Word sense disambiguation: an evaluation study of
semi-supervised approaches with word embeddings

Samuel Sousa
Institute of Science and Technology
Federal University of Sdo Paulo
Sao José dos Campos, Brazil
samuel.bruno @unifesp.br

Abstract—Word Sense Disambiguation (WSD) is a well-known
problem in the field of Natural Language Processing (NLP)
related to automatically determining the most appropriate sense
of words in context. Several machine learning-based approaches
have been proposed to tackle the ambiguity of language, but
the lack of labeled data to train supervised models made
semi-supervised learning (SSL) appear as an attractive option.
Furthermore, the use of word embeddings to enhance the results
of NLP tasks was shown to be an efficient strategy. Thus, this
paper aims at adapting semi-supervised algorithms for WSD
using word embeddings from Word2Vec, FastText, and BERT
models combined with part-of-speech tags as input. We conduct a
systematic evaluation of four graph-based SSL models analyzing
the influence of their hyperparameters on the results, as well as
the distances to build the graphs, the percentages of labeled data,
and the word embeddings architectural variations. As a result,
we show that SSL algorithms which received 10% of labeled
data are strong baselines on the subsets of nouns and adjectives.
Additionally, these algorithms do not need further training to
disambiguate new words, hence being competitive to supervised
systems.

Index Terms—Word sense disambiguation, Semi-supervised
learning, Word embeddings, Machine learning, Natural language
processing, Text mining.

I. INTRODUCTION

Words are naturally ambiguous, and their correct meanings
depend on the context they are used in. Therefore, Word
Sense Disambiguation (WSD) is a long-standing task of
Natural Language Processing (NLP), whose definition concerns
the ability to identify the accurate meaning of words in a
computational manner [1]. WSD has a central role in NLP since
the performance of several other tasks relies on its outcomes,
such as machine translation [2], automatic text summarization
[1], and question answering [3]. Nevertheless, the lack of
textual data whose words are labeled with the correct meaning
for both phases of training and test can be seen as the biggest
barrier to develop accurate WSD systems [4]. This kind of
data is expensive and time-consuming to be produced since it
is manually annotated by skilled professionals from the fields
of linguistics or computer science [1].

Semi-supervised learning (SSL) is a potential solution to
tackle the absence of labeled data because it combines labeled
and unlabeled data points in the learning process reducing
the label dependency [5]. Thus, with only a small portion

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Evangelos Milios
Faculty of Computer Science
Dalhousie University
Halifax, Canada
eem@cs.dal.ca

Lilian Berton
Institute of Science and Technology
Federal University of Sdo Paulo
Sao José dos Campos, Brazil
Iberton @unifesp.br

of labeled data, it is possible to obtain results as good as
the ones achieved by supervised methods [6]. Among the
SSL models, label propagation algorithms are widely used in
the literature. This ‘class’ of algorithms uses graph structures
for transductive learning [7], [8]. SSL has been successfully
applied to classification [6], but the graph construction is still
a challenge.

Recently, word embeddings appeared as efficient representa-
tions for words, hence they are able to keep prior knowledge
which can be integrated into applied tasks [3], [4], [9]. There
are several word embedding models, such as Word2Vec [10],
FastText [11], and BERT [12], to name a few. Combining
word embeddings with SSL for WSD is a promising technique
for NLP since the vector similarity of embeddings captures
the relatedness between the corresponding terms [3]. Thus,
graph-based algorithms are expected to capture the patterns on
the vector space of embedding models to yield structures that
ease the disambiguation of words. Previous work combined
SSL to augment the labeled data as the pseudo-labeling step
for deep learning [4]. Other SSL works first apply a supervised
method, e.g., SVM, to extract features to be used as input to
Label Propagation (LP) algorithm [13]. Additionally, in most
real-world scenarios, labeled data is hard to obtain and methods
that can also learn from unlabeled data are highly desirable.
Graph-based approaches model a function f (x) from a few
labeled data instances to spread out their label information
over a structure that captures the patterns from the original
data set [5].

Our contributions are fourfold: 1) we first combine word
embedding as features for SSL methods employing different
graph-based algorithms and three-word embedding models, i.e.,
Word2Vec (with both CBOW and Skip-gram architectures),
FastText, and BERT; 2) we perform a systematic analysis about
how the parameters of word embedding (like the number of
dimensions), and the parameters of graph-based algorithms
(like distance functions) affect the performance of WSD; 3) we
perform statistical analysis and demonstrate that our methods
reach scores close to state-of-the-art supervised WSD systems;
4) the results of our experiments are the best scoring among
the semi-supervised systems on most of the lexical sample
benchmark data.

The remainder of this work is organized as follows. Section

II gives an overview of related works. The detailed description
of the problem, data, and work tools can be found in Section
III. The experimental setup is detailed in Section IV. Section
V presents the results and discussion. Finally, the conclusions
and future works are presented in Section VI.

