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Abstract—Federated Machine Learning (FML) sheds light on
secure distributed machine learning. However, generic FML
methods may lead to privacy-leakage through the sharing of
training information of individual models and have relatively
poor performance when the training datasets for individual
models are biased and diversified. This is a problem in combining
models trained in different scenarios of IoT devices since the
available training datasets are usually limited and biased. To
tackle this problem, we propose a novel approach to precisely en-
semble results from different models in distributed edge devices.
Instead of passing the training information of individual models
around that requires a relatively large amount of bandwidth
and compromises data privacy, we suggest employing a trusted
central agent that only collects different inference results from
edge devices. Then based on a limited amount of labeled data,
the agent runs a designed statistical iterative crowdsourcing
algorithm to combine results for a more accurate aggregated
prediction towards a user query. Our proposed system model,
“Privacy-Preserving Federated Learning System”, together with
our light-weight Secure Crowdsourcing Aggregation (SC-Agg)
algorithm, provide a more accurate prediction for outside queries
at little cost without any prior knowledge of what query will be
submitted. We experimentally verify that in our system, SC-Agg
consistently outperforms the majority voting method and the best
performing model of the ensemble in all testing scenarios. We
believe that SC-Agg fits the real-world IoT applications better
than other methods, such as the vanilla majority voting, for its
robustness and better performance.

Index Terms—Federated Learning, Crowdsourcing, Privacy,
IoT

I. INTRODUCTION

An emerging trend nowadays is to embed machine learning
models into IoT (Internet of Things) devices, such as drones,
to promote their capabilities in daily application. However,
these models usually do not perform well because of both
the hardware constraints and limited training data. In terms of
available training datasets, IoT devices of a particular data
owner can only collect data specific to its scenarios. This
makes the general deployment a difficult task, as the inferences
of these models are usually biased to the distribution of the
available training datasets. Improving the overall inference
performance of these models in edge devices under limited
and biased training data becomes an essential problem to be
addressed immediately.

One natural idea is to improve the training step by using all
data records collected from multiple data owners. Because of

the privacy issue and profit conflicts, data owners are reluctant
to share their data, especially when the data contains sensitive
information of their clients. Thus, the approach of Federated
Machine Learning (FML) was proposed [1]–[3]. In a typical
FML system, each entity shares training information, such as
gradient values [4], with one another so that each can update
their models using the shared information from other models.
Intuitively, the final “assembled” model of each entity could
be similar to an ideal model trained by all collected data
from all owners. FML brings synergy for big organizations
in different realms in the sense that they do not need to
share sensitive data. At the same time, the resulting model can
perform better and may perform similarly as an ideal model
trained by multiple datasets provided by different owners [5].
Applying FML on edge devices, however, exhibits a few
issues to be tackled. Biased and distributed training datasets
greatly degenerate the overall performance of FML [6], while
this diversity is widespread for IoT devices, especially for
those customized products. FML requires a relatively large
amount of communication bandwidth for edge devices to
formulate the final model. Sharing training information draws
attention to attackers too. Recently, several studies [4], [7]
have proposed attacks based on the shared model parameters
in FML methods. It is desirable to come up with different
approaches that still can make use of FML ideas to tackle
these problems (e.g., [6], [8], [9]).

In this paper, we propose a novel idea to solve the above
problem. Instead of sharing machine learning model’s pa-
rameters, we utilize a trusted central agent (or server) to
collect only the inference results from individual models. We
denote our system as “Privacy-Preserving Federated Learning
System”. In our system, the agent between users and edge
devices blocks outsiders’ direct accesses to distributed models.
All edge devices do not need to communicate with one
another to update or construct models. Outside users will
only communicate with the agent. For every query from a
user, edge devices only need to provide their inference results
to the agent. The agent owns a limited set of labeled data
(either publicly available data or received from distributed
data owners) for precise aggregation. Our approach can reduce
the transmitted information from the edge devices and also
avoid attacks on sharing individual models’ parameters or
related information. Under this framework, we also propose a
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“Light-Weight Secure Crowdsourcing Aggregation” (SC-Agg)
algorithm to evaluate and aggregate distributed information
collected from edge devices. To elevate the robustness of
FML encountering models with biased inference capacities, we
utilize the crowdsourcing concept with modifications that fit
into generic FML. Technically speaking, we enhance the fun-
damental crowdsourcing approach by aggregating responses
based on a capacities-reflecting weights matrix. The weights
matrix is statistical iteratively calculated based on remote
models’ responses and the queried data. Existing crowdsourc-
ing methods that also involve evaluations for labelers have a
strong assumption of possessing prior knowledge for queries.
However, SC-Agg requires no historical information about
past queries. Rather than occupying a large amount of data
transmission bandwidth, computing resources and hardware
storage to train a new model or update distributed models as
in the FML, communication complexity of SC-Agg is as low
as O(N), where N is the number of involved distributed weak
models. Without additional training operations or massive
communications, SC-Agg is a light-weight algorithm for both
the central server and end devices.

