
Effective Deep Reinforcement Learning Setups for
Multiple Goals on Visual Navigation

Luiz Ricardo Takeshi Horita1,2, Denis Fernando Wolf2, Valdir Grassi Junior2

Sidia Institute of Science and Technology1

University of São Paulo2

São Carlos, SP, Brazil
luiz.horita@sidia.com, {denis, vgrassi}@usp.br

Abstract—Deep Reinforcement Learning (DRL) represents an
interesting class of algorithms, since its objective is to learn
a behavioral policy through interaction with the environment,
leveraging the function approximation properties of neural net-
works. Nonetheless, for episodic problems, it is usually modeled
to deal with a unique goal. In this sense, some works showed
that it is possible to learn multiple goals when using a Universal
Value Function Approximator (UVFA), i.e. a method to learn a
universal policy by taking information about the current state of
the agent and the goal. Their results are promising but show that
there is still space for new contributions regarding the integration
of the goal information into the model. For this reason, we
propose using the Hadamard product or the Gated-Attention
module in the UVFA architecture for visual-based problems. Also,
we propose a hybrid exploration strategy based on the ε-greedy
and the categorical probability distribution, namely ε-categorical.
By systematically comparing different architectures of UVFA for
different exploration strategies, and applying or not the Trust
Region Policy Optimization (TRPO), we demonstrate through ex-
periments that, for visual topologic navigation, combining visual
information of the current and goal states through Hadamard
product or Gated-Attention module allows the network learning
near-optimal navigation policies. Also, we empirically show that
the ε-categorical policy helps to avoid local minimums during the
training, which facilitates the convergence to better results.

Index Terms—reinforcement learning, goal-driven navigation,
visual navigation

I. INTRODUCTION

Artificial intelligence (AI) is a subject that studies how
to model intelligence as machine algorithms. Nonetheless,
according to Naselaris et al. [1], besides all progress on AI
achieved by intensive research on machine learning, it is
still limited to the critical ingredients for intelligence (i.e.
inference, prediction, reasoning), and there is a gap to be
filled regarding the cognitive intelligence. Among all types
of machine learning, Reinforcement Learning (RL) is the
one that has the objective of learning a behavior, which is
usually driven by a policy. RL had emerged among AI and
neural research community by combining adaptive dynamic
programming with learning-based methods in the mid-1980s,
and had attracted plenty attention in early 1990s, after Tesauro
[2] reached the level of an expert on playing backgammon
using Temporal Difference (TD) learning on a neural network
[3, 4].

Sidia - Institute of Science and Technology.

One way to develop and evaluate artificial cognitive intel-
ligence is to adopt an instance of a certain class of problems
that are solvable for humans, but still unsolvable for machines
[5]. Among all problems where AI can be applied, autonomous
navigation in robotics represents a promising research area due
to its extensibility to several other applications [6]. Recent
advances on deep learning allowed the arising of methods
based in Deep Reinforcement Learning (DRL) [7, 8, 9], in
which the image of the current robot state is taken as input,
and the action is given as output in an end-to-end model.

Although DRL has been presenting promising results, there
is still space for improvements. For example, most of existing
methods tackle the navigation to a unique pre-defined goal
in the environment, i.e., the agent must be able to reach this
goal independently to its initial state. However, autonomous
navigation should be a multi-goal learning problem, in which
the agent must know how to reach any state of the environment
from any other initial state. In spite of the fact this discussion
is being guided by the robotics view point, it could also be
applied for other multi-goal problems that can be modeled as
Markov Decision Process (MDP).