II. RELATED WORKS

Research in WSD began in the late 1940s [1] and remains an
active field of NLP since numerous words are ambiguous, and
computational models are not able to fully disambiguate them
yet. To cope with the problem of finding the correct meanings
of words in context, ML algorithms have been widely used
by way of supervised [9], [14], unsupervised [15], and semi-
supervised approaches [13], [16], [17]. Supervised methods
[14] learn from data in which the word senses are annotated
as labels, e.g., a key to the correct sense on WordNet. This
approach is based on the assumption that contextual information
can provide a good approximation to word meaning [9], in
spite of suffering from the dependence on labeled instances
for training [1]. Usually, systems based on Support Vector
Machines (SVM), like IMS [14], achieve the highest scores
on most of the benchmark data sets. SSL algorithms, on the
other hand, present robustness on tasks that have few labeled
data instances available for the learning process [5]. For WSD,
the LP algorithm [7] has been frequently used [13], [16] as an
alternative to supervised models.

In recent years, the performance of ML-based WSD systems
has improved with the employ of word embeddings [4], [9],
[18] since these word vectors capture linguistic knowledge [3].
However, classic word embedding models, such as Word2Vec,
Glove, and FastText, lead to the conflation problem [15], which
refers to the inability to distinguish the different meanings of
a word, based on its vector representation itself [3]. The first
way to tackle this embedding models drawback is done by
averaging the vectors of the words near the target word for
disambiguation [9], while the other strategy consists of the
use of context embedding models [3]; and the second one
consists in extracting vectors from models which pay attention
to the whole context of a word. Context embedding models can
be seen as variations of regular word embedding algorithms,
which yield a vector representation for a window of words in
a sentence instead of a representation for a single word [3],
e.g., BERT [12]. Other knowledge features from the text, e.g.,
part-of-speech (POS) tags [9], [14], [18], are also exploited
to enhance disambiguation results and surpass the conflation
problem.

Supervised architectures, like It Makes Sense (IMS) [14],
have been using word embeddings to reach state-of-the-art
results on several standard data sets [9], [18], while in the
SSL domain, the most known works do not make use of
those prominent resources. The Local and Global Consistency
(LGC) algorithm was applied by [16] over a two words
data set, using only semantic and syntactic features. LP was
also employed for WSD in similar purposes by [13], which
performed an entropy-based feature selection and used SVM
outcomes to boost its results. Recent semi-supervised models

for disambiguation implement concepts from Network science,
such as bipartite and multipartite networks. For instance, the
IMBHN algorithm [17] presented robustness to little labeled
data by the use of a bipartite structure to assign senses to
ambiguous words, however, it did not employ word embeddings
in the representation of the words. Among these methods, LP
is the most popular algorithm, besides also being efficient for
techniques of pseudo-labeling which expand training sets for
deep learning-based WSD approaches [4].

III. GRAPH-BASED SEMI-SUPERVISED WSD

In this section, we describe the problem of semi-supervised
WSD, highlighting our insights to combine graph-based algo-
rithms of SSL with word embeddings. The details of features,
tools, and data sets are also provided.

A. The Problem

In the task of WSD, let W be a set of words {w1, wa, ..., w, }
in which some words have their senses annotated. The set of
senses is represented by S, and W can be modeled as a semi-
supervised problem formulation in the form

W ={(WLr,S.), Wu, Sv)}, (D

in which Wy, is the subset of words whose senses Sy, are
known, and Wy represents the subset of words with unknown
senses Syy. Thus, SSL WSD aims to find Sy given (W, S.)+
Wyr. This problem is performed as a classification task whose
label to be predicted is the most adequate word sense [1].
Therefore, the set of classes is as large as the set of words,
since words may present more than one sense. Moreover, semi-
supervised classification setups exploit dense and sparse regions
of the vector space to define the decision boundary (cluster
and smoothness assumptions) and then separate the classes in
the data [5].

B. WSD Features

To model the relation between words and word senses as
a function f (z;), WSD approaches commonly use a set of
semantic features [1], [9] to reproduce the context of the
words, combined to syntactic features which hold the values
concerning POS tags and dependency relations. From the text
snippets in which the target words for disambiguation are
placed, we extract the following features:

e POS: We use the POS tags of all the words in a window
of three words on both sides of the target word besides its
own POS tag [14], [18]. If there are fewer than three words
in this window, or it crosses the sentence boundaries, a
null value replaces each missing POS tag [14].

o Contextempy: 10 words before and 10 words after the
target word, which may include words from the prior
and posterior sentences besides the target word sentence,
are gathered into this feature [9]. These words have their
vector representation from Word2Vec or FastText models
extracted and averaged as a context embedding [3]. On the
strategies for averaging, each word receives a weight to
quantify its importance. Among the averaging functions,

the exponential decay strategy is the most efficient one
since it assigns weights to the words exponentially in the

form:
I+W

2

J=I-W, j#1

(==

2

€; = ’LUZ'j (1 -)
Where + is the decay parameter, and w;; is related to
the weight associated with the i-th dimension of the j-th
word in the window W of surrounding words of the target
word I. In this strategy, the target word is held-out from
the window of words [9]. By exponential decay, a word
immediately before or after the target word has a weight
10 times higher than one placed 10 words distant. On
tests with BERT vectors, this feature was not used.

e Wordem,»: The vector representation of the target word
for disambiguation was also used as a separate feature.

C. Word embedding Models

Word embeddings are a hot topic in NLP research and
industry because of their ability to generate vector spaces in
which knowledge of the language is preserved and retrievable
to downstream applications [10], [11]. Aiming to analyze the
effects of vectors on WSD results, we tested embeddings from
two regular algorithms (Word2Vec and FastText) and a language
model based on transfer learning (BERT).

