Analysis Centre

3School of Computer Science, The University of Nottingham, UK
Email: {Divish.Rengasamy, Benjamin.Rothwell, Grazziela.Figueredo}@nottingham.ac.uk

Abstract—Asymmetric loss functions have been successfully
applied to deep learning for image analysis and imbalanced
classification. In this paper, we extend the use of particular types
of weighted loss functions, namely asymmetric loss functions,
to investigate how predictions of engine remaining useful life
(RUL) in aerospace are affected. Within prognostics and health
management, the main metric used to evaluate deep learning
RUL predictions is the scoring function. Our hypothesis is that
by using asymmetric loss functions we will improve results for this
metric. In order to investigate our hypothesis, we test 4 different
asymmetric loss functions, i.e, Mean Square Logarithmic Error-
Mean Square Error, Linear-Mean Square Error, Linear-Linear,
and Quadratic-Quadratic and evaluate whether and how much
they affect different deep learning architectures performance.
Results show that the use of asymmetric loss functions improve
RUL predictions for the case study investigated.

Index Terms—Deep Learning, Weighted Loss Functions, Asym-
metric Loss Functions, Prognostic Health and Management,
Condition-Based Management, Remaining Useful Life. Predictive
Maintenance, Aerospace Maintenance Repair and Overhaul

I. INTRODUCTION

In aerospace industry, modern aircrafts are fitted with a
wide array of sensors with the objective to optimise safety,
economy and efficiency. Sensors constantly perform surveil-
lance of equipment parts and collect information on their
current condition. Examples of the type of data collected
are components’ temperature, vibration, pressure and possi-
ble faults. The data collected are used for automated, in-
telligent diagnostics and prognostics that will determine the
aircraft’s maintenance needs. This methodology using sensor
data coupled with intelligent methods for prognostics and
health management is known as condition-based maintenance
(CBM). One of the main goals of CBM for aerospace is
to accurately predict the Remaining Useful Life (RUL) of
an equipment. For safety reasons, effective CBM solutions
for those problems are achieved when early or exact RUL
predictions are performed, as opposed to late predictions. And
we are particularly interested in predictions for aircraft gas
turbine engines.

Over the past decade, deep learning has been used as a tool
to assist CBM for aerospace with satisfactory results [1]. The
role of deep learning in this context is to make sense of the

sensor data captured, and to perform reliable predictions of
the current health state of the aircraft parts. In this paper, we
extend the work from Rengasamy el al. [2] and propose the use
of asymmetric loss functions for exact and early predictions
of gas turbine engines’ RUL. Asymmetric loss functions work
by modifying the learning phase and influencing the loss
corresponding to the the prediction error of each data instance.
These functions have been successfully coupled with deep
learning for image analysis [3], [4], handling imbalanced
dataset [3], [5] and economic forecasting [6]–[8]. A review of
the literature has revealed that those functions are not widely
used in sensor data. This is mostly due to the fact that they
add bias to the learning process and are likely to affect the
overall error of predictions in time series and signal data.
For aerospace CBM, however, there is the need to penalise
solutions that produce late RUL predictions, as they increase
safety risks. In addition, the literature survey shows that cur-
rent research in data-driven CBM mostly focuses on assessing
the predictive power of different deep learning architectures.
To the best of our knowledge, the investigation of different
types of asymmetric loss functions for deep learning RUL
predictions is scarce.

To address this gap, we investigate 4 asymmetric loss func-
tions, namely, Mean Square Logarithmic Error-Mean Square
Error (MSLE-MSE), Linear-Mean Square Error (LIN-MSE),
Linear-Linear (LIN-LIN), and Quadratic-Quadratic (QUAD-
QUAD). In addition, we assess LIN-MSE and LIN-LIN per-
formance under different parameters. The objective is to force
deep learning models to penalise those instances where late
prediction errors occur. We employ the loss functions inves-
tigated to Deep Feedforward Neural Network, 1-Dimensional
Convolutional Neural Network, and Bidirectional Long Short-
Term Memory architectures. The methodology is tested on
the Commercial Modular Aero-Propulsion System Simulation
(CMAPSS) data from NASA [9]. Experimental results show
that asymmetric loss functions help us achieve significant
improvement for RUL prediction for this case study.

This paper is organised as follows. Section II provides a
background on loss functions and asymmetrical loss functions.
In addition, it reviews the deep learning architectures tested
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in this paper applied to RUL. Sections III outlines the
methodology and experimental design adopted. Section IV
presents the results and discussions. Finally, the conclusions
and future work are drawn in Section V.