Some recent works [9, 10] showed that when applying the
idea of a Universal Value Function Approximator (UVFA) on
a DRL for a topological environment, the multi-goal learning
may be possible. Schaul et al. [11] formally introduced UVFA
as an extension of the value function in RL that takes not
only the current state of the agent, but also the goal state,
to estimate the behavior policy that generalises over multiple
goals. Also, the same authors tested different architectures
types, and concluded that processing the state and goal data in
two-stream network is the most promising approach for multi-
goal learning. However, this problem has much to be explored
yet. The works that employed UVFA tried few techniques to
combine the two input data, e.g. most researchers concatenated
the state and goal embedding vectors [8, 9], some authors
merged the raw data as the network input [12], and fewer
combined the embedding vectors with a dot product [11].

Thus, we present two main contributions in this paper.
First, we propose two UVFA architectures that outperform
the commonly adopted concatenation of vectors. One of
the architectures apply the Hadamard product between the
state and goal embedding vectors, and the other uses Gated-
Attention module for combining information of the current

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

and the goal states to estimate the Universal Value Func-
tion (UVF). The second contribution regards the exploration
strategy that allows reaching better policy in the end of
training. The proposed strategy combines the ε-greedy and
the categorical probability distribution, which we name ε-
categorical. To validate our contributions, we systematically
compare different UVFA architectures for different exploration
strategies [13]. Experimental results shows that, for visual
topologic navigation, combining the information of the current
and goal states through Hadamard product or Gated-Attention
module allows better convergence for multi-goal learning.
Also, we empirically show that the ε-categorical policy helps
avoiding local minimum during the training.

II. RELATED WORKS

In RL, multi-goal learning can be interpreted by many
ways, e.g. reaching a moving target that constantly changes
its position [14], reaching any of two or more targets present
in the environment [15], and reaching a target that can be at
any position in the environment [8, 10]. For convenience, the
term multi-goal learning will be referring to the later case,
since it is the focus of this paper.

Naturally, learning multi-goal can be very challenging if
compared to learning a unique goal. To address this problem,
there were some recent attempts in leveraging any information
about the target at the input data. For example, Zhu et al. [8]
and Bruce et al. [9] concatenated embedding representations
of the observed and the target view images as the robot state.
This idea was formally introduced by Schaul et al. [11] as
UVFA, a generalized idea of the value function that also
takes the goal as argument. According to them, there are
three main approaches to combine the agent’s state and the
goal. The first one, the simplest and the naivest one, is the
concatenated architecture, which concatenates the data of both
the state and goal in the input, which are processed by a unique
network stream. The second option is the two-stream archi-
tecture, which assumes a factorized structure of the problem,
processing the state and the goal by an embedding neural
network separately before combining them with a function.
Lastly, the decoupled two-stream has basically the same idea
of the two-stream architecture, except the fact the networks are
previously trained in a supervised way to estimate the UVF.

Experimentally, Schaul et al. [11] tested these approaches
in applications where the map coordinates were taken as state
vectors, demonstrating that the two-stream architecture learns
UVFs much faster than the concatenated. Moreover, still stated
by the authors, when using the same embedding network for
state and goal, and apply a distance-based function (e.g., dot
product or euclidean distance) for combining both embedding
vectors, it allows the UVF estimator to learn that nearby states
imply small distances in embedding space. Nonetheless, this
assertion was empirically proved in the case where the state
space is defined by euclidean space.

Besides Schaul et al. [11], there were some other works that
also used the two-stream architecture for other games or other
applications. For example, Andrychowicz et al. [16] applied

this approach to control a manipulator arm to move an object
from one place to the other, taking the joint angles as the state
vector. Another example is the work published by Veeriah et al.
[17], who also applied on games, but taking a sequence of 4
frames as the state representation. Adopting the same idea
but for different type of data between the state and the goal,
Chaplot et al. [18] proposed the multimodal fusion unit, which
employs the Gated-Attention [19] scheme between textual
instruction embedding and image representation. According to
the intuition given by Dhingra et al. [19], the Gated-Attention
module allows the textual instruction embedding act as a filter
of information, which decides what parts from the image
representation are important to the decision-making.