We experimentally verify that for queries in different distri-
butions, SC-Agg consistently outperforms the majority voting
and best ensemble model. Comparing to FML, SC-Agg does
not need to create any final model using multiple models
created by different end devices, thus minimizing the commu-
nication overheads of the devices while trying to eliminate the
biased performance of different models due to limited training
datasets. We believe that SC-Agg is robust and can be applied
to different real-world application scenarios.

We summarize our main contributions of this paper as
follows:
• We construct a Privacy-Preserving Federated Learning

System, ensuring the confidentiality of both distributed
models and corresponding sensitive training data.

• Based on the Privacy-Preserving Federated Learning Sys-
tem, we propose a light-weight Secure Crowdsourcing
Aggregation (SC-Agg) algorithm to solve the aggregation
problem for distributed weak models with diversified
inference capacities.

• We experimentally verify that SC-Agg outperforms both
the best model among the ensemble and the majority
voting approach for all our test scenarios.

II. RELATED WORKS

A. Federated Machine Learning

Federated Machine Learning (FML) is categorized into
three types, i.e., Horizontal Federated Learning (HFL), Vertical
Federated Learning (VFL), and Federated Transfer Learn-
ing (FTL). HFL fits the scenarios that distributed models
are trained with datasets sharing the same feature space but
different samples [3]. VFL is for distributed data owners who
have overlapping data records but different attributes for each
record. FTL applies to the scenarios that the two data sets
differ not only in samples but also in feature space.

In a distributed system such as IoT, however, remote IoT
devices for one specific application have little training data in
common. For those IoT devices embedded with models aiming
at the same inference task, their feature spaces are usually the
same. The problem we are going to solve in the distributed
IoT system is similar to the HFL application scenario. In typ-
ical HFL, distributed model owners send encrypted sensitive
training data or the encrypted gradient descent to the center
server for updating their models’ parameters [5]. Inspired by
HFL, we design the “Privacy-Preserving Federated Learning
System” by introducing a central server into a distributed IoT
system.

General HFL methods using homomorphic encryption
for communication takes tremendous computation resources,
which is impractical for edge devices. The distributed models
need to be trained with the same learning algorithm and
constructed in the same structure to ensure the correctness of
the HFL process. These factors and constraints are not only
overwhelmed for IoT end-devices for their limited computa-
tion abilities but also tricky for generalization in real-world
practice. Primarily, HFL relies heavily on the models’ internal
information retrieved from distributed models. Because the
central server utilizes the responses from data owners without
evaluating, it accelerates the probability for the joint global
model being inserted with backdoors, and it is possible for
adversaries carrying out data poisoning attack [10].

The SC-Agg algorithm we propose for our system aims
at aggregating can be operated on frozen distributed weak
models ensemble. We only query for the inference results from
models in a black-box manner. In SC-Agg, by not sharing
models private information, we not only protect the privacy
of distributed models but also lower the probability of being
attacked [10].

B. Crowdsourcing

Our research differs from FML in the sense that, in order to
minimize the degeneration in FML brought by the diversified
inference capacities of distributed weak models, we further
exploit the crowdsourcing concept to aggregate inference
results more precisely through carrying out evaluations for
involved models and the queried data.

Crowdsourcing is a branch of ensemble learning, where
models for different classification tasks contribute efforts
to generating comprehensive predictions. Most state-of-art
crowdsourcing learning methods reach better results by an-
alyzing both models’ capabilities and the difficulty level of
labeling queried data. Some require a large amount of labeled
data for precise models’ capacities estimation [11], [12],
which is impractical and expensive in real-world applications.
Others achieve accurate predictions by referring to historic
queries [13] as prior knowledge of coming queried data.
In real-world applications, unfortunately, responses from the
public can be noisy and incorrect, while useful reflections are
hard to identify and retrieve.

Due to both the lack of reliable feedback from outside and
the difficulty in gaining a large amount of labeled data in



Fig. 1. Privacy-preserving federated learning system

real-word IoT application situations, we design an SC-Agg
algorithm for our “Privacy-Preserving Federated Learning Sys-
tem” with further adjustments based on existing crowdsourcing
methods. We discard exploiting historical queried data, and
instead, we utilize only a small labeled dataset for accurate
models’ capacities evaluation and inference aggregation. These
two improvements lower the requirements for well-performed
crowdsourcing while elevating the result’s quality of generic
FML in real-world IoT application scenarios.