II. BACKGROUND

This section provides the background on asymmetric loss
functions, the damage propagation within a gas turbine engine
CMAPSS data set, and the current approaches to predicting
RUL for CMAPSS using deep learning models for aerospace
applications.

A. Asymmetric Loss Functions

The process of training a deep learning neural network aims
at adjusting the network’s weights to enable the mapping of
a set of inputs to into a set of outputs, based on the available
training data. A neural network model is usually trained using
the backpropagation algorithm with stochastic gradient descent
optimisation to obtain the most suitable set of weights that will
minimise prediction error for the training set. Within deep
learning, loss function represents the error that needs to be
minimised for training process. In this paper, we use the term
loss function interchangeably with cost function, error function
and the objective function.

For regression tasks the typical loss functions are the
absolute error loss (AE) and the squared error loss. Given x
as an array of attributes (or independent variables) within the
training set, y as the dependent variable and ŷ the deep neural
network predictions for y, the absolute error function fAE

is calculated as the difference between actual and predicted
values, as follows:

fAE(ŷi, yi) = |ŷ − y| (1)

The square error loss function fSE is determined by the
following equation:

fSE(ŷi, yi) = (ŷ − y)2 (2)

Using fAE as an example, we can transform the loss function
from (1) to a weighted loss function, by multiplying it with a
weight a, as follows:

fweightedAE(a, ŷi, yi) = a|ŷ − y| (3)

The weight, a enable the control of loss’s magnitude by chang-
ing gradient of loss function. Additionally, we can redefine the
weighted fAE as follows:

fweightedAE(a, ŷi, yi) =

{
−a(ŷ − y) if d is ≤ 0
a(ŷ − y) otherwise

(4)

Where d = ŷi − yi. To modify the weighted loss function
from (4) to an asymmetric loss function, we assign another
weight parameter, b when ŷi − yi > 0 as follows:

fAsymmetricLoss(a, ŷi, yi) =

{
−a(ŷ − y) if d is ≤ 0
b(ŷ − y) otherwise

(5)
In cases when a 6= b the function represented in (5) becomes
a LIN-LIN asymmetric loss function.

The deep learning models are then implemented using the
asymmetric loss function instead of the traditional symmetric
loss functions, such as MSE and MAE. In addition to the
LIN-LIN loss functions, we also employs 3 other asymmetric
loss functions, namely, LIN-MSE, MLSE-MSE, and QUAD-
QUAD as follow:

LIN -MSE =


−a(ŷ − y) if d is ≤ 0∑N

i=1(ŷi − yi)
2

N
otherwise

(6)

MSLE-MSE =


∑N

i=1(log ŷi − log yi)
2

N
if d is ≤ 0∑N

i=1(ŷi − yi)
2

N
otherwise

(7)

QUAD-QUAD =


2a(ŷi − yi)

2

if d is ≤ 0
2(a+ (1− (2a)))(ŷi − yi)

2

otherwise
(8)

The behaviour of the different loss functions investigated
is illustrated in Fig 1. From Fig 1, we observe that when the
error < 0 (error = ŷ−y), the loss values are lower compared
to error ≥ 0 using asymmetric loss functions. The asymmetric
loss functions therefore allow more severe penalisation for late
RUL prediction.

B. Damage Propagation in Gas Turbine Engine

As mentioned in Section I, the gas turbine engine degra-
dation data used for testing asymmetric loss functions in this
work is CMAPSS [9]. The data is obtained from a high fidelity
simulation of a complex thermo-dynamical system that closely
models a real aerospace engine. The failure of the simulated
engine is initiated through random point of deterioration. The
deterioration continues with increasingly worsening effect.
This is modelled after the Arrhenius Model, Coffin-Mason
Mechanical Crack Growth Model, and Eyring Model [9], [10].
The commonality between the three deterioration models listed
are the exponential behaviour of fault evolution. The system
measures the loss of efficiency and flow until a failure criterion
is reached. The degradation and damage propagation trend are
modelled as follows:

h(t) = 1− exp(a(t)tb(t)) (9)

Equation (9) is a generalised Equation for the health index of
gas turbine engine, h(t) with respect to time. Subsequently,



the system will include a non-zero initial degradation, d. The
initial non-zero degradation are common in real system due to
manufacturing inefficiencies or error.

