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Abstract—In this paper, we present an extensive study of differ-
ent neural network-based approaches and loss functions applied
to the Multiple Instance Learning (MIL) problem and binary
classification. In the MIL setting, training is performed on small
sets of instances called bags, where each positive bag contains at
least one positive instance and each negative bag contains only
negative instances. We propose a new loss function based on the
generalised mean and an effective training strategy particularly
suited to this setting and to problems where the instances of one
class contain a considerable amount of label noise. Furthermore,
we present a probabilistic approach to dynamically estimate
the label noise in this unbalanced binary classification setting
and utilise it to automatically modulate the hyper-parameter of
our proposed loss function. We experimentally evaluated our
approach on a number of standard benchmarks for binary
classification and showed that it outperforms standard neural
network optimisation algorithms as well as most state-of-the-
art MIL methods, both on numerical/categorical vector data
with MLP architectures and images with Convolutional Neural
Networks.

Index Terms—Multiple Instance Learning, Label Noise, Neural
Networks

I. INTRODUCTION

Multiple Instance Learning (MIL) denotes a specific type
of supervised learning, where instances are grouped into sets,
called bags, and labels are only available at the bag level and
not for each individual instance. Traditionally, MIL has been
used for binary classification problems where a bag is labelled
positive if it contains at least one positive instance and labelled
negative otherwise, i.e. if all instances are negative. This type
of unbalanced scenario has numerous applications in different
fields, where the labels for one of the classes are uncertain
or missing. For example, for spam e-mail classification, credit
card fraud detection, medical data classification, image classi-
fication and video analysis.

The MIL setting is challenging for many machine learning
algorithms, as label information is unbalanced across classes,
and it is not known which features and which particular
instances in the positive (and negative) bags are discriminant
and relevant. Note that this problem is different from “simple”
classification with unbalanced data [1], [2], as in addition to an
under- or over-represented class in the training set, the labels of
one of the classes are noisy or not assigned to every instance.
Traditional approaches tackle this problem with specific deci-
sion tree-based or feature selection and projection algorithms
or with classical methods like k-Nearest Neighbours, Support

Vector Machines or Neural Networks that have been modified
to cope with bags of multiple instances. However, approaches
that iteratively minimise an objective function, like standard
Neural Networks through gradient descent-based algorithms,
face particular challenges since many cost functions suitable
for MIL are not differentiable and non-convex. Nevertheless,
neural network models have some properties that are desirable
in many machine learning settings and practical applications.
For example, their robustness to noise, their modularity and
layer-wise structure leading to a wide variety of training strate-
gies and architectures adapted to specific machine learning
problems, and, finally, their capacity to automatically extract,
select and combine features from data at different levels of
abstraction. Also, recent advances on deep neural network
models with a wide variety of different architectures have
led to state-of-the-art performance on numerous applications.
However, their robustness to label noise and their applicability
to the MIL setting has not been fully studied yet.

In this paper, we will introduce a new algorithm for training
neural network for binary classification with label noise using
a MIL approach. We will present different loss functions that
have been proposed for MIL, and investigate their behaviour
and performance on standard binary classification benchmarks
where different amounts of unbalanced label noise is in-
troduced. To conduct a controlled and extensive study, we
modified the training sets such that the labels of a certain
proportion of positive instances is switched to negative. Then,
we will propose a new loss function based on the generalised
mean computed on the bags. The advantage of this function is
that it is differentiable everywhere, and, compared to functions
proposed in the literature, it has a parameter p > 0 ∈ R
that controls the way the individual instances in the bag con-
tribute to the bag label prediction, ranging from the standard
arithmetic mean (p = 1) to the max function (p → ∞). We
further propose an algorithm to automatically determine an
appropriate p depending on the estimated label noise in the
training dataset. We experimentally show on different datasets
and neural network architectures that our generalised mean-
based training approach outperforms other loss functions and
MIL algorithms in most cases. We evaluated its performance
in terms of MIL classification rate using standard benchmarks
and compared it to the state of the art, and its robustness
to label noise on public datasets where we introduced a
considerable amount of noise.
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II. RELATED WORK

The MIL problem has been first formulated by Dietterich et
al. [3] who proposed an iterative algorithm to select discrim-
inative features defined by so-called Axis-Parallel Rectangles
(APR). They evaluated their approach on the drug prediction
dataset “MUSK” which has been widely used as a benchmark
since then. Auer [4] presented a theoretical complexity anal-
ysis and developed an efficient APR-based algorithm called
MULTINST.