Word2Vec is a model proposed by [10] in 2013. It is a
shallow neural network of two layers which presents two
architectures: Continuous Bag-of-Words (CBOW) and Skip-
gram. The former predicts a target word by taking its context
words as input, while the latter does the opposite. CBOW
minimizes the following loss function

Loss = —log(p(u?t|ﬂ7t)), 3

where w; is the target word, and W, =
{Wt—py.o Wiy ..., wryn} is the set of words in its
context [3]. On the other hand, Skip-gram maximizes the
average log-likelihood in the form

N
1 D
N D logp(wiildn),)
t=1 —J<j<J,j#0
where N is the number of training words {wy,wa, ..., wn},

whereas —J and J are the same-sized windows of words on
the sides of w;, whose index j is equals to zero [19].

FastText [11] is similar to Word2Vec, supporting both CBOW
and Skip-gram architectures, besides taking into account n-
grams information. This is also a two-layer neural network,
which minimizes the negative log-likelihood below:

Q
o 3 log(F(BAW)), 5)
w=1

where (2 is a collection of documents, x,, is the bag of features
of the w-th document after normalization, ¥,, is the model
outcome, A and B are two weight matrices [11].

BERT, or Bidirectional Encoder Representations from Trans-
formers, is a deep bidirectional neural model that creates

representations for language from unlabeled text [12]. BERT-
based architectures have led to state-of-the-art results over
a broad range of NLP tasks, such as question answering,
sentiment analysis, and sequence tagging. This model can
be seen as an approach for transfer learning on textual data,
hence there is no need to re-train it on task-specific data [12].
The base version of BERT has twelve layers, seven hundred
seventy-eight hidden sizes, twelve self-attention heads, and one
hundred ten million parameters.

D. Semi-Supervised Algorithms

We have compared four SSL algorithms applied to WSD
which are described as follows. The LP [7] version used in this
work was implemented by [20], which takes into account the
influence of neighboring vertices to determine the probability
(F') of output labels as follows:

1
Fiy = 7 Oiy +52Aij8ij(y) ; (6)
J

where O, is the likelihood the vertex ¢ has the label vy, ssj(k:)
is a signal from ¢ to vertex j that means the strength by which ¢
believes j has the label y; Z; is a normalization term to ensure
F(iy) sums to 1 over all elements whose label is y; A;; is
a ij-element of adjacency matrix A; and [is the strength
parameter in the interval (0, co].

LGC [8] exploits the smoothness between both labeled and
unlabeled data instances. To predict the label of the unlabeled
points, the following iteration equation is used:

T =alT" '+ (1—-a)l (7)

where T corresponds to a stochastic matrix at the r-th iteration;
« is the clamping factor parameter in range (0, 1); £ is the
graph Laplacian; and I represents the identity matrix.

Gaussian Random Fields (GRF) [21], which implements the
concept of harmonic functions to predict the labels for the
unlabeled subset, has the form

~ 1 ~
9(vj) = - sz'jg(vi),
j

i~]

®)

in which the label of the vertex v; is assigned according to
the sum of the weights of its neighboring nodes v;; D is the
diagonal degree matrix; and P is the affinity matrix.
OMNI-Prop (OMNI) [22] considers that each vertex has two
scores: a self-score g;,, and a follower score d;,. The former
holds the likelihood of vertex 4 to hold the label k, while the
latter holds the likelihood of the neighborhood of ¢ to present
this same label. It works by iteratively updating these scores
in the form
0 = 2 j=1 Aijdjy + Aby
1y 22;1 Aij A

)

then,
5 — D i Aijdiy + by
jy = n
Zi:l Aiy +A

(10)

where Aij is the ¢j-element in the adjacency matrix; b, in
each equation is the prior score; and A is the prior strength
parameter, which controls the updates of b, [22].

E. The Data Sets

TABLE 1
LEXICAL SAMPLE WSD DATA SETS STATISTICS

Number Number
Data set Size of Word of Target
Senses Words
Senseval-2 LS 13,093 889 73
Senseval-3 LS 11,804 323 57
Semeval-2007 LS 27,125 368 100
Semcor 226,040 30,242 23,341

Lexical sample (LS) data sets for WSD were released by
discovery challenges in which a disambiguation task was
proposed and are widely used to rank disambiguation models
in the literature. Their structure encompasses training and test
subsets, with a greater number of data instances when compared
to all-words WSD benchmarks. Each data instance comprises a
target word for disambiguation within a text snippet extracted
from large corpora. Semcor [23], otherwise, is the largest data
set for WSD manually annotated and freely available on the
Internet. It has no subset division and it is commonly used
as training data for supervised models [9]. We have applied
SSL algorithms over Senseval-2 LS [24], Senseval-3 LS [25],
Semeval-2007 LS [26], and Semcor data sets, whose statistics
are shown in the Table I.

IV. EXPERIMENTAL SETUP

From the pre-processing of the data sets to statistical tests
and validation of results, we performed 5 steps, which are
depicted in Figure 1 and described below.

Step 1. To pre-process the benchmark data sets, we have
tokenized, lemmatized, removed the stopwords, POS-tagged,
and further selected: ten words on the sides of the target word,;
three POS tags likewise the window of ten words; and the
target word itself enclosed to its POS tag.