h(t) = 1− d− exp(a(t)tb(t)) (10)

The decay of efficiency, e(t) and the loss of flow, f(t) can be
described using (10) as follow:

e(t) = 1− de − exp(ae(t)t
be(t)) (11)

f(t) = 1− df − exp(af (t)t
bf (t)) (12)

Efficiency and flow are modelled separately as different faults
exhibit different trajectories of degradation for each of the
terms. The terms from (11) and (12) are combined to as follow
form the final model of damage propagation in gas turbine
engine:

H(t) = g(e(t), f(t)) (13)

Using the damage propagation model in (13) the data is
generated as follows:

1) Define initial deterioration parameters, e0 and f0 for (11)
and (12).

2) Impose an exponential rate of change for flow and
efficiency loss for each data set, denoting an otherwise
unspecified fault location with increasingly worsening
effect by setting the parameter a and b in (10).

3) Stop when failure criterion (loss of flow and efficiency)
is reached. The failure criterion in this case is when
H(t) = 0

4) Add mixture noise model into final output data reflect
real world scenario. Additionally, the feature data are
collected from the sensors measurements listed in Ta-
ble I. By combining the output and feature data, the

Fig. 1: Symmetric loss functions such as MSE and MAE com-
pared to different asymmetric loss functions, namely MLSE-
MSE, LIN-MSE, and LIN-LIN. The numerical value -0.5, -2.0,
and 6.0 represents the weights, a and b of the linear part of
LIN-MSE and LIN-LIN loss.

complete dataset can be obtained for training and testing
deep learning models to perform RUL prediction.

C. Related Work on Remaining Useful Life Prediction for
CMAPSS

In this section, we review the relevant applications of the
deep learning architectures tested with our approach. One of
the major shortcomings of deep learning applied to aerospace
research, as pointed out by Rengasamy et al. [1], is the lack
of real-world, publicly available large engine sensor data for
benchmarking. For this reason, within the majority of the
related literature, including the work reviewed in this section,
deep learning architectures are tested only on the Commer-
cial Modular Aero-Propulsion System Simulation (CMAPSS)
dataset. CMAPSS is a gas turbine engine degradation data
introduced by Saxena and Goebel [9]. This dataset is further
described in Section III-A.

Tamilselvan et al. [11] applies a Deep Belief Network
(DBN) classifier consisting of 3 hidden-layers to CMAPSS.
Conjugate gradient approach introduced by Hinton et al. [12]
fine-tunes the DBN classifier after training. DBN fault clas-
sification is compared to Support Vector Machines (SVM),
Backpropagation Neural Network (BNN), Self-Organising
Maps [13] and Mahalanobis Distance. For the authors’ exper-
iments DBN reaches better accuracy for 5 out of 6 operating
conditions tested. The authors uses a health index classification
approach to determine the RUL based on the remaining cycles.

Zhang et al. [14] test Multiobjective Deep Belief Networks
Ensemble (MODBNE) to CMAPSS. The authors focus on
minimising RUL prediction errors, while maximising the di-
versity of outputs produced. The optimised DBNs are com-
bined using single-objective differential evolution to create an
ensemble of predictors. Results show that MODBNE achieves
the most accurate estimation of RUL when compared to DBN,
Sequential Kalman Filter, Multi Layer Perceptron, Extreme
Learning Machine (ELM), Hierarchical ELM, SVM, least
absolute shrinkage and selection operator (LASSO), Extra
Tree Regressor, K Neighbors Regressor, Gradient Boosting
and Random Forest.

Yuan et al. [15] and Zheng et al. [16] employ LSTM
to predict RUL on CMAPSS. In their approach RUL to is
converted to piece-wise RUL. RUL is set to a constant value to
mimic the initial condition of the engine before degradation;
subsequently, it linearly decreases. LSTM is compared with
standard RNN, GRU AdaBoost LSTM, CNN, SVM, Rele-
vance Vector Regression (RVR), and MLP. Results show that
the LSTM has the best performance for both RUL estimation
and fault occurrence predictions.

Ellefsen et al. [17] uses Restricted Boltzmann Machine
(RBM) to pretrain the model in an unsupervised manner to
automatically generate new degradation related features from
the raw data. Subsequently, the newly generated features are
used as input for LSTM to predict RUL. Hyperparameters
are optimised by Genetic Algorithms (GA). Results show
that the combination of RBM and LSTM achieves outcomes



comparable those from the state-of-the-art at the time the work
was published.