Maron et al. [5] proposed the Diverse Density (DD) al-
gorithm that considers each bag as a manifold and identifies
positive instances by searching intersection points of positive
manifolds that are far from the negative ones. An extension
called EM-DD has been proposed by Zhang and Goldman [6]
modelling the instance labels as latent variables estimated by
the EM algorithm. Wang and Zucker [7] developed a method
called Citation-kNN based on the k-Nearest Neighbour algo-
rithm using a reciprocal distance measure between bags based
on the Hausdorff distance. Two approaches based on Support
Vector Machines (SVM) have been proposed by Andrews et
al. [8]. The first one, called mi-SVM, takes into account the
unknown instance labels of the bags, whereas the second one,
called MI-SVM, tries to maximise the margin at the bag level.
The optimisation is performed using mixed-integer quadratic
programming. Another instance-level kernel-based method has
been proposed by Gärtner et al. [9] using a linear, polynomial
or Gaussian kernel measuring the similarity between bags.
Since then, many other kernel-based MIL algorithms have
been proposed [10]–[15].

Another effective approach for MIL is to train decision
trees. Ruffo [16], for example, in his RELIC method defined
multiple-instance concepts that are used as decision rules.
Chevaleyre and Zucker [17] modified the ID3 algorithm
by introducing a new bag-level split criterion called multi-
instance entropy. Similarly, Blockeel et al. [18], in their MITI
algorithm, proposed a modified Gini impurity measure for
the tree construction. A Random Forest approach has been
proposed by Leistner et al. [19], where the unknown instance
labels are retrieved by several training runs in an deterministic
annealing procedure. Straehle et al. [20] extended the MITI
method with a non-linear splitting rule and an optimal tree
output combination strategy in a random forest framework.
Weidmann et al. [21] developed a generalised multiple in-
stance learning framework by defining three different prob-
lems: presence-based, threshold-based and count-based MIL,
and they proposed a two-level classification method for solving
these problems using a decision tree approach.

Recently, Komárek and Somol [22], presented Bag-Level
Randomised Trees (BLRT), where extremely randomised
trees [23] are trained using a bag-level splitting criterion based
on the number of positive instances in a bag.

Also neural network-based MIL approaches have been
presented in the literature. Ramon and De Raedt [24] were
one of the first to propose a neural network for MIL, trained
with backpropagation and a smooth max function, i.e. log-exp-

sum, to compute instance probabilities. Zhou and Zhang [25]
proposed the BP-MIP algorithm training a 2-layer Multi-
Layer Perceptron with sigmoid activation functions and an
objective function computed on the instance with maximum
value in each bag. Later, they presented two extensions of their
approach [26] by using DD for feature scaling or Principal
Component Analysis for feature selection before doing the
BP-MIP training. In [27], the same authors proposed a neural
network-based method using Radial Basis Functions (RBF),
where the centres of the RBFs are determined by a clustering
algorithm operating on bags and using the Hausdorff distance.

Recently, deep neural network models have been used for
MIL. Wang et al. [28] proposed two approaches, mi-Net
and MI-Net, performing the pooling within bags respectively
at the instance level or at the embedding level. They also
employed deep supervision and skip connections to further
improve the performance. Ilse et al. [29] in their approach
rendered this pooling operation trainable using an attention-
based mechanism, thus learning also the contribution of each
instance within a bag. Finally, Tu et al. [30] used a Graph
Neural Network (GNN) to model the structural relationship of
instances in the bags, and trained this neural network end to
end.

We propose to use the MIL formulation for learning neural
networks with instance label noise, i.e. bags are formed
artificially by assuming that the positive bags contain at least
one correctly labelled instance, and negative bags contain only
negative instances.

Recently, several approaches for training neural network
models under label noise have been presented in the literature.
For example, Gosh et al. [31], [32] showed that the loss
function based on the Mean Absolute Error (MAE) is robust
to label noise. Zhang et al. [33] generalised their approach
and proposed a more powerful loss function based on the
negative Box-Cox transform [34]. Another approach proposed
by Patrini et al. [35] is to correct the loss during training
based on the estimated label noise. Reed et al. [36] proposed
to gradually replace the noisy labels of instances with their
neural network predictions. And Ren et al. [37] re-weighted
the individual training instances based on their gradient, but
an additional small training set with clean labels is required.