The UVFA approach may be the key point for multi-goal
learning, however exploration policy might also impact the
learning efficiency. Usually, ε-greedy strategy is used, where
the ε factor adapts over the training time steps [8, 16, 18, 20].
The advantage of this technique is that it is possible to
control the probability of exploration against the probability of
exploitation. Another strategy that fewer authors employ is the
softmax policy (or categorical policy), where the probability of
an action being chosen is proportional to its respective action-
value related to the others [11, 17]. Compared to ε-greedy, the
categorical policy gradually adapts the probability of actions
being explored according to the estimated action-values. The
intuition behind this idea is that, in the beginning of the
training, all the estimated action-values are nearly the same,
so every action has approximately the same probability of
being chosen. As the agent optimizes its policy, the probability
distribution among the possible actions change so that the best
action can be chosen more often than the others.

Papers on several applications are attempting to resolve
multi-goal learning through the UVFA concept. In this paper,
we focus in the scenario where the state-space and the goal
information are given as images for visual navigation, and
propose using the Hadamard product or the Gated-Attention
module for UVFA. Also, we propose a hybrid exploration
strategy that combines the ε-greedy and the categorical poli-
cies, so that we can keep a small probability of random
exploration during the whole training process. By doing so,
we might avoid the network to converge to a local minima.

III. BACKGROUND

A Markov Decision Process model of the environment
consists of a state space S = {s1, s2, ..., sN}, an action space
A = {a1, a2, ..., aM}, and the reward function R : S×A→ <
that rewards or penalizes the agent according to the action it
takes in its current state.

Given the definition of an MDP environment, the problem
that RL tries to solve is to find out the best action at a given
state st that maximizes the expected return in future. In other
words, to maximize the accumulated discounted rewards of
future states. Formally, the objective function that determines

this expected return is the value function V (s):

V (st) = max
π

E

[∞∑
τ=t

γτR(sτ)

]
(1)

where π is the complete decision policy that guides the
whole sequence of actions, E is the expected accumulated
reward, and 0 ≤ γ ≤ 1 is the discount factor that reduces
the importance of future values. Considering the recurrence
relation we have the Bellman Equation

V (s) = max
a

[
R(s, a) + γ

∑
s′

·V (s′)

]
(2)

which can also be rewritten as the action-value function (also
known as the Q-value function)

Q(s, a) = R(s, a) + γ
∑
s′

V (s′)

= R(s, a) + γ
∑
s′

max
a′

Q(s′, a′)
(3)

where V (s) = maxaQ(s, a). This function represents the
performance metric (or quality value) of taking the action a
in the state s.

Now, considering that the policy is responsible for choosing
the action, we can specify the optimal policy as

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

V ∗(s′)

)
(4)

which can also be written as π∗(s) = argmaxa (Q(s, a)).

A. Universal Value Function Approximation

The value function represents the core of RL, since it
addresses the temporal credit assignment, i.e., the problem of
assigning long-term rewards to an action, which is essential
in the moment of choosing an action. However, the way how
classical methods models the value function assumes there
is only one goal to be achieved. Aiming to generalize the
value function for cases that multiple goals can be present,
Schaul et al. [11] proposed the idea of a Universal Value
Function (UVF), which can be thought of as a large set of
value functions optimal for different goals unified into a unique
function that generalises over states and goals.

For better understanding, assume an MDP and a set of goals
G = g1, g2, ..., gL. For each goal g ∈ G, there is a defined
reward function Rg(s, a) and a discount function γg . Thus,
for each goal, there is an optimal policy π∗g : S 7→ A that
guides the agent to take the actions that maximizes the value
function

Vg,πg (s) = E

[
Rg(s, aπg) + γg

∑
s′

Vg,πg (s
′)

]
(5)

or the action-value function

Qg,πg (s, a) = R(s, a) + γg
∑
s′

E
[
Qg,πg (s

′, a′πg
)
]

(6)

where the actions are chosen according to πg .