Wang et al. [18] show that Bi-LSTM’s hidden layers
implicitly extract degradation features without unsupervised
pretraining of the model, producing good results. Babu et
al. [19] obtain increase in prediction accuracy using Deep
Convolutional Neural Networks (DCNN) when compared to
MLP, SVM, and RVR. Li et al. [20] uses DCNN to estimate
the RUL of aircraft turbofan engines. The authors employ a
DCNN and training is conducted using mini-batch gradient
descent [21]. Results from the DCNN are compared to LSTM,
RULCLIPPER [22], Random Forest, Gradient Boosting, SVM,
Echo State Network with Kalman filter [23], Multi-objective
deep belief networks ensemble [14] and Time window-based
NN [24]. Results reveal that CNN outperforms LSTM, RNN,
Deep Neural Network (DNN) for RMSE.

Rengasamy et al. [2] uses a dynamically weighted loss
function to improve the RUL prediction. The dynamically
weighted loss function adjust the loss based on the error
produced. Higher error are further penalised more using the
dynamically weighted loss function, putting more focus on
harder instances similar to the idea of Focal loss [3]. A
comparison is carried out between a non-weighted and dynam-
ically weighted loss function using DNN, CNN1D, Bi-LSTM,
and Bi-gated recurrent unit (Bi-GRU). Results show that by
using dynamically weighted loss function, the deep learning
models shows improved RUL score. While a dynamically
weighted loss function is employed by Rengasamy et al. [2],
the loss function can be further improved by incorporating
domain knowledge of CBM and penalising late predictions to
create an early predictions bias. The early prediction bias in

deep learning models should produce an overall better RUL
score. Therefore, in the subsequent sections we investigate the
difference between asymmetric and symmetric loss functions
using deep learning models for RUL predictions.

III. METHODOLOGY

This section discusses the methodology and the experi-
mental design to test our approach. We initially discuss the
CMAPSS dataset pre-processing process. Subsequently, we
present the deep learning architectures employed and the
asymmetric loss functions investigated. Finally we introduce
the evaluation metrics adopted.

A. Benchmark Dataset

The CMAPSS dataset contains training and test sets with 6
different operating conditions. The training set comprises of
the complete engine life cycle data (run until failure) while
the testing set data has a RUL range of 10 to 150 cycles. The
training data consist of 100 engines with a total of 20631 cycle
while the testing data consist of 100 engines with a total of
13096 engine cycles. The dataset consists of the engine unit
number, the operating cycle number of each unit, the operating
settings and the raw sensor measurements. The raw sensor
features are shown in Table I.

1) Data Pre-processing: The CMAPSS data consists of
3 operation settings and 21 sensors features. We discard 8
of the 21 features as they remained constant throughout the
gas turbine engine degradation process and provide no useful
information. Additionally, we use the [0, 1] normalisation on
the features to ensure they are represented equally in the
learning process. Furthermore, the value of the maximum cycle

TABLE I: Description of the CMAPSS dataset sensor features

Symbol Description Unit

T2 Total temperature at fan inlet ◦R
T24 Total temperature at Low Pressure Compressor outlet ◦R
T30 Total temperature at High Pressure Compressor outlet ◦R
T50 Total temperature at Low Pressure Turbine outlet ◦R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) —
Ps30 Static pressure at HPC psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio —
farB Burner fuel-air ratio —
htBleed Bleed Enthalpy —
Nfdmd Demanded fan speed rpm
PCNfRdmd Demanded corrected fan speed rpm
W31 High Pressure Turbine coolant bleed lbm/s
W32 Low Pressure Turbine coolant bleed lbm/s



Fig. 2: Maximum RUL of gas turbine engine are capped to
100 cycle to distinguish the healthy state and degradation state
during preprocessing stage.

is capped at 100 and remained constant until degradation has
occur as shown in Fig 2. This allows the deep learning models
to differentiate between the healthy state (RUL = 100) and
unhealthy state (RUL < 100). Even though degradation can
happen randomly, the early stages of engine cycle are assumed
to be usable and functional. The labels are the RUL cycle for
each instance of the data.