In this paper, we propose a new MIL approach using a neu-
ral network model trained with a specific loss function based
on the generalised mean function, and we apply our method
to two different types of scenarios: first, the standard MIL
problem, where the data are organised in bags that are either
labelled positive or negative. And second, binary classification
problems where labels are available at the instance level but
the labels of one class are noisy. In the latter setting, our MIL
algorithm is applied on random bags that group instances of
the same class.

We propose the following contributions:

• a neural network-based framework for binary classifi-
cation with (non-symmetric) label noise using a MIL
approach,



• a new loss function based on the generalised mean that
can be modulated smoothly between the mean and the
max function by varying the exponential parameter p,

• a probabilistic method to dynamically estimate the
amount of noise in the training data and to automatically
determine the hyper-parameter p accordingly,

• a comprehensive study of noise robustness of the most
commonly used loss functions for MIL with neural net-
works.

In the following, we will first describe the classical MIL
problem and how it can be tackled with neural network models
in general. Then, we will present our approach that has two
main components: a new loss function and an automatic hyper-
parameter adaptation scheme based on a dynamic label noise
estimation. Finally, we will present experimental results and
draw some conclusions.

III. MULTIPLE INSTANCE LEARNING WITH NEURAL
NETWORKS

In classical supervised learning for binary classification, the
parameters θ of a function f(θ, xi) are trained to predict the
labels Yi ∈ {0, 1} for an input vector xi ∈ RD. In the MIL
setting, as formulated by Dietterich et al. [3], sets of instances
Xk = {xk1, . . . xkNk

} are grouped into K “bags” and labels
Yk are assigned at the bag level (k = 1 . . .K), Nk being the
number of instances in bag k. Thus the individual instance
labels are not available. Moreover, the negative bags contain
only negative instances, whereas a positive bag contains at
least one positive instance.

A common approach is instance-level MIL, i.e. to learn the
parameters θ of f(θ, xki) such that Yk = σ(f(θ, xki)), where
f(·) classifies instances of a bag k and σ is a permutation-
invariant aggregation function. Classically, the max function
is chosen for σ, i.e. Yk = maxi f(θ, xki), as in the BP-MIP
algorithm [25]. However, in gradient-based learning this is
not practical as the max function is not differentiable w.r.t.
its arguments leading to a non-convex loss function. Several
alternatives have been proposed, most of them modelling
a type of “smooth”, continuous max function. Let Ok =
{oki} (i = 1 . . . Nk) be the outputs of the model for each
instance of a bag, that is oki = f(θ, xki). Common choices
are:

Probabilistic: σ(Ok) = 1− exp

(
−

Nk∑
i=1

oki

)
(1)

Noisy Or: σ(Ok) = 1−
Nk∏
i=1

(1− oki) (2)

Log-Sum-Exp [24]: σ(Ok) =
1

M
ln

Nk∑
i=1

eMoki , (3)

where M is a constant controlling the precision of the max
approximation.

The weights θ of a neural network can then be trained by
minimising a loss function computed on all bags Xk using the
bag label Yk:

Lθ =

K∑
k=1

Lkθ(Xk, Yk) , (4)

and the instances that compose the bag xki. For example, the
Mean Squared Error (MSE):

Lkθ(Xk, Yk) =
1

2
(Yk − σ(f(θ, xki)))2 . (5)

Also, the well-known binary cross entropy loss function to-
gether with the softmax function is commonly used for MIL.

IV. PROPOSED APPROACH

As described in the previous section, we propose an
instance-level MIL approach that is based on a neural network
that estimates instance labels oki which are then aggregated
by the function σ(Ok) to predict the bag labels. Our method
is independent from the architecture of the neural network
model and the loss function. Here, we will use the loss function
defined in Eq. 4 and the MSE computed with the target labels
Yk and the outputs oki from a single scalar oki ∈ (0, 1) (i.e.
one output neuron).

A. Loss function

We propose to use the generalised mean function as a
smooth aggregation function:

σ(Ok) =

(
1

Nk

Nk∑
i=1

opki

) 1
p

. (6)

This function has several positive properties. Firstly, it is
continuous and differentiable. And secondly, the parameter p ∈
R modulates the influence of each individual instance in the
aggregation. For p = 1, σ computes the arithmetic mean of
its arguments. For p→∞, it tends to the max function. This
property is particularly interesting when we have no estimate
of the proportion or the number of positive instances in the
positive bags, i.e. the amount of noise.