Fig. 1. Diagram of UVFA architectures. Combine embedding vectors by (a)
concatenation, (b) Hadamard product, and (c) Gated-Attention module.

Considering the idea of using a parameterized function to
approximate the value function, the goal descriptor can be
included as an argument of this function. Thus, the functions
V (s, g;w) ≈ V ∗g (s) or Q(s, a, g;w) ≈ Q∗g(s, a) for all g ∈ G
would approximate the optimal value function over potentially
large state and goal spaces.

IV. UVFA ARCHITECTURES

For UVFA, one could adopt any parameterized function
approximator that receives the state s and goal g data as input,
and outputs the estimated V (s, g). With respect to this, the
advantage of working with neural networks is that it allows
breaking the architecture in network blocks and combine them
in different ways. A naive solution would be to concatenate the
state and goal data in a unique input for the network, but it has
already been proved it is not the best solution [11]. Instead,
processing each data in parallel network streams (ϕ(s) and
σ(g)) and combining the resulting embedding vectors into a
single stream by a function H(ϕ(s), σ(g)) seems to be the
most promising approach.

Figure 1(a) shows the simplest and most commonly adopted
approach, which combines the embedding vectors by con-
catenation. The following architecture in Figure 1(b), which
is proposed in this paper, merges the processed data from
the state and goal by Hadamard product, i.e. by element-
wise product. Finally, the last combination approach, in Figure
1(c), that is also a contribution of this paper, uses the Gated-
Attention [19] module.

Here we decided to use the Hadamard product instead of
the dot product, which has already shown to be effective by
School et al. [11]. The dot product has proved to be effective
for the case where the state-space was defined by euclidean
coordinates of a map. For this paper, where the state-space
is defined by images, using dot product does not seem to
make much sense as this operation provides the notion of
distance. For this reason, we propose using the Hadamard
product. Moreover, the result of a dot product between two
vectors is a single value, which might represent implicitly how
close we are to the goal, but will not tell anything about what
is the best action to take in the current state.

Regarding the Gated-Attention, it basically receives an input
and a key signals. The input signal is processed to the

output, and the key signal is used to tune the processing.
Mathematically, the output of this module can be written as

voutput = vinput � Sigmoid(vkey) (7)

where � is the Hadamard product.
The intuition behind this type of module is that the key

signal serves as a filter for the input signal. In the context of
UVFA, the input signal would be the state embedding of the
agent, while the key signal would be the goal embedding. By
doing so, the goal embedding would be the key to model the
value function of the given state accordingly, making the agent
to learn a goal-driven policy.

V. ε-CATEGORICAL EXPLORATION APPROACH

Regarding the exploration policy, the most common strategy
is the ε-greedy, which makes the agent to explore with
probability ε(t) and exploit the learned policy with probability
(1−ε(t)), where ε(t) is a probability that decreasingly changes
over the time steps. The difficulty of using ε-greedy is to set the
best ε(t) so we can get an efficient policy convergence to near-
optimality. On the other hand, categorical policy leverages the
proportion of estimated action-values Q(s, a)∀a∈A to compute
the probability of choosing each action a in a given state s.
Different from ε-greedy, categorical policy naturally changes
the probability as the agent gains confidence about the policy.
Nonetheless, depending on the complexity of the problem, this
strategy may lead the convergence to a local minimum.

Algorithm 1 ε-Categorical Exploration Policy
Input: s
Output: a

1: Get random value x between [0, 1]
2: if x < ε then
3: Get random action a from action space.
4: else
5: Draw action a according to probability defined by the

action-values Q(s, a).
6: end if
7: return a

Alternatively, we propose to combine both strategies in
order to mitigate the drawback of both. Algorithm 1 presents
how this exploration policy works. In practice, the probabilities
of an action being chosen during the training process is given
by

p(a|s) =

{
1/Na with prob. ε

Q(s,a)∑
a′∈AQ(s,a′) with prob. (1− ε) (8)

where Na is the number of actions in the action-space.