B. Deep Learning Architectures

We employ the following deep learning model architectures
to test the different loss functions in Section II-A, (1) Bi-
LSTM, (2) DNN, and (3) CNN1D. Their hyperparameters are
listed in Table II. 1

An L2 regulariser is added to the dense layers of all models
shown in Table II to reduce overfitting. The L2 regulariser
prevents overfitting by limiting the complexity of the network
through the penalisation of larger weights, thus, keeping the
weights of the network smaller. Similarly, a dropout [25] rate
of 0.2 is also added to all dense layers in models tested to
mitigate overfitting. Dropout is a technique for regularising
the network by randomly setting the output of units to zero.

C. Loss Functions

For the choices of loss functions, we implement MSE
and MAE for symmetric loss. As for asymmetric loss,
we employ MLSE-MSE, LIN-MSE, LIN-LIN, and QUAD-
QUAD as described in Section II-A. LIN-LIN, LIN-MSE,
and QUAD-QUAD have weight parameters that we can
control as shown in (5), (6), and (8) respectively. There-
fore, we uses a = [0.1, 0.5, 1.0] for LIN-MSE, (a, b) =
[(1.0, 2.0), (2.0, 4.0), (2.0, 6.0)] for LIN-LIN, and a = [0.45]
for QUAD-QUAD to experiment with different level of asym-
metricities in loss functions. The a and b values are chosen to
approximate properties of MSE and MAE with slight bias as

1The CMAPSS data and code in this paper can be accessed
on https://github.com/divishrengasamy/Asymmetric-Loss-Functions-for-Deep-
Learning-Early-Predictions-of-Remaining-Useful-Life-in-Aerospace-/

Fig. 3: Score value as the error increases. The score is
calculated using the scoring function (Equation (14)), where
late predictions (positive errors) receive higher penalisation.

large deviation will cause extreme biasing in the model that
leads to bad performance.

D. Evaluation

NASA published a preferred method of performance eval-
uation for CMAPSS using the idea of asymmetric scoring,
named scoring function. The scoring function produces a score
that evaluate the RUL predictions. As mentioned previously,
in the context of CBM, it is desirable to predict the time of
failure early so we can intervene before further damage occurs.
Therefore, the scoring is asymmetric around the actual time
of failure such that late predictions are more heavily penalised
than early predictions. The scoring function is calculated as
follows:

Score =



n∑
i=1

e
−di
10 − 1 if di ≤ 0

n∑
i=1

e
di
13 − 1 otherwise

(14)

Where di = RULpredicted − RULactual, i is the current
cycle, and n represents the maximum cycle. Fig 3 shows the
asymmetric property of the scoring function in (14) where
lower scores are given to early predictions. Therefore, the
objective is to reach predictions that minimise the score.

Finally, each combination of deep learning models and loss
functions are repeated 3 times to obtain the mean and 95%
confidence intervals.

IV. RESULTS

Table III shows the comparison of RUL score between Bi-
LSTM, DNN, and CNN1D using MSE, MAE, MLSE-MSE,
LIN-MSE, LIN-LIN, and QUAD-QUAD loss functions. The
results shows that the best overall score of 1027.1 and 1725.0
for Bi-LSTM and DNN is using asymmetrical loss function
LIN-LIN with parameters (a = 1.0, b = 2.0) while CNN1D



TABLE II: Hyperparameters of all models used to test the asymmetric loss functions

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 3
LSTM Layer 1 units: 50
LSTM Layer 2 units: 25
Dense Layer 1 units: 50
Activation function: ReLU
Dropout rate: 0.2
Kernel Regularisation: L2 Regularisation

DNN Number of layers: 6
Dense Layer 1 units: 100
Dense Layer 2 units: 250
Dense Layer 3 units: 100
Dense Layer 4 units: 250
Dense Layer 5 units: 12
Dense Layer 6 units: 6
Activation function: ReLU
Dropout rate: 0.2
Kernel Regularisation: L2 Regularisation

CNN1D Number of layers: 5
Conv1D Layer 1: [Filter: 60, Kernel Size: 2]
Conv1D Layer 2: [Filter: 60, Kernel Size: 2]
MaxPooling 1D Layer
Dense Layer 1 units: 100
Dropout rate: 0.2
Kernel Regularisation: L2 Regularisation

TABLE III: Final score using Bi-LSTM and DNN with symmetrical loss functions: MSE, and MAE and asymmetrical loss
functions: MLSE-MSE, LIN-MSE, LIN-LIN, and QUAD-QUAD. The gray numbers in the square brackets represent the 95%
confidence interval and the bolded numbers highlight the best score for each deep learning model.