Step 2. Embeddings from Word2Vec, FastText, and BERT
were extracted to represent the words for disambiguation in the
data sets. Firstly, we trained the Word2Vec model with CBOW
and Skip-gram architectures on the English Wikipedia corpus
varying the dimensions in {250, 500, 1000}, hence yielding six
different models whose vocabularies comprise the 2,787,545
most frequent words in the corpus. The remaining embedding
models used in this study were pre-trained and released by
their authors. We used 300-dimensional FastText vectors made
available by Facebook Research and the pre-trained BERT
model from Pytorch.

Step 3. After extracting the embeddings and combining them
with the POS tags, we constructed graphs for running the SSL
algorithms of LP, LGC, GRF, and OMNI using four popular
distance measures for text mining tasks (Cosine, Euclidean,
Manhattan, and Chebyshev), in order to discover which one
is the best to represent the clusters related to word senses in

the vector spaces. All graphs for SSL were constructed with
the k-nearest neighbors (k-NN) technique whose parameter
k assumed values in {1, ...,10, 15,20, 25, 50, 75,100}. In this
case, each word represented by its set of features (Section
III-B) is connected with the k closest/most similar words.

Step 4. The LP, LGC, GRF, and OMNI algorithms were
run over the built graphs. Their hyperparameters (a, 8, A) had
optimum values reached by grid search technique, and the ratio
of labeled data was also varied in {25%,50%, 75%, 100%}.
Each trial was repeated 30 times with random sampling for
selecting the labeled subset.

Step S. In order to evaluate the SSL algorithms performance,
we have computed the F1 score values for each trial and then
averaged them at the end of the 30th execution. The standard
deviation was also calculated to be input to statistical tests to
validate our results.

V. RESULTS AND DISCUSSION

This section outlines the experimental results of our methods
on LS benchmarks, analyzes the distance measures used for
graph construction, and shows the influence of the embedding
models on the final performance for WSD. In order to
ease the tables reading, some symbols and acronyms are
used according to the following definitions. The letter ‘k’ in
parentheses is the number of nearest neighbors assigned to
construct the graph. Greek letters «, (3, and A stand for the
SSL methods’ hyperparameters. Furthermore, the names of
cosine, euclidean, Manhattan, Chebyshev distance metrics were
shortened respectively to: “Co.”, “Eu.”, “Ma.”, and “Ch.”.

A. Lexical sample WSD Results

With 250-dimensional CBOW and Skip-gram vectors, 300-
dimensional FastText embeddings, and BERT vectors with 768
dimensions, we have evaluated the SSL algorithms on the three
LS benchmark data sets. In Table II, the best F1 scores of our
SSL models are presented. These scores were reached when
the original training subsets were totally input to the models.

When the major word sense is assigned to all occurrences
of its target word, the most frequent sense (MFS) baseline
appears [1]. All distance measures beat MFS. In general, the
LP algorithm achieved the highest F1 scores. LGC is sensitive
to the presence of noise in the data, which, in this case, are the
words out of the vocabularies of Word2Vec and FastText models
which were replaced by a vector of the same dimensionality
filled out with zeroes. OMNI suffers from the major class
influence, i.e., the word sense assigned to most of the words in
the labeled subset, which rises the values of sense probability
to this class. Hence specific words disambiguation is poorly
performed, as showed in Table II. The harmonic functions
implemented by GRF are robust to noise, as well as the lack
of hyperparameters. This method ranked at the first place on
Semeval-2007 LS data set, with Skip-gram embeddings, and
on Senseval-2 LS with BERT embeddings.

In our experiments, Skip-gram gives higher results compared
to the CBOW model because it better represents infrequent
words since it does not make use of a loss function based

Data Sets Pre-
processing

Embeddings
Extraction

Senseval-2 LS
Senseval-3 LS

Semeval-2007 LS
Semcor

Graph Construction

Semi-Supervised
WSD

Test and
Validation

87%

Fig. 1. Process pipeline with five steps from the pre-processing of WSD benchmark data sets to evaluation of SSL WSD performance.