During training, instead of setting p to a fixed value, we
propose a strategy that starts with p = 1 and linearly increases
until p = pmax. In that way, in the beginning, each instance
is considered equally within a bag and, at the end, only the
most dominant one will be used to compute the output and
update the parameters.

B. Noise level adaptation

As mentioned above, the hyper-parameter p can be used
to adapt to different amounts of label noise. Our proposed
strategy of linearly increasing p until pmax effectively tries
to extract relevant information from all instances in a bag.
However, when p approaches pmax, for large pmax, only one
instance per batch is used for training, and with few training
data, there is a risk of overfitting to these instances. Thus, when
the amount of label noise is small, a smaller pmax is preferable



(and vice-versa) because several examples contribute to the
output of a batch and can be used to update the model.

We propose a strategy to dynamically estimate the label
noise N in the training data set and set pmax accordingly.
Let L∗ be the true label, L the actual (noisy) label and T
the (binary) prediction of the model. We want to estimate the
proportion of negative instances in the positive bags, i.e.:

p(L∗=0|L=1, T ) = 1− p(L∗=1|L=1, T ) (7)

= 1− p(T, L=1|L∗=1)p(L∗=1)

p(T, L=1)
(8)

= 1− p(T |L=1|L∗=1)p(L∗=1)

p(T |L=1)p(L=1)
(9)

= 1− p(T |L=1|L∗=1)

p(T |L=1)
(1−N) (10)

= 1− [p(T=1|L∗=1, L=1)︸ ︷︷ ︸
TP

+ p(T=0|L∗=1, L=1)︸ ︷︷ ︸
FN

]
1−N

p(T |L=1)

(11)

where TP and FN are the true positive and false negative
rates in a positive bag, respectively, which can be coarsely
approximated by:

TP ≈ p(T=1|L=1) (12)

FN ≈ p(T=1|L∗=0, L=0)
p(L=0)

p(L=1)
, (13)

assuming that the false negatives are proportional to the false
positives according to the proportion of positive and negative
instances in the training set.

Setting p(T |L=1) = 1 and assuming that the
noise is equally distributed among the bags, i.e. N ≈
p(L∗=0|L=1, T ) we formulate a recursive update equation
for N :

Nt = 1− [TP + FN ] (1−Nt−1) (14)

In the learning process described above, instead of a fixed
pmax, we use Ntpmax as the maximum exponent in Eq. 6. This
approximation is relatively coarse as it is based on a number of
loose assumptions. However, our experiments showed that this
is enough to guide the dynamic adaptation of the parameter
pmax in the loss function.

V. EXPERIMENTS

We performed several sets of experiments to evaluate the
proposed neural network MIL approach. In the first exper-
iment we measured the accuracy binary classification on the
following benchmark datasets from the UCI Machine Learning
Repository1:

Name #instances attributes

Credit Approval 690 15
Spambase 4601 57

Census Income 48842 14
Bank Marketing 45211 17

1https://archive.ics.uci.edu/ml/datasets.php

Further we created a dataset for image classification containing
16 539 greyscale images of faces extracted from the AFLW
dataset2 and resized to 36 × 36 pixels and 26 950 non-
faces images randomly extracted from landscape or other
photographs. We performed a 10-fold cross validation, i.e. with
10 random partitions where 90% is used for training and 10%
held out for testing. From the training part, in each run, 10%
is used for validation and early stopping.

To introduce label noise, we randomly switched positive
labels into negative ones with probability ps varying between
10% and 90%, i.e. the positive bags will contain a considerable
amount of incorrectly labelled instances (up to ∼50% for
Credit Approval, 35% for Spambase, 68% for Census Income,
80% for Bank Marketing and up to 56% for AFLW Faces).
The labels of the test set are not altered, and the correct
classification rate (accuracy) is computed at the instance level
using a trivial output threshold of 0.5.