VI. EXPERIMENTS

A. Framework

For experimental evaluation, a topological environment was
created over an urban simulated area. To make it closer to
reality, each node of this environment consists of a situation
where the driver must take a decision, i.e., when an intersection

Fig. 2. The emulated topologic environment built over the Town 02 from
CARLA. In the map, numbers in red indicate the street intersections, while
blue numbers indicate lanes of each street. The nodes were created for each
position where a street lane met an intersection (illustrated in the zoomed
blue circle), and each node was associated to an image correspondent to the
front view of the vehicle (illustrated in the upper left).

Fig. 3. Diagram of the actor-critic agent architecture.

is reached. Therefore, instead of a node representing the whole
intersection, each intersection may have more than one node.
In this way, decision making becomes agent-centered instead
of being related to the coordinates of the environment. More-
over, each node of the topological environment is associated
with a wide snapshot (field of view 120º) of the front view of
the vehicle.

The CARLA Simulator was used to build this environment
[21]. More specifically, the Town 02 map was used to obtain
data for simulation. Figure 2 illustrates how the environment
was modeled. In total, the topological environment comprises
with 32 nodes and 96 edges, in which each node is associated
to an image, taken at its respective position in the map with
a front-camera of the vehicle.

For the MDP formulation, the state-space is given by gray-
scaled images of 256× 691 resolution, and its action-space is
defined by three possible choices the agent can do in a node
(i.e. turn left, go straight, or turn right). Moreover, for multi-
goals learning, we have the goal-space also defined by gray-
scaled images. With respect to the reward policy, the agent
gets rstep = −0.01 for each action taken, rbreak = −5.0
if the action makes the vehicle leave the navigable area, and
rgoal = +10.0 if it reaches the goal. See illustration of rewards
in the zoomed blue circle of Figure 2.

Finally, to solve the MDP problem, we use the actor-
critic method with experience replay strategy for better sample

efficiency [22]. Figure 3 illustrates the agent’s architecture, in
which the state and goal images are processed by two identical
convolutional networks in parallel, and then combined with an
UVFA structure. After merging the state and goal embedding
data, the resulting vector is given to the actor-critic head,
which estimates the action-values and the actions probabilities
(the policy) with two fully connected layers. Furthermore, the
Trust Region Policy Optimization (TRPO) heuristic proposed
by Schulman et al. [13] was adopted to allow more effective
optimization of the neural network. Basically, TRPO limits the
learning step size according to the average Kullback-Leibler
(KL) divergence between new policies and old policies.

B. Results

Aiming the evaluation of all the three UVFA architec-
tures mentioned in Section IV, and the exploration policies
(i.e. ε-greedy, categorical, and ε-categorical), all combinations
were executed. Each experiment was limited to 5000 training
episodes, in which the initial and goal states are randomly
chosen at every new episode, asserting these states are not the
same. Also, the experience replay ratio was set to 4, meaning
that four off-policy iterations are executed at each training
iteration [22]. Although performances can vary substantially
from run to run, each UVFA architecture and exploration
policy combination was run once due to time constraints.

Table I shows the success rates of all the experiences.
Success rate was computed from 100 random test episodes,
in which an episode is considered successful if it reaches the
respective goal in less than 10 action steps. Considering only
the final experimental results, it is clear that the best perfor-
mances concerning this metric were obtained by using the
Gated-Attention module for both categorical and ε-categorical
policies. But, if analyzing the convergence process during the
whole training execution, we can have a better understanding
of the impact of each parameter or configuration over the
performance.

Figures 4, 5, and 6 show the learning curves concerning
the averaged evaluation accumulated rewards for every UVFA
architectures, exploration policies and TRPO. The evalua-
tion consisted of 50 testing episodes after each 100 training
episodes.