TABLE 11
F1 PERFORMANCES ON THE THREE SENSEVAL AND SEMEVAL LS BENCHMARKS
| CBOW SKIP-GRAM FASTTEXT BERT
Model SE-2 SE-3 SE-7 | SE-2 SE-3 SE-7 | SE-2 SE-3 SE-7 | SE2 SE-3 SE-7
LP Co. (k=5, 5=0.25) 57.2 66.9 83.7 59.3 68.8 85.2 59.7 69.1 85.5 684 73.8 86.9
LP Eu. (k=5, 5=0.25) 57.2 66.8 83.8 59.2 68.7 85.2 59.5 69.1 85.5 68.6 73.3 87.1
LP Ma. (k=5, $=0.25) 57.0 66.8 83.8 59.1 68.6 85.2 59.6 69.0 855 68.2 73.3 87.2
LP Ch. (k=6, 5=0.25) 56.0 65.1 82.8 55.2 65.2 83.4 55.8 64.6 83.6 63.5 65.1 84.0
LGC Co. (k=15, a=0.25) 56.7 67.5 799 58.8 68.5 85.1 59.0 69.8 85.5 68.1 73.1 87.3
LGC Eu. (k=15, a=0.25) 56.7 67.5 79.9 58.8 68.4 85.1 58.7 68.9 85.5 68.0 732 87.1
LGC Ma. (k=10, o=0.25) | 574 68.3 83.2 59.2 68.4 85.3 58.8 68.9 85.5 68.1 73.2 87.5
LGC Ch. (k=4, a=0.75) 55.8 64.9 82.1 55.2 65.2 83.4 55.7 62.8 83.7 63.8 65.1 84.3
GRF Co. (k=6) 56.0 66.7 83.0 58.8 68.4 85.3 59.3 68.4 85.4 68.7 72.9 87.2
GRF Eu. (k=T7) 56.0 66.7 83.0 58.8 68.4 85.3 59.0 68.4 85.4 68.7 72.6 87.1
GRF Ma. (k=5) 56.0 67.0 83.2 58.3 68.1 85.2 58.0 68.7 85.4 687 726 874
GRF Ch. (k=5) 54.9 64.1 82.1 54.2 65.2 83.6 53.9 64.7 81.6 64.4 648 84.8
OMNI Co. (k=4, A\=1.0) 553 61.8 82.6 57.6 67.7 84.5 57.0 67.9 83.2 67.8 72.1 84.7
OMNI Eu. (k=3, A=1.0) 552 61.3 824 57.3 67.1 84.6 57.1 68.2 83.3 67.7 71.8 85.3
OMNI Ma. (k=5, A\=1.0) 55.2 62.0 82.6 57.4 67.7 84.4 57.1 67.4 83.0 67.9 72.1 85.1
OMNI Ch. (k=6, A\=1.0) 54.7 60.4 81.5 54.0 63.4 82.3 54.5 62.8 81.4 63.6 68.9 82.5

on probability. The greatest difference between the scores on
embeddings of these architecture models is noticed on the
results of OMNI with Cosine distance on the Senseval-3 LS

data set. Skip-gram embeddings led to a 9.5% higher F1 score.

On all data sets, Skip-gram embeddings were more efficient
for WSD, since the textual domains of the benchmark data
sets (general news) are similar to Wikipedia articles that we
used to train the Word2Vec model. Furthermore, when FastText
vectors were used, the difference to Skip-gram vectors was
slight, since both models share some properties. The results of
our experiments suggest that both models perform equivalently
good disambiguation. BERT embeddings, on the other hand,
surpassed the performance of all the other embedding models
tested. Considering its architecture model which is based on
bidirectional transformers and able to differentiate the usages
of words and benefit finer meanings which used to be conflated
to the most frequent ones by the other embedding methods.
BERT also provides satisfactory results even though only 10%
of the original training subset is used as discussed later in this
subsection.

In Table III the SSL algorithms are compared against their
supervised and semi-supervised counterparts. The WSD results

achieved by other SSL baselines [13], [16], [17] and supervised
state-of-the-art systems [9], [14], [18], [27] are listed. Our
results surpassed IMBHN [17] by at least 8.17% and 2.5% of
F1 score on Senseval-3 LS and Semeval-2007 LS data sets
respectively when Skip-gram, FastText or BERT embeddings
were used. This algorithm used a bipartite network to spread
word senses in an SSL way, besides being the latest approach
of SSL for WSD in the literature. LP, LGC, and GRF have
hit the highest scores among the semi-supervised models on
Senseval-2 LS and Semeval-2007 LS data sets. Moreover, our
results are competitive with supervised models, since LP +
BERT hit an F1 score about 1% below IMS + Word2Vec on
Senseval-2, at the same time this system only surpasses LGC
and GRF on Semeval-2007 by 2.2%.

Few sense-annotated corpora are available to build, train,
and evaluate supervised models [1]. Therefore, we have run our
algorithms on the Senseval-2 LS data set using small amounts
of its original training subset to show their robustness and
efficiency. Besides 25%, 50%, 75%, and 100%, we split the
training subset into 10% and 90% with random selection. The
remaining data instances which were not selected were added
to the test subset and used as unlabeled data to measure the

TABLE III
COMPARISON OF F1 PERFORMANCES OF SSL ALGORITHMS WITH
EMBEDDINGS AGAINST THE SSLL AND SUPERVISED BASELINES

TABLE IV
F1 PERFORMANCE COMPARISON OF OUR SEMI-SUPERVISED AGAINST SVM
ON THE POS TAG SUBSETS OF SENSEVAL-2 LS WITH BERT EMBEDDINGS