III. PRIVACY-PRESERVING FEDERATED LEARNING
SYSTEM

In this section, we describe the construction of our Privacy-
Preserving Federated Learning System in detail. There are
three roles in the system, the DO (Data Owner), the User, and
the Agent. Similar to a generic FML, our system introduces a
trusted central server, i.e., Agent. Agent blocks outside Users
from directly accessing distributed weak models, i.e., DOs.
Agent is responsible for aggregating all the noisy responses
from distributed DOs and computing the final predictions for
the User’s query with SC-Agg. Fig. 1 shows the overview.
• DO (Data Owner): DOs are the distributed data owners

in our system. There are several DOs in our system.
Every DO privately trains a weak machine learning model
with its sensitive data. DOs do not share training data
or the models directly with others for privacy concerns.
Note that DOs decide their training algorithms, and the
distributions of their training dataset are diversified and
unpredictable. Consequently, the performance of each
weak classifier varies in different inference tasks.

• User: There can be several public Users sending queries.
Our system processes one User’s query at a time. User
queries Agent with an unlabeled dataset and obtains
corresponding inference results from Agent. Note that
User does not directly communicate with DOs, while
Agent is the only interface for User to access. Moreover,
the distributions of User query data are random, i.e.,
neither Agent nor DOs can predict the data distributions
of queries based on previous experience. Also, User will
not provide responses for Agent to refine Agent’s future
predictions.

• Agent: There is only one Agent in our system. Agent
is an intermediary between DOs and User. Introducing

TABLE I
SYSTEM LATENT VARIABLES AND HYPER-PARAMETERS

Notation Description
N The number of DOs
L The number of types of labels
X The feature space, X = Rp
Y The label space, Y = {1, . . . , L}
Di Labeled dataset owned by i-th DO,i ∈ {1, . . . , N}
Mi The weak model trained with Di. Mi(•) : X → RL
DA Labeled dataset owned by Agent
DQ Unlabeled dataset queried by User
nA |DA|
nQ |DQ|

(xAt , y
A
t ) The t-th record in DA, t ∈ {1, . . . , nA},

where xAt ∈ X , yAt ∈ Y
xQj The j-th record in DQ, j ∈ {1, . . . , nQ},

where xQj ∈ X
Resultj Inference label result for xQj ∈ D

Q,Resultj ∈ Y
ProbAi,t The probabilities distribution on Y

for xAt ∈ DA predicted by Mi, ProbAi,t ∈ RL

ProbQi,j The probabilities distribution on Y for xQj ∈ D
Q

predicted by Mi, Prob
Q
i,t ∈ RL

W(τ) The weights matrix computed by Agent
at τ -th iteration, W(τ) ∈ RN × RL

Pred
A(τ)
t The weighted probabilities distribution on Y

for xAt ∈ DA at τ -th iteration, PredA(τ)
t ∈ RL

Pred
Q(τ)
j The weighted probabilities distribution on Y

for xQj ∈ D
Q at τ -th iteration, PredQ(τ)

j ∈ RL

Dist
(τ)
j The estimated probabilities distribution on Y for

xQj ∈ D
Q aggregated at τ -th iteration, Dist(τ)

j ∈ RL
Ω The total iteration times for SC-Agg
α α ∈ (0, 1) is the threshold for Agent determining

whether the prediction is confident
ρ ρ ∈ (0, 1) is a probability decay parameter

Agent into our system benefits both efficiency and pri-
vacy. Agent is responsible for aggregating predictions
from DOs into final results, which eliminates commu-
nications among distributed DOs. Also, Agent prevents
User from querying DOs directly to analyze sensitive
training data [14]. Agent owns a small public labeled
dataset either collected publicly or provided by DOs.
Note that this dataset contains no sensitive data, and
its distribution cannot reveal other datasets’ distributions
in our system. This small labeled dataset is utilized
for estimating both the distribution of queried data, and
remote models’ capacities for queried data. The detail
process is described in Section V-A.

There are only two types of communications in our system,
1) Agent with DOs: After Agent sending unlabeled data to
every DOs, DOs send back corresponding inference proba-
bilities distributions to Agent; and 2) Agent with User: User
queries Agent with unlabeled data and retrieve respective final
results from Agent.

IV. PROBLEM FORMULATION

In this section, we formally introduce the aggregation
problem that the SC-Agg algorithm targets. Table I lists



frequently used system latent variables and hyper-parameters
with respective descriptions.

There are N DOs in our system. For the i-th DO, where
i ∈ {1, . . . , N}, it has a small labeled dataset Di and trains
a model Mi with Di. User queries Agent with an unlabeled
dataset DQ = {xQj |x

Q
j ∈ X , j ∈ {1, . . . , nQ}}. Agent holds a

small labeled dataset DA = {(xAt , yAt )|xAt ∈ X , yAt ∈ Y, t ∈
{1, . . . , nA}}.