We used a simple Multi-Layer Perceptron (MLP) archi-
tecture with 2 hidden layers of 20 and 10 neurons and an
output layer of 1 neuron. The second and third layers use a
sigmoid activation function. We experimented with different
activation functions, e.g. ReLU, but we did not notice a
significant difference. Also various different architectures have
been compared, and when increasing the number of neurons or
layers, the model tends to overfit. This may be reduced by an
increased regularisation, but, in this study, we preferred to keep
the model complexity as simple as possible. For the face image
dataset, we used a Convolutional Neural Network (CNN) with
2 convolutional layers of 8 and 16 channels, respectively, each
followed by a 2x2 pooling layer, a fully-connected layer of 100
neurons and a fully-connected output layer. Again, all layers
except the first use a sigmoid activation function. The network
models are trained using the MSE loss function (Eq. 4 and 5)
and Stochastic Gradient Descent (SGD). Each experiment is
run 10 times and the mean and standard deviation is reported.
The batch or bag size is set to 10 for all experiments (except
for the ONLINE mode). We also perform the dynamic noise
estimation in the beginning of the training and set pmax = 500
in our experiments.

Tables I–V show the accuracy results for the 5 different
datasets and different loss and aggregation functions: ONLINE
is the standard online backpropagation algorithm, i.e. batch
size is 1, the BATCH algorithm updates the model using the
gradient cumulated over mini-batches of size 10, MAX uses the
simple max function over the model outputs of the instances
of a bag, like in BP-MIL [25] and PROB, LSE and NOISY-OR
correspond to the probabilistic, log-sum-exp [24] and noisy-
or aggregation functions of Eq. 1-3. The last column, named
GMEAN, corresponds to our proposed approach using the
generalised mean loss function. We highlighted in bold face,
for each configuration, the maximum mean values that are
statistically significant (using hypotheses testing and the two-
tailed t-test with p-value 0.05).

2https://www.tugraz.at/institute/icg/research/team-
bischof/lrs/downloads/aflw/



noise level ONLINE BATCH MAX PROB LSE NOISY-OR GMEAN

0 0.857273 ±0.01 0.861818 ±0.01 0.64972 ±0.02 0.55317 ±0.01 0.658186 ±0.03 0.556908 ±0.01 0.856869 ±0.00
0.2 0.850758 ±0.01 0.857424 ±0.01 0.663982 ±0.03 0.572922 ±0.03 0.667148 ±0.03 0.563271 ±0.02 0.865629 ±0.01
0.4 0.836344 ±0.02 0.855447 ±0.01 0.684596 ±0.03 0.564794 ±0.02 0.680843 ±0.03 0.555769 ±0.01 0.858182 ±0.01
0.6 0.816939 ±0.03 0.838065 ±0.02 0.705991 ±0.04 0.610831 ±0.05 0.716461 ±0.03 0.570509 ±0.02 0.844367 ±0.01
0.8 0.773147 ±0.04 0.79864 ±0.03 0.723897 ±0.04 0.633283 ±0.06 0.743974 ±0.05 0.630501 ±0.06 0.819701 ±0.03
0.9 0.720152 ±0.06 0.764184 ±0.05 0.730381 ±0.07 0.659759 ±0.06 0.722292 ±0.06 0.627863 ±0.07 0.789864 ±0.04

TABLE I
ACCURACY ON THE Credit Approval DATASET WITH DIFFERENT LOSS FUNCTIONS AND NOISE LEVELS.

noise level ONLINE BATCH MAX PROB LSE NOISY-OR GMEAN

0 0.922116 ±0.00 0.91515 ±0.01 0.664329 ±0.01 0.577449 ±0.05 0.662674 ±0.01 0.496986 ±0.04 0.92435 ±0.00
0.2 0.914168 ±0.01 0.913491 ±0.00 0.673056 ±0.01 0.586576 ±0.04 0.674046 ±0.01 0.550452 ±0.05 0.919783 ±0.00
0.4 0.899447 ±0.01 0.905301 ±0.01 0.671484 ±0.01 0.609203 ±0.03 0.672176 ±0.01 0.566644 ±0.04 0.912057 ±0.01
0.6 0.867355 ±0.01 0.884877 ±0.01 0.675761 ±0.02 0.627153 ±0.04 0.672806 ±0.01 0.577294 ±0.03 0.891966 ±0.01
0.8 0.816853 ±0.01 0.848576 ±0.01 0.670601 ±0.02 0.659767 ±0.04 0.675696 ±0.02 0.621852 ±0.03 0.861004 ±0.01
0.9 0.774891 ±0.01 0.81587 ±0.01 0.67142 ±0.03 0.683759 ±0.05 0.676249 ±0.02 0.64239 ±0.03 0.824808 ±0.01