Model SE-2 SE-3 SE-7
Supervised baselines

IMS (2010) [14] 65.3 72.9 87.9
Taghipour and Ng (2015) [18] 66.2 73.4 -

AutoExtend (2015) [27] 66.5 73.6 -

IMS + Word2Vec (2016) [9] 699 752 894

Our approaches
LP + CBOW Eu. (k=5, 5=0.25) 57.2 66.8 83.8
LGC + CBOW Ma. (k=10, a=0.25) 574 68.3 83.2
GRF + CBOW Ma. (k=5) 56.0 67.0 83.2
OMNI + CBOW Co. (k=4, A\=1.0) 553 61.8 82.6
LP + Skip-Gram Co. (k=5, 5=0.25) 59.3 68.8 85.2
LGC + Skip-Gram Ma. (k=10, =0.25) 59.2 68.4 85.3
GRF + Skip-Gram Eu. (k=7) 58.8 68.4 85.3
OMNI + Skip-Gram Co. (k=4, A\=1.0) 57.6 67.7 84.5
LP + FastText Co. (k=5, £=0.25) 59.7 69.1 85.5
LGC + FastText Co. (k=15, 5=0.25) 59.0 69.8 85.5
GRF + FastText Co. (k=6) 59.3 68.4 85.4
OMNI + FastText Eu. (k=3, A=1.0) 57.1 68.2 83.3
LP + BERT Co. (k=5, $=0.25) 68.4 73.8 86.9
LP + BERT Eu. (k=5,8=0.25) 68.6 73.3 87.1
LGC + BERT Ma. (k=10, a=0.25) 68.1 73.2 87.5
GRF + BERT Ma. (k=5) 68.7 72.6 87.4
OMNI + BERT Ma. (k=5, A=1.0) 67.9 72.1 85.1
Semi-supervised baselines

LP + SVM Cosine (2007) [13] - 71.7 -

LP Jensen-Shannon (2005) [16] - 70.3 -

LP Cosine (2005) [16] - 68.4 -

IMBHN (2018) [17] - 63.6 83.2
MFS Baseline 47.6 55.2 78.0

F1 score on. Furthermore, we tested our approaches against
an SVM classifier with linear kernel for each POS tag subset
in this data set (adjectives, nouns, and verbs) and the results
can be seen in Table IV. It is possible to notice that for all
POS tags, SVM only surpasses the SSL models when at least
90% of the original labeled data was used. In addition, 10% of
labeled data is enough to guarantee about 80% of F1 score for
adjectives and over 60% of F1 score for nouns and all POS.
By analyzing the results, it is possible to notice GRF is the
semi-supervised method that presents the most robustness to
few labeled data instances.

Figure 2 presents the results of the statistical analysis
using the Nemenyi post-hoc test for the supervised and semi-
supervised methods. The critical difference (CD) is plotted on
the top of the diagrams and the average ranks of the methods
are plotted in the axis, where the lowest (best) positions are on
the left side. If a set of methods has no significant difference,
they are connected by a black line in the diagram. For Friedman
and Nemenyi statistical tests, we considered the statistics at
95 percentile. In Figure 2a, the results in Table II are tested,

Ratio of Labels
POS Tag | Model | 140 359, 50% 75% 90% 100%
SVM | 742 811 826 805 876 917
LP 809 836 847 851 851 86.1
ADJ LGC 79.9 828 842 848 858 868
GRF 81.6 840 856 862 860 863
OMNI | 812 851 848 849 857 858
SVM | 560 597 598 613 724 739
LP 61.8 698 720 727 730 730
NOUN LGC 609 685 710 718 718 724
GRF 613 704 721 725 7132 734
OMNI | 612 695 709 714 722 727
SVM | 41,7 488 525 546 656 67.6
LP 501 557 614 626 631 636
VERB LGC | 477 535 591 6l.1 628 633
GRF 514 567 619 630 645 647
OMNI | 51.8 564 608 626 623 628
SVM | 495 541 571 581 699 70.4
LP 60.5 637 671 675 679 684
ALL LGC 587 616 653 660 671 68.1
GRF 61.6 647 677 678 682 683
OMNI | 614 644 668 672 677 680

and the critical value of the F-statistics with 15 and 11 degrees
of freedom at 95 percentile is 1.43, which the null-hypothesis
of similar behavior is then rejected. The critical value for
comparing the average ranking of two different methods is
6.21, and LP with cosine distance is suggested to be the most
efficient method for WSD with word embeddings, according to
Nemenyi post-hoc test. In Figure 2b, we compare the scores of
our approaches with BERT embeddings against supervised and
state-of-the-art results, the critical value of the F-statistics with
8 and 16 degrees of freedom at 95 percentile is 2.59, which
rejects the null-hypothesis of similar behavior. The critical value
for comparing the mean-ranking of two different algorithms
is 6.94. In Figure 2c, our SSL algorithms with BERT vectors
are tested against other semi-supervised baselines, and the
critical value of the F-statistics with 8 and 16 degrees of
freedom at 95 percentile is 2.59, which has rejected the null-
hypothesis of similar behavior.According to the Nemenyi test,
all label propagation algorithms combined with BERT can
be statistically similar with supervised and semi-supervised
baselines and the best ranked among the supervised ones are
LP and LGC, while the best ranked among semi-supervised
methods from the literature is GRF.

B. The influence of distance measures

In Figure 3, the distance matrices for each distance measures
are plotted. The darkest shades in each matrix show distances
close to zero, whereas the lightest ones depict the opposite.
Between all of these four metrics, Cosine distance (Figure 3a)
led to best scoring tests on most of the setups. Chebyshev
(Figure 3d) distances, otherwise, led to the lowest results,
whereas both Euclidean and Manhattan distances (Figure 3b
and Figure 3c respectively) presented satisfactory results.