For better description, we assume that yQj is the ground
truth label of the xQj ∈ DQ, and {(xQj , y

Q
j )|xQj ∈ DQ, j ∈

{1, . . . , nQ}} ∼ DQ. Our paper is based on the assumption
that,
• neither Agent nor DOs can predict the distribution of

upcoming queried data DQ until they receive DQ.
For any non-linear function F predicting the distribution
of the coming DQ, we have

pr(F(DA, {D1, . . . , DN}) = DQ) = ε, (1)

where ε is negligible.
On receiving the queried DQ from User, Agent forwards

DQ to remote models and retrieves responses for aggregation.
By iteratively excuting SC-Agg for Ω times, Agent aggregates
out the final Result with

Result = argmax(PredQ(Ω)), (2)

where PredQ(Ω) is the weighted probabilities distribution for
DQ calculated by Agent after Ω times iteration of SC-Agg.

We aim at generating high accuracy responses for the
outside queries under limited prior knowledge. We measure
the performance of our system with

Q = pr((xQj , Resultj) ∼ D
Q|DA, DQ, {M1, . . . ,MN}). (3)

The goal of our system is to elevate Q, i.e., predict queries
in higher accuracy. For Result being the arg max result of
PredQ(Ω), the fundamental problem for SC-Agg to solve
is how to compute the weighted probabilities distribution
PredQ(Ω) precisely such that the arg max for PredQ(Ω)

approximates to the ground truth labels of DQ.

V. METHODOLOGY

As described in Section III, only three roles are involved in
our system, i.e., the DOs, the User, and the Agent. The i-th
DO privately trains Mi with a small sensitive dataset Di. DO
answers Agent with the predicted probabilities distributions
ProbQ (or ProbA) for the queried data DQ (or DA leaving
out labels). User queries Agent with an unlabeled dataset DQ,
and receives respective labels Result from Agent.

To achieve high accuracy in answering queries securely and
efficiently, we introduce the light-weight Secure Crowdsourc-
ing Aggregation (SC-Agg) algorithm. Referring to Section IV,
the essential element in aggregating high quality Result is
to precisely compute the weighted probabilities distribution
PredQ(Ω) for higher accuracy of Results. In this section, we
describe how SC-Agg fulfills this goal in detail.

A. Secure Crowdsourcing Aggregation Algorithm (SC-Agg)

According to our system settings, SC-Agg is iteratively ex-
ecuted Ω times for gradually generating accurate final Result
toward a queried DQ. In this section, we specify the process
of the τ -th (0 < τ ≤ Ω) execution of SC-Agg.

Referring to Section IV, the motivation of SC-Agg is
refining PredQ(τ−1). Intuitively, the content of PredQ(τ) is
related to the PredQ(τ−1), a weights matrix, and the predict
probabilities distribution for DQ collected from distributed
models. Mathematically, we have

PredQ(τ) ← softmax(PredQ(τ−1) +

N∑
i=1

ProbQi ·W
(τ)
i ). (4)

As ProbQ collected from distributed models is fixed for
one DQ, the potential factor impacting contents of PredQ(τ)

is a series of weights matrixes {W(0), . . . ,W(τ)}. W(τ) is a
models capacities reflecting matrix designed for emphasizing
strengths and weakening shortages for models. For example,
at the τ -th analysis, there is a Mî predicting label l1’s
classification tasks with high accuracy, and performing weak
in classifying label l2. To stress the advantage of Mî in label
l1’s classification tasks, the value W

(τ)

î,l1
should be fostered.

Conversely, W(τ)

î,l2
is relatively lower in order to reduce the

negative impact brought from Mî.
In machine learning, when a classifier’s inference capacities

are distributed similar to the queried data distributions, it
shows higher accuracy in this inference task. Therefore, com-
puting W(τ) is related to {M1, . . . ,MN} inference capacities
and DQ’s distribution. Due to the lack of prior experience
about DQ’s distribution, in SC-Agg, we introduce Dist(τ)

as the estimated distribution of queried DQ after τ times of
iterations. Thus, each time before computing W(τ), SC-Agg
updates the estimation for DQ’s distribution Dist(τ).