Loss Functions Score [95% Confidence Interval]

Bi-LSTM DNN CNN1D

MSE 1554.4 [1039.5, 2069.2] 4289.9 [3810.8, 4768.9] 1044.7 [690.59, 1398.9]
MAE 1162.4 [721.84, 1603.0] 2001.1 [1263.9, 2738.4] 1365.6 [975.42, 1755.9]

MLSE-MSE 3037.1 [1688.4, 4385.8] 5049.9 [4694.3, 5405.5] 3761.8 [2741.4, 4782.3]
0.1LIN-MSE 2847.4 [1963.1, 3731.7] 4509.0 [4026.9, 4991.1] 3653.1 [2853.2, 4453.0]
0.5LIN-MSE 2965.0 [0, 6776.0] 3227.3 [2820.1, 3634.5] 3821.2 [430.62, 7211.9]
1.0LIN-MSE 2301.5 [1902.3, 2700.6] 3255.6 [2941.7, 3569.6] 2132.3 [600.31, 3664.2]
1.0LIN-2.0LIN 1027.1 [498.20, 1556.1] 1725.0 [1401.7, 2048.4] 1357.3 [814.79, 1899.8]
2.0LIN-4.0LIN 1670.5 [1596.6, 1744.3] 2034.9 [1942.3, 2127.5] 1392.1 [81.903, 2702.4]
2.0LIN-6.0LIN 2125.0 [1908.2, 2341.7] 1769.0 [1447.5, 2090.5] 1665.5 [1550.8, 1780.1]
QUAD-QUAD 1647.3 [993.25, 2301.5] 2203.8 [0, 5597.5] 803.90 [670.78, 937.03]

has the best score of 803.9 using the QUAD-QUAD loss
functions. This shows that deep learning models are able to
take advantage of the bias created by asymmetric loss func-
tions to achieve early prediction and produce the lowest score.
However, we also observe that symmetrical loss achieves a
better score than asymmetrical loss in many occasions. For
example, Bi-LSTM and DNN with MAE achieve a better score
than all asymmetrical loss functions except for LIN-LIN with
parameters (a = 1.0, b = 2.0). Similarly for CNN1D, MSE
achieves the best score after QUAD-QUAD loss function.
This shows that using asymmetrical loss require extensive
parameters search and optimisation to obtain an optimal score.

We conjecture that high score from using some asymmetrical
loss functions is caused by the strong bias it created. We
observe that the best performing asymmetrical loss functions
are only slightly skewed compare to its symmetrical loss
function counterpart.

In addition, we use a = [0.6, 0.7, 0.8, 0.9] for the QUAD-
QUAD loss functions and found that it does not converge
for Bi-LSTM unless the architecture is altered. Therefore,
we omitted the results to keep the architecture unchanged
throughout the experimentation process. Furthermore, we ex-
perimented with recurrent dropout [26] for Bi-LSTM but
found no improvement in the model’s performance. The scores



within the grey square bracket in Table III represent the lower
and upper bound of the 95% confidence interval. The limit of
the lower bound is set to zero as a negative is not possible,
as shown in Fig 3. For example, we set the confidence lower
bound of Bi-LSTM with 0.5LIN-MSE and DNN with QUAD-
QUAD loss to zero due to negative lower bound scores.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that RUL predictions of
gas turbine engine were improved by using deep learning
models with asymmetrical loss functions. Those functions act
by creating a bias toward early predictions, with the objec-
tives to optimise CBM and to reasure safety. Asymmetrical
loss functions are aimed at improving RUL score, while
the deep learning architectures remain unchanged. The deep
learning models were tested on symmetrical loss functions,
MSE and MAE and on asymmetrical loss functions, MSLE-
MSE, LIN-MSE, LIN-LIN, and QUAD-QUAD. Experimental
results revealed improvements in the RUL score on CMAPSS
dataset using 3 different deep learning architectures, i.e., DNN,
CNN1D, and Bi-LSTM when asymmetrical loss function was
used. We also showed that not all cases of asymmetrical loss
functions perform better than symmetrical loss functions; and
it requires optimisation and experimentation to select the most
suited asymmetrical loss functions.

For future work, we will improve the asymmetrical loss
function by incorporating domain knowledge from principles
of physics and engineering related to gas turbine engine.
Furthermore, further analysis will be conducted to understand
the effects of asymmetrical and symmetrical loss functions
on other aerospace sub-system RUL datasets. Finally, we will
investigate uncertainty-based asymmetrical loss functions to
create deep learning models for implicit uncertainty quantifi-
cation.