CD

9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1
LP Cosine L—— OMNI Chebyshev
LP Euclidean GRF Chebyshev
LGC Manhattan LGC Chebyshev
LP Manhattan LP Chebyshev
LGC Cosine OMNI Euclidean
GRF Cosine OMNI Manhattan
GRF Manhattan OMNI Cosine
GRF Euclidean LGC Euclidean
(a) Comparison of our four SSL algorithms with their distance metrics against each other
i CD |
f 1 CD
1 2 3 4 5 6 7 8 9 " ’
L L L L 1 2 3 4 5 6 7 8 9
IMS_Word2Vec - ~ MFS LP SVM L MFS
LP_BERT OMNI_BERT GRF__BERT IMBHN
AutoExtend IMS LP_Jensen OMNI_BERT
LGC_BERT GRF_BERT LGC_BERT LP_BERT
Taghipour_Ng LP_Cosine

(b) Comparison of our SSL combined with BERT against supervised baselines

(c) Comparison our SSL combined with BERT against SSL baselines

Fig. 2. Statistical results with Nemenyi post-hoc test.

(b) Euclidean

(c) Manhattan

(a) Cosine (d) Chebyshev

Fig. 3. Distance matrices for Senseval-3 LS data set using 250-dimensional
Skip-gram vectors.

TABLE V
F1 PERFORMANCES ON THE SEMCOR SAMPLE WITH VECTORS OF
DIFFERENT DIMENSIONALITIES

CBOW SKIP-GRAM FastText BERT
Model 250 500 1000 250 500 1000 300 768
LP Co. 81.7 822 8.6 828 824 820 84.2 85.3
LP Eu. 81.7 826 819 823 828 825 83.9 85.2
LP Ma. 81.8 825 825 823 826 826 84.1 85.2
LP Ch. 791 806 813 812 806 815 82.5 83.7
LGC Co. 80.9 8.0 819 820 81.6 818 83.0 84.8
LGC Eu. 81.0 815 815 819 819 815 84.0 84.8
LGC Ma. 81.0 817 819 819 819 817 82.8 84.0
LGC Ch. 784 80.1 815 80.5 80.6 80.5 82.3 83.8
GRF Co. 81.0 823 825 825 823 815 81.4 84.9
GRF Eu. 81.0 821 824 822 815 822 81.6 84.9
GRF Ma. 81.0 824 824 823 823 821 81.5 84.8
GRF Ch. 785 812 812 80.8 81.0 81.0 82.3 83.5
OMNI Co. 82.1 815 821 819 824 818 83.3 84.7
OMNI Eu. 82.0 814 815 8.1 828 809 83.7 84.0
OMNI Ma. 82.0 821 814 820 826 817 83.7 84.1
OMNI Ch. 80.1 80.1 812 804 80.6 804 82.2 83.0

C. The influence of embeddings dimensionality

In order to measure the influence of parameters of embedding
models (dimensionality and architecture) on WSD performance
in a fair setup, a sample of 18,300 words and 183 word senses
was randomly extracted from the Semcor data set. To be used as
a labeled subset, we have randomly separated 2/3 of this sample,
leaving 1/3 as an unlabeled subset in which the performance
was measured. The pipeline for these experiments was the
same as done for the LS data sets. Table V presents the F1
score for each SLL algorithm run on the Semcor sample. All
results in this table were obtained by using 25% of the labeled
subset, k=15, 5=0.1, =0.99, and A\=1.0. It is possible to notice
that this small amount of labeled data was enough to achieve
an F1 score of over 80% on almost all trials. LP was robust
to the increasing dimensionality number, mainly on CBOW
embeddings. OMNI benefited from 250 CBOW vector with
cosine, euclidean, and Manhattan distances to reach the highest
scores on these vectors. Additionally, Manhattan distance was
more efficient on CBOW, whilst Euclidean appeared on half of
the best scoring trials on Skip-gram vectors. FastText and BERT
vectors surpassed the performance of Word2Vec regardless of
presenting higher dimensionalities. Lower dimensional vectors,
although, are useful to reduce the computational cost of the
algorithms, since the distance metrics are computed by each
vector dimension.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have tested different combinations of word
embeddings, distance measures, and SSL methods applied to
the problem of WSD. Our experiments were conducted on

four popular data sets for this task. A systematic analysis of
graph construction, hyperparameter search, distance metrics
comparison and variation of the amount of labeled data was
carried out leading to the following findings. SSL algorithms
can perform WSD as efficiently as supervised models with the
advantage of predicting senses of out-of-vocabulary words
without re-training the models as the supervised ones do.
Furthermore, our results ranked first among the semi-supervised
systems on most of the LS benchmark data sets, being tight
to state-of-the-art supervised scores.

Among the Word2Vec architectures, Skip-gram is the most
efficient one for LS WSD, since it is not based on a loss
function dependent on probabilities [3], yielding meaningful
representations for infrequent words. On a perfectly balanced
sample of the Semcor data set, the influence of embedding
parameters was noticed mainly on LP performance, which
demonstrated to be robust to the increase of the number of word
vector dimensions. Moreover, the difference between Skip-gram
and FastText results was not large, suggesting that both models
are recommended to imbalanced textual data. On the other
hand, BERT is the most effective model to extract embeddings
for WSD. Its efficiency can be noticed even though 10% of
labels are input to the algorithms. Semi-supervised algorithms
are particularly strong baselines for adjectives and nouns. Verbs,
otherwise, are tough even for supervised classifiers. Among
the distance measures, cosine distance presented most of the
best results on the trials. In contrast, the main drawback of
this work concerns the data sets since the distribution of the
number of data instances per word sense is highly skewed.
Finally, as future works, we plan to test new features from
textual data and to apply similarity measures derived from
word embedding models properly.