Roughly speaking, in the τ -th round of SC-Agg, Agent
sequently updates Dist(τ), W(τ), and PredQ(τ) as shown
below.
• Dist(τ): Computing estimated distributions Dist(τ) in-

volves two hyper-parameters, i.e., α and ρ. α ∈ (0, 1)
is the minimum probability value for Agent judging the
prediction is confident. ρ ∈ (0, 1) is a probability de-
cay parameter to determine the probability for replacing
the estimated probabilities distribution to weighted one.
At the τ -th iteration, for a record xQj ∈ DQ, if the
max(Dist

(τ−1)
j,∗ ) < α, then Agent believes the estimated

probabilities distribution Dist
(τ−1)
j for xQj is not con-

fident. For a more accurate estimation, Agent replaces
all uncertain distributions in Dist(τ−1) to the respective
ones in PredQ(τ−1) with the probability 1−ρτ . As the τ
increases over time, PredQ(τ−1) is more stable and accu-
rate, and thus the replacing probability 1−ρτ is increasing
for better estimation in Dist(τ). After the analysis and
replacements, Dist(τ−1) is updated to Dist(τ).

• W(τ): W(τ) is the most essential parameter possessed
by Agent for it determining the output results directly. To



obtain a W(τ) with higher probability in computing out
accurate inference results, we update W(τ−1) based on
the correlation between the estimated DQ’s distribution
and the current weights matrix W(τ−1).
As a reflection of capabilities for {M1, . . . ,MN} in
predicting DQ, higher W

(τ)
i,l implies higher accuracy

for Mi classifying data in type l after τ times iterated
analysis. Because DQ and all W

(τ)
i are not distributed

in a normal distribution, we choose Spearman’s rank cor-
relation coefficient [15] to reflect the relationship between
Dist(τ) and every DO’s estimated inference capacity, i.e.,
W

(τ)
i . The larger Spearman’s rank correlation coefficient,

the more likely a positive correlation between Dist
(τ)
l

and W
(τ)
i,l , and thus more possibility the Mi provides

a correct answer for the queried data in type l. We
regularize Spearman’s rank correlation coefficient cori to
[0,1) by substituting the cori with max(0, cori). Then we
compute W

(τ)
i with

W
(τ)
i ← 1

Z(τ)
W

(τ−1)
i · exp(−cori/

N∑
b=1

corb), (5)

where Z(τ) is a regularized parameter to emphasis the
relative capabilities of each DO. After regularization,
∀l ∈ Y ,

∑N
b=1 W

(τ)
b,l = 1.

To explore more possibilities in updating W(τ), we
introduce the local search method. We construct a Wr

by applying a little random disturbance to the original
W(τ). We decide whether to substitute W(τ) with Wr

with their estimated quality. To estimated quality of Wr

and W(τ), from DA, Agent first extracts a subset D′
which has the same distribution as Dist(τ). (6) shows
the constrains for the subset D′.

|{xAt |(xAt , l) ∈ D′}|
|{j|l = argmax

l̂
(Distj,l̂), j ∈ {1, . . . , nQ}}|

= C, (6)

where C is a constant to determine |D′|, ∀l ∈ {1, . . . , L}.
Then we estimate the quality of tested weights matrix by
computing the inference accuracy on D′ separately by

QW ← pr(argmax(ProbAt ·W) = yt|(xt, yt) ∈ D′, P robA),
(7)

where W can be either Wr or W(τ).
After computing out estimated quality of Wr and W(τ),
Agent picks the one with higher estimated quality for
next iteration.

• PredQ(τ): Computing PredQ(τ) with (4).
In SC-Agg, for the τ -th iteration, Agent first computes

the latest estimated probabilities distributions Dist(τ) with
Dist(τ−1) and PredQ(τ−1). Then Agent relies on its own
estimated distributions Dist(τ) and W(τ−1) to get the up-to-
date weights matrix W(τ). During the process of computing
W(τ), Agent introduces the random local search [16] for more
possibilities in promoting the estimated accuracy of queries.
With W(τ) settled, Agent updates the weighted probabilities
distributions PredQ(τ), and then regularizes it using softmax.
By repeatedly updating Dist, W, and PredQ, Agent gets the

Algorithm 1: SC-Agg

Input: τ, ρ, α,DA, DQ, P robA, P robQ, Dist(τ−1),W(τ−1),
P redQ(τ−1)

Output: Dist(τ), W(τ), PredQ(τ)

1 foreach j ∈ {1, . . . , nQ} do
2 if max(Dist

(τ−1)
j,∗ ) < α then

3 With probability 1− ρτ ,
Dist

(τ−1)
j ← Pred

Q(τ−1)
j

4 end
5 end
6 Dist(τ) ← Dist(τ−1);
7 foreach i ∈ {1, 2, . . . , N} do
8 Computing Spearman’s rank correlation

coefficience cori between W
(τ−1)
i and Dist(τ) ;

9 Computing W
(τ)
i with (5);

10 end
11 Randomly generate a small disturbing matrix

Wdis ∈ RN × RL;
12 Wr ←W(τ) + Wdis;
13 Estimating quality of Wr and W(τ) with (7);
14 Choosing the weights matrix with higher estimated

quality to be the W(τ);
15 Update PredQ(τ) with (4)

final output Result based on PredQ(Ω). The whole SC-Agg
method is generalized in Algorithm 1.