TABLE II
ACCURACY ON THE Spambase DATASET WITH DIFFERENT LOSS FUNCTIONS AND NOISE LEVELS.

noise level ONLINE BATCH MAX PROB LSE NOISY-OR GMEAN

0 0.773888 ±0.01 0.778351 ±0.02 0.796122 ±0.00 0.771677 ±0.00 0.799152 ±0.00 0.765514 ±0.00 0.766231 ±0.01
0.2 0.771697 ±0.01 0.776283 ±0.00 0.811764 ±0.00 0.787933 ±0.00 0.809655 ±0.00 0.77356 ±0.00 0.755359 ±0.01
0.4 0.765616 ±0.01 0.76752 ±0.00 0.813525 ±0.00 0.794136 ±0.00 0.814139 ±0.00 0.77702 ±0.00 0.764675 ±0.03
0.6 0.749893 ±0.00 0.74373 ±0.01 0.81764 ±0.00 0.79991 ±0.00 0.819892 ±0.00 0.781688 ±0.00 0.820588 ±0.00
0.8 0.718854 ±0.01 0.723256 ±0.02 0.816023 ±0.00 0.790533 ±0.01 0.816514 ±0.00 0.775382 ±0.01 0.818582 ±0.00
0.9 0.68106 ±0.03 0.685687 ±0.02 0.812972 ±0.00 0.769302 ±0.00 0.811478 ±0.00 0.765821 ±0.00 0.814262 ±0.00

TABLE III
ACCURACY ON THE Census Income DATASET WITH DIFFERENT LOSS FUNCTIONS AND NOISE LEVELS.

noise level ONLINE BATCH MAX PROB LSE NOISY-OR GMEAN

0 0.808448 ±0.01 0.796924 ±0.01 0.899089 ±0.00 0.895359 ±0.00 0.89875 ±0.00 0.889782 ±0.00 0.874549 ±0.01
0.2 0.775211 ±0.01 0.773402 ±0.01 0.897317 ±0.00 0.890616 ±0.00 0.89739 ±0.00 0.89654 ±0.00 0.826638 ±0.01
0.4 0.722206 ±0.02 0.741464 ±0.02 0.891781 ±0.00 0.885945 ±0.01 0.89251 ±0.00 0.894735 ±0.00 0.892038 ±0.00
0.6 0.683772 ±0.02 0.706092 ±0.03 0.886085 ±0.00 0.888042 ±0.00 0.884976 ±0.00 0.887346 ±0.00 0.890502 ±0.00
0.8 0.641384 ±0.02 0.672054 ±0.02 0.879304 ±0.01 0.887346 ±0.00 0.879943 ±0.00 0.887346 ±0.00 0.884904 ±0.00
0.9 0.602134 ±0.02 0.645634 ±0.01 0.868477 ±0.01 0.888827 ±0.00 0.880451 ±0.01 0.887346 ±0.00 0.879337 ±0.00

TABLE IV
ACCURACY ON THE Bank Marketing DATASET WITH DIFFERENT LOSS FUNCTIONS AND NOISE LEVELS.

noise level ONLINE BATCH MAX PROB LSE NOISY-OR GMEAN

0 0.976132 ±0.001 0.984847 ±0.001 0.984594 ±0.000 0.982409 ±0.001 0.984916 ±0.005 0.984295 ±0.002 0.963508 ±0.005
0.2 0.946883 ±0.001 0.966474 ±0.002 0.968889 ±0.000 0.959024 ±0.003 0.969532 ±0.009 0.970705 ±0.010 0.965439 ±0.009
0.4 0.935432 ±0.002 0.959898 ±0.001 0.959047 ±0.003 0.916691 ±0.004 0.965049 ±0.015 0.95999 ±0.004 0.958783 ±0.013
0.6 0.940629 ±0.003 0.948401 ±0.005 0.945182 ±0.006 0.858125 ±0.007 0.950608 ±0.003 0.947596 ±0.002 0.958771 ±0.010
0.8 0.886041 ±0.004 0.914001 ±0.002 0.926004 ±0.002 0.67842 ±0.002 0.923337 ±0.009 0.928602 ±0.009 0.95293 ±0.011
0.9 0.865851 ±0.005 0.858011 ±0.004 0.883741 ±0.010 0.612039 ±0.010 0.88266 ±0.017 0.881465 ±0.099 0.939226 ±0.026

TABLE V
ACCURACY ON THE AFLW Faces DATASET WITH DIFFERENT LOSS FUNCTIONS AND NOISE LEVELS.
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Fig. 1. Mean accuracy on “Census Income” of our proposed approach with
varying noise for 1) fixed p, 2) p increasing from 1 to pmax and 3) p
increasing from 1 to Nt · pmax based on the estimated label noise Nt.