VII. ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagio de Aperfeicoamento de
Pessoal de Nivel Superior — Brasil (CAPES) — Finance Code 001; Sdo Paulo
Research Foundation (FAPESP) grants 2018/09465-0 and 2018/01722-3; and
the Natural Sciences and Engineering Research Council of Canada (NSERC).
We also would like to express our gratitude to Dr. Jeannette Janssen for her
insights on word sense disambiguation, BSc. Willian Dihanster for his help
with the SSL algorithms, and Dr. Didier Vega-Oliveros for helping to run
some experiments.

REFERENCES

[1] R. Navigli, “Word sense disambiguation: A survey,” ACM computing
surveys (CSUR), vol. 41, no. 2, p. 10, 2009.

[2] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain,
“Machine translation using deep learning: An overview,” in 2017
International Conference on Computer, Communications and Electronics
(Comptelix), 2017, pp. 162-167.

[3] J. Camacho-Collados and M. T. Pilehvar, “From word to sense embed-
dings: A survey on vector representations of meaning,” J. Artif. Intell.
Res., vol. 63, pp. 743-788, 2018.

[4] D. Yuan, J. Richardson, R. Doherty, C. Evans, and E. Altendorf,
“Semi-supervised word sense disambiguation with neural models,” in
Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, 2016.

[5] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning,
1st ed. The MIT Press, 2010.

[6] L. Berton, A. de Andrade Lopes, and D. A. Vega-Oliveros, “A comparison
of graph construction methods for semi-supervised learning,” in 2018
International Joint Conference on Neural Networks (IJCNN), July 2018,

pp. 1-8.

[7]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Carnegie Mellon University, Technical Report
CMU-CALD-02-107, 2002.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf,
“Learning with local and global consistency,” in Proceedings of the 16th
International Conference on Neural Information Processing Systems,
2003, pp. 321-328.

I. Tacobacci, M. T. Pilehvar, and R. Navigli, “Embeddings for word sense
disambiguation: An evaluation study,” in Proceedings of the 54th ACL
(Volume 1: Long Papers), 2016.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Ist International Conference
on Learning Representations, ICLR 2013, 2013, pp. 1-12.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, 2017, pp. 427-431.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171-4186.
A. Alexandrescu and K. Kirchhoff, “Data-driven graph construction for
semi-supervised graph-based learning in NLP,” in NAACL-HLT, 2007,
pp. 204-211.

Z. Zhong and H. T. Ng, “H.t.: It makes sense: A wide-coverage word
sense disambiguation system for free text,” in In: Proceedings of the
48th ACL, 2010, pp. 78-83.

M. Pelevina, N. Arefiev, C. Biemann, and A. Panchenko, ‘“Making
sense of word embeddings,” in Proceedings of the 1st Workshop on
Representation Learning for NLP, 2016.

Z.-Y. Niu, D. Ji, C.-L. Tan, and L. Yang, “Word sense disambiguation
by semi-supervised learning,” in International Conference on Intelligent
Text Processing and Computational Linguistics, 2005, pp. 238-241.

E. A. Correa Jr, A. A. Lopes, and D. R. Amancio, “Word sense
disambiguation: A complex network approach,” Information Sciences,
vol. 442, pp. 103-113, 2018.

K. Taghipour and H. T. Ng, “Semi-supervised word sense disambiguation
using word embeddings in general and specific domains,” in Proceedings
of the 2015 NAACL-HLT, 2015.

T. Mikolov, 1. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’13, 2013, pp. 3111-3119.

Y. Yamaguchi, C. Faloutsos, and H. Kitagawa, “CAMLP: confidence-
aware modulated label propagation,” in Proceedings of the 2016 SIAM
International Conference on Data Mining, 2016, pp. 513-521.

X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
Twentieth International Conference on International Conference on
Machine Learning, 2003, pp. 912-919.

Y. Yamaguchi, C. Faloutsos, and H. Kitagawa, “Omni-prop: Seamless
node classification on arbitrary label correlation,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp.
3122-3128.

G. A. Miller, M. Chodorow, S. Landes, C. Leacock, and R. G. Thomas,
“Using a semantic concordance for sense identification,” in Proceedings
of the workshop on Human Language Technology, 1994, pp. 240-243.
P. Edmonds and S. Cotton, “Senseval-2: Overview,” in Proceedings of
SENSEVAL-2 Second International Workshop on Evaluating Word Sense
Disambiguation Systems, jul 2001.

R. Mihalcea, T. Chklovski, and A. Kilgarriff, “The senseval-3 english
lexical sample task,” in Proceedings of SENSEVAL-3, the Third Interna-
tional Workshop on the Evaluation of Systems for the Semantic Analysis
of Text, 2004.

S. S. Pradhan, E. Loper, D. Dligach, and M. Palmer, “Semeval-2007 task
17: English lexical sample, srl and all words,” in Proceedings of the 4th
International Workshop on Semantic Evaluations, 2007, pp. 87-92.

S. Rothe and H. Schiitze, “AutoExtend: Extending word embeddings to
embeddings for synsets and lexemes,” in Proceedings of the 53rd Annual
Meeting of the ACL, Beijing, China, 2015.