B. Inference

The overall inference process can be divided into two steps,
1) the initialization step, and 2) the aggregation step. The
initialization step is the preparation step for the upcoming
aggregation process. The aggregation step is mainly for Agent
to perform Ω times of SC-Agg then finally output the results
back to the User.

In the initialization step, Agent prepares W(0), Dist(0),
and PredQ(0) for executing SC-Agg. Before starting the
computation, Agent receives the queried data DQ, ProbA

and ProbQ as the predict probabilities distributions from the
models ensemble for DA and DQ respectively. The details are
given below.

1) Agent initializes the weights matrix W(0) by evaluating
each Mi’s capacity in classifying label l with

W
(0)
i,l ←

1

Z(0)
pr(argmaxMi(x) = l|Mi, (x, l) ∈ DA),

(8)
where i ∈ {1, . . . , N}, and Z(0) is a regularized pa-

rameter. After regularization, ∀l ∈ Y ,
∑N
b=1 W

(0)
b,l = 1.

2) For Dist(0) initialization, Agent fills Dist(0) with

Dist
(0)
j ← softmax(||xQj − E(x|(x, 1) ∈ DA)||2, . . . ,

||xQj − E(x|(x, L) ∈ DA)||2)
(9)

where j ∈ {1, . . . , nQ}, and the E(·) means the
expectation of the inner parameter.



3) On collecting ProbQ and initializing the weights matrix
W(0), Agent fills the PredQ(0) with

Pred
Q(0)
j ← softmax(

N∑
i=1

ProbQi,j ·W
(0)
i ), (10)

where j ∈ {1, . . . , nQ}.
After the initialization, Agent iteratively performs SC-Agg

Ω times. Finally, Agent returns aggregated Result from the
weighted probabilities distributions PredQ(Ω) with (2).

C. Complexity Analysis

In this section, we analyze the communication complexity,
the amount of transmitted data, and the time complexity in
our system. From the description above, our system initializes
once, and whenever DQ arrives, our system performs Ω times
of SC-Agg to output Result. Thus, our analysis for system
complexity is divided into the system initialization step and
the aggregation step.
• Communication Complexity: At the system initializa-

tion step, Agent queries DOs with DA and Agent
receives the probabilities distributions from DOs. The
communication complexity at this step is O(N). Each
time User queries Agent with DQ, Agent queries DOs
with DQ and receives the probabilities distributions from
DOs. The communication complexity at the querying and
answering step is also O(N).

• Amount of Data Transmitted: The amount of data being
transmitted in our system is determined by the number
of DOs, the size of DA, the size of queried DQ, and
the labels space L. At the system initialization step, the
amount of transmitted data is O(N ∗nA ∗(L+p)). When
Agent processes User queried data DQ, the total amount
of transmitted data is O(N ∗ nQ ∗ ((L+ p) + p+ 1)).

• Time Complexity: Time complexity for our system is
determined by the number of items to be computed and
updated during the process. In the system initialization,
the time complexity is O(L ∗ (N + nQ + 1)). The time
complexity from receiving DQ to perform Ω times SC-
Agg process and output Result is O(nQ ∗ L + Ω ∗ L ∗
(nQ +N + nA) + nQ).

Updating models’ parameters in general FML methods
require much more time than inference [17]. Comparing to
the high complexity in communication for exchanging training
information in [8], we only require O(N) communication
complexity for the whole aggregation process. Surpassing [9]
that also targets in light-weight privacy-preserving distributed
IoT system, SC-Agg saves expensive encryption computation
for end devices and eliminates millions of FLOP operations
for the central server to train a new model. The amount of data
to be transmitted in one-time communication for aggregating
is also much less than the generic FML process in which a
large number of floating-point matrices need to be exchanged.

VI. EXPERIMENTS

In this section, we experimentally verify that SC-Agg al-
gorithm performs well in different scenarios. We compare the

performance of SC-Agg with two baselines1 , 1) the majority
vote (MV); 2) the best model among all DOs (BM). We use
∆1 to denote how much SC-Agg increases the average queries
accuracy comparing to the BM baseline, and we compute ∆2

as the increment SC-Agg brings to the MV baseline. Our
experiments are executed on the MNIST [18] real-world data
collections. For all testing scenarios, the proposed algorithm
SC-Agg improves the baselines significantly.

The inference process involves three phases, 1) estimating
the distribution of queried data, 2) analyzing the answers from
DOs, and 3) iteratively refining a weights matrix according to
Agent’s dataset and the queried data. The performance of our
system is mainly affected by three factors, the size of DA,
the number of DOs, and the average performance of DOs.
From our results, SC-Agg performs consistently in all testing
situations.