It can noticed that for low noise levels most algorithms give
similar performance, except MAX, PROB, LSE and NOISY-OR
for the smaller datasets (Credit Approval, Spambase). This is
probably because they concentrate too much on a single, or on
very few instances in a bag and do not exploit the information
from all relevant instances for training. For larger dataset, there
is no clear “winner” among the baseline methods. However,
the proposed method (GMEAN) outperforms them especially
for larger amounts of label noise. Also for smaller datasets
our method is superior to (or on par with) the baseline for
almost all levels of noise. These results suggest that the
adaptive generalised mean function is able to effectively use
the information and features from bags with variable amounts
of correctly labelled instances. For large datasets, this property
may be less important if there is enough redundancy in the
training data, i.e. other approaches like the standard BATCH
training may be robust to noise where many instances are very
similar but have different labels.

To show the effectiveness of our approach to dynamically
estimate the label noise and set the hyper-parameter p in
Eq. 6 accordingly, we measured the mean accuracy with three
different strategies for varying noise levels: 1) p = pmax,
2) p = 1 . . . pmax increasing linearly during training and
3) p = 1 . . . Nt · pmax, where Nt is the estimated noise
level computed using Eq. 14. Figure 1 shows the results.
The approach using the dynamic, noise-dependant p obtains
the highest accuracy for all levels of noise, and thus adapts
dynamically to different scenarios and datasets. We observed
the same behaviour on the other datasets.

Finally, we also evaluated our approach on the standard
MIL benchmark datasets: MUSK1, MUSK2, Fox, Tiger and
Elephant. Here, labels are only available for bags. Thus,
according to the standard evaluation protocol, the classification
accuracy is computed at the bag level, and no additional
artificial label noise is added. We used an MLP architecture
with only 1 hidden layer of 150 neurons and an output layer

of one neuron and sigmoid activation functions, as before. A
bag is considered positive if the output defined by Eq. 6, i.e.
the generalised mean over the bag with p = pmax, is above
0.5, and negative otherwise.

We compared our method to the state of the art in MIL:
of of the classical methods: EM-DD [6], the Random Forest-
based methods: MIForest [19] and MIOForest [20], the kernel-
based methods: MI-Kernel [9], mi-SVM and MI-SVM [8], mi-
Graph [14], miVLAD and miFV [15], and the neural network-
based methods: MI-Net [28] using a Deep Neural Network
(DNN) with some specific tricks, like deep supervision,
Attention-MIL [29] based on a DNN with attention mechanism
and the GNN proposed by [30]. Table VI shows the mean
accuracies and standard errors for the different methods and
datasets. Our method compares favorable to the state of the
art, although it is instance-based and does not model the
relationship between instances in a bag as GNN [30], for
example. In fact, it outperforms most of the kernel-based
methods except on MUSK2. Also it compares favorable or
outperforms other neural network-based approaches. Only the
GNN-based method shows slightly better results, but, as men-
tioned above, it is bag-level classifier and thus cannot predict
instance labels. Furthermore, our neural network architecture
is extremely light and shallow compared to the other DNNs.
For that reason these methods require strong regularisation
(e.g. with drop-out) and other tricks, like deep supervision and
skip connections. Probably, our results can be further improved
by optimising the neural architecture and training strategy.

VI. CONCLUSION

We presented a new approach for training neural networks
under label noise based on a Multiple Instance Learning
framework. We proposed a new loss function defined by
the generalised mean function on the bag instances which is
particularly suitable for effectively learning with strong label
noise. We further introduced a method to estimate during
training the label noise and automatically set the hyper-
parameter p of our function. In our experiments we compared
our approach to the most common loss functions for MIL
with neural networks and showed that our method outperforms
them in most cases, especially with few training data and with
high label noise. Finally, we also compared our algorithm to
state-of-the-art methods in MIL and standard benchmarks, and
we obtained comparable results with a much less complex
model. In future work, we would like to study the use of more
complex (strongly regularised) DNN architectures and extend
our approach for semi-supervised learning.
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