ACKNOWLEDGEMENTS

This work is funded by the INNOVATIVE doctoral pro-
gramme. The INNOVATIVE programme is partially funded
by the Marie Curie Initial Training Networks (ITN) action
(project number 665468) and partially by the Institute for
Aerospace Technology (IAT) at the University of Nottingham.

REFERENCES

[1] D. Rengasamy, H. P. Morvan, and G. P. Figueredo, “Deep learning
approaches to aircraft maintenance, repair and overhaul: a review,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 150–156.

[2] D. Rengasamy, M. Jafari, B. Rothwell, X. Chen, and G. P. Figueredo,
“Deep learning with dynamically weighted loss function for sensor-
based prognostics and health management,” Sensors, vol. 20, no. 3, p.
723, 2020.

[3] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in 2017 IEEE International Conference on Computer
Vision (ICCV), Oct 2017, pp. 2999–3007.

[4] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[5] N. Abraham and N. M. Khan, “A novel focal tversky loss function
with improved attention u-net for lesion segmentation,” in 2019 IEEE
16th International Symposium on Biomedical Imaging (ISBI 2019), April
2019, pp. 683–687.

[6] Y. Ulu, “Optimal prediction under linlin loss: Empirical evidence,”
International Journal of Forecasting, vol. 23, no. 4, pp. 707–715, 2007.

[7] P. H. Franses, R. Legerstee, and R. Paap, “Estimating loss functions of
experts,” 2011.

[8] C. Pierdzioch, J.-C. Rülke, and G. Stadtmann, “Oil price forecasting
under asymmetric loss,” Applied Economics, vol. 45, no. 17, pp. 2371–
2379, 2013.

[9] A. Saxena et al., “Damage propagation modeling for aircraft engine run-
to-failure simulation,” in I Conf on Prog and Health Man, Oct 2008.

[10] K. Goebel, H. Qiu, N. Eklund, and W. Yan, “Modeling propagation of
gas path damage,” in 2007 IEEE Aerospace Conference, March 2007,
pp. 1–8.

[11] P. Tamilselvan and P. Wang, “Failure diagnosis using deep belief learning
based health state classification,” Rel Eng & Sys Safety, vol. 115, 2013.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comp, vol. 18, no. 7, pp. 1527–1554, 2006.

[13] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, Sep 1990.

[14] C. Zhang et al., “Multiobjective deep belief networks ensemble for
remaining useful life estimation in prognostics,” IEEE Tran on Neural
Nets and Learning Systems, vol. PP, pp. 1–13, 07 2016.

[15] M. Yuan et al., “Fault diagnosis and remaining useful life estimation of
aero engine using LSTM neural network,” IEEE Int Conf on Aircraft
Utility Systems, pp. 135–140, 10 2016.

[16] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation,” in 2017
IEEE International Conference on Prognostics and Health Management
(ICPHM), June 2017, pp. 88–95.

[17] A. L. Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang,
“Remaining useful life predictions for turbofan engine degradation using
semi-supervised deep architecture,” Reliability Engineering System
Safety, vol. 183, pp. 240 – 251, 2019.

[18] J. Wang, G. Wen, S. Yang, and Y. Liu, “Remaining useful life esti-
mation in prognostics using deep bidirectional lstm neural network,” in
2018 Prognostics and System Health Management Conference (PHM-
Chongqing), Oct 2018, pp. 1037–1042.

[19] G. S. Babu, P. Zhao, and X. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in
DASFAA, 2016.

[20] X. Li et al., “Remaining useful life estimation in prognostics using deep
convolution neural networks,” Rel Eng & Sys Safety, vol. 172, 12 2017.

[21] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[22] E. Ramasso, “Investigating computational geometry for failure prog-
nostics,” International Journal of Prognostics and Health Management
(2153-2648), vol. 005, pp. 1–18, 07 2014.

[23] Y. et al. Peng, “A modified echo state network based remaining useful
life estimation approach,” in IEEE C. on Prog and Health Man, 2012.

[24] L. Pin, C.-K. Goh, and K. Chen Tan, “A time window neural network
based framework for remaining useful life estimation,” in Int Joint Conf
on Neural Networks, 07 2016, pp. 1746–1753.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[26] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” pp. 1019–1027, 2016.