A. Experimental Configuration

We conduct a series of experiments on the MNIST dataset
with 5, 10, 20, 50, and 100 DOs. MNIST is a database that
contains handwritten digits classified from 0 to 9. It has a
training set of 60,000 examples and a test set of 10,000
examples. To fulfill system settings in Section III that the
DA owned by Agent are not sensitive related, we select two
subsets without overlap from the training examples as the
sensitive training data and DA separately. In the sensitive
dataset, we randomly select N subsets and distributed to
every DO, note that N is the number of DOs. Recall our
assumptions that these N sensitive data subsets are distributed
differently. Thus, distributed models trained by these subsets
have diversified capacities for different inference tasks. We
train each DO’s model using the respective sensitive dataset
with a Convolutional Neural Network in the same structure and
implement SC-Agg with Python 3.6.0. Our experiments are ex-
ecuted on one GeForce GTX 1080 GPU, four Intel(R) Xeon(R)
Silver 4108 CPU @ 1.80GHz and 28 GB RAM. We refer to
the model inference accuracy on the whole MNIST test set as
the “testing accuracy”. Without loss of generality, we design
several DQs with random distributions and in different sizes.
To control the variance, the contents of these DQs are constant
in every experiment. Specifically, we query our system 16
times with different sizes of DQ. For the x-th queried dataset,
where x ∈ {1, 2, . . . , 16}, it is consisted with (x*300-100)
unlabeled data randomly chosen from MNIST test set. Our
experimental results show that SC-Agg outperforms the other
two baselines consistently regardless of the varied distributions
nor the sizes of queried DQ.

B. Experimental Results and Analysis

Firstly, We test different nA on 50 DOs to verify that, with
the increment of nA, the performance of the whole system
is getting better. Our nAs are set to 150, 300, and 600, and
the experimental results are shown in Table II. From Table II,
we find out that as nA increases, the aggregation accuracy for

1To have a fair comparison, we do not compare our approach with the ones
that have privacy leakage such as some existing FML solutions



TABLE II
EXPERIMENTAL RESULTS OF 50 DOS WITH DIFFERENT nA

nA BM MV SC-Agg ∆1 ∆2

150 64.72% 74.76% 78.06% 13.33% 3.30%
300 64.72% 74.76% 78.24% 13.52% 3.49%
600 64.72% 74.76% 78.31% 13.58% 3.55%

TABLE III
EXPERIMENTAL RESULTS OF 5, 10, 20 AND 50 DOS

N BM MV SC-Agg ∆1 ∆2

5 64.72% 64.13% 67.76% 3.04% 3.63%
10 64.72% 64.61% 67.33% 2.61% 2.72%
20 64.72% 68.17% 72.00% 7.28% 3.83%
50 64.72% 74.76 % 78.31% 13.58% 3.55%
100 64.72% 75.74% 78.19% 13.47% 2.45%

queries improves, which matches our expectations. We infer
that the increment of nA provides our system higher precision
in estimating respective model capacity in DOs ensemble.
Because we estimate possible weights matrix’s quality in SC-
Agg by computing the respective inference accuracy in a
subset of DA, as in (7), when the nA is larger, we can choose a
larger subset for more a precise simulation on the distribution
of queried data. More precise in distribution estimation brings
about higher possibilities in measuring a better weights matrix,
which finally benefits the output Result. As shown in Table
II, when nA is set to 600, SC-Agg boosts the accuracy in
answering queries as much as 13.58% comparing to the best
model among 50 models, and SC-Agg achieves 3.55% higher
than majority voting too. Furthermore, though the size of DA

is as little as 150, i.e. with only averagely 15 data records
per class, it is sufficient for our system to achieve a better
performance compared to the other two baselines. This char-
acteristic of SC-Agg makes it perfect for the scenario where
every entity only has limited data. We draw the conclusion
that a larger size of DAs produces better results of SC-Agg,
while SC-Agg does not require a large dataset for Agent to
accurately output answers for queried data.

Next, to test how the number of DOs, i.e., N , affect SC-
Agg’s performance, we randomly choose 5, 10, 20, 50, and
100 models with averagely 39.23% testing accuracy to carry
out the experiments. The results are listed in Table III. As
shown in Table III, SC-Agg outperforms the MV and the
BM baselines in all queries regardless of the number of DOs
involved. Because one of the essential steps in SC-Agg is to
estimate the capacities of every model and then assign values
to the weights matrix according to the relative capacities (5),
the more DOs we have in our system, the more accurate
assignment for weights matrix W we can have. Due to the
diversified inference abilities of models in different types of
tasks, larger N brings a higher chance of having specialists in
one specific type of task. Consequently, as N increases, SC-
Agg obtains higher accuracy in answering the queried data.
Because SC-Agg considers both the models ensemble and the
queried data to generate the final output, even when there are

TABLE IV
EXPERIMENTAL RESULTS OF 5 DOS IN DIFFERENT AVERAGE CAPACITIES

Average
Testing Accuracy BM MV SC-Agg ∆1 ∆2

81.26% 87.92% 89.47% 89.79% 1.87% 0.32%
61.59% 74.66% 77.45% 82.12% 7.47% 4.67%
44.79% 64.72% 64.13% 67.76% 3.04% 3.63%
31.09% 37.64% 45.02% 50.32% 12.68% 5.31%

Fig. 2. Experiments for 50 DOs, nA = 300

only 5 weak classifiers, SC-Agg surprisingly outperforms the
MV baseline of 10 DOs, and with less than 1% accuracy
loss compared to the MV baseline in 20 DOs scenarios. It
is worth to point out that, as the number of DOs increases,
the improvement of SC-Agg over BM increases. For all tested
numbers of DOs, SC-Agg consistently outperforms the MV
baseline by 3.24% on average. Also, SC-Agg achieves the
best queried accuracy when there are 50 DOs, i.e. 78.31%,
with 13.58% higher than the BM baseline.

Finally, we test SC-Agg performances with DOs of different
average prediction abilities. In this experiments, we compare
the outputs of 5 DOs with different average testing accuracy,
i.e. 81.26%, 61.59%, 44.79%, and 31.09%. Table IV shows
the respective experimental results. Referring to Table IV, SC-
Agg can consistently outperform the other two baselines in all
situations. Though when the models’ average testing accuracy
is as high as 81.26%, which violates the assumption for our
problem that each model is weak, SC-Agg still shows steady
improvement compared to the other two baselines. When DOs
only have weak classifiers, i.e. all models are in low average
testing accuracy, SC-Agg can have significant improvement
compared to both the MV baseline and the BM baseline.
As shown in Table IV, when the average testing accuracy is
31.09%, SC-Agg elevates the BM baseline as high as 12.68%,
which is almost half of the BM accuracy.

C. Experimental Summary

Table II lists the experimental results for testing how the
number of DOs affects the performance of SC-Agg. Table III
shows the results in studying how DA’s size impacts SC-Agg.
Table IV lists the results for experiments on DOs with different
average inference capacities.



According to our experimental results, SC-Agg achieves
higher accuracy in answering queried data than both the
BM baseline and the MV baseline in all tested scenarios.
We also show that Agent only needs a small number of
labeled data for SC-Agg to perform well. We believe that our
method is applicable for real-world applications, especially
when we need to assemble of weak classifiers. Referring
to Table III, SC-Agg boosts the prediction accuracy from
64.72% to 78.31% compared to the highest queried accuracy
among 50 weak models. Furthermore, in Table IV, when
only as little as five weak classifiers are available, SC-Agg
accomplishes 5.31% higher in queried accuracy than majority
voting. Note that SC-Agg contains three hyper-parameters, i.e.
Ω, α and ρ. For different numbers of DOs and various types of
inference tasks, we need to tune our hyper-parameters values
accordingly to attain good performance. As DA is an essential
dataset for SC-Agg achieving notable performance, through
inspecting our experimental results, Agent with DA containing
data averagely distributed in each category can aggregate out
Result in higher accuracy.

VII. CONCLUSIONS

Our paper considers the problem of how to aggregate the
inference results of individual IoT machine learning models
for better overall inference performance while avoiding pri-
vacy leakage. Based on Federated Machine Learning (FML),
we rely on a trusted central server to construct a Privacy-
Preserving Federated Learning System. In our system, the
agent only collects the inference results from individual IoT
devices. Our system requires no sensitive information on re-
mote individual learning models for minimizing the possibility
of privacy attacks. Under this framework, we also proposed
a novel Secure Crowdsourcing Aggregation Algorithm (SC-
Agg) for our system that can provide more accurate predictions
based on diversified inference results from individual IoT
devices and does not rely on historical information of queries,
unlike traditional crowdsourcing algorithms. Our experimental
results for different scenarios show that SC-Agg outperforms
the majority voting and the best performance among all data
owners. According to our experimental results, SC-Agg not
only improves the MV baseline by at most 5.31% (Table IV)
but also is capable of achieving as high as 13.58% increment
for BM baseline (Table III). In summary, we believe that SC-
Agg can be used in real-word distributed IoT systems.

On the other hand, our system has some accuracy loss
comparing to the model trained with all used sensitive data.
As a future direction, we will focus on designing how data
owners communicating with each other and the trusted third
party securely to reduce the accuracy gap between our system
with the model trained with all data in the system.
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optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[18] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/