Analyzing the learning curves of the UVFA that combines
embedding vectors by concatenation (Figure 4), we can see
that the network optimizes almost monotonically when using
TRPO, reducing considerably the learning variance. Also,
in Figure 4(b), it is possible to see that the categorical
policy allows faster convergence, due to its better exploration

TABLE I
SUCCESS RATES OBTAINED AFTER 5000 TRAINING EPISODES.

E-greedy Categorical E-categorical
with

TRPO
without
TRPO

with
TRPO

without
TRPO

with
TRPO

without
TRPO

Concat. 38% 62% 47% 66% 65% 43%
Hadamard 80% 63% 85% 4% 94% 68%
Attention 64% 1% 5% 98% 99% 14%

(a) (b)

Fig. 4. Comparative learning curves for different exploration policies and
TRPO scenarios for concatenated UVFA.

(a) (b)

Fig. 5. Comparative learning curves for different exploration policies and
TRPO scenarios for Hadamard UVFA.

(a) (b)

Fig. 6. Comparative learning curves for different exploration policies and
TRPO scenarios for Gated-Attention UVFA.

balancing. On the other hand, since ε-categorical insert some
level of randomness for exploration, the convergence becomes
slower. Lastly, because ε-greedy has a hard-coded exploration-
exploitation ratio, it is difficult to get faster optimization.

Compared to the concatenation approach, Hadamard prod-
uct provides higher learning variance, which hinders the opti-
mization, as shown in Figure 5(a). A possible reason for this
is that, every time the network is updated, even small changes
in the parameters of the both input convolutional networks
may cause greater impact on the UVFA output, since there
is a multiplication between each elements of the embedding
vectors. However, TRPO showed to be enough to control
this learning variance, as shown in Figure 5(b). Regarding
the impact of exploration policies over the architecture with
Hadamard product, we can see that when using TRPO all

(a) (b)

Fig. 7. Comparative performance of different UVFA architectures in the case
of not using TRPO.

(a) (b)

Fig. 8. Comparative performance of different UVFA architectures in the case
of using TRPO.

of them could reach a similar result in the end. Nonetheless,
we can still see the categorical policy offers more monotonic
convergence. Howsoever, ε-categorical still allows the agent
to learn near-optimal universal policy for visual navigation,
i.e. reach a random goal in the environment with accumulated
reward close to the goal reward rgoal.

In turn, the third UVFA architecture, which uses the Gated-
Attention module to filter the state embedding with the goal
embedding, showed a particular convergence behavior that was
not observed in the other architectures. In this case, TRPO
slowed down the convergence, and was not enough to control
the learning variance. Moreover, as shown by the pink curve
in Figure 6(b), the categorical exploration policy got stuck in
a local minimum. In navigation control, due to sparse rewards,
the agent could not learn how to reach the goal, but only to
maintain the vehicle in the navigable area. On the other hand,
even though it presented large learning variance until around
3000 training episodes, ε-categorical could converge to near-
optimal solution, as shown by the yellow curve in Figure 6(b).

We have compared the impact of exploration policies and
TRPO over each UVFA architecture. Now, Figures 7 and 8
show the best learning curves of each UVFA architecture,
concerning the estimated policy entropy and the averaged
evaluation reward. One fact that is easily observable on the
item (b) of both figures is that, the UVFA architecture that
uses concatenation could not reach near-optimal policy. This
explains why this architecture shows low performances in
Table I. The same convergence behavior can be seen for the

architecture with Hadamard product when not applying TRPO
(Figure 7(b)). On the other hand, with categorical exploration
policy and TRPO, Hadamard product allows fast convergence
to near-optimality, as shown in Figure 8(b).

The only combination approach that allowed UVFA to
converge to near-optimal navigation policy in both cases (using
TRPO or not) was the Gated-Attention, despite of its high
learning variance when using TRPO and ε-categorical strategy.
The last observation is about the policy entropy curves in
item (a) of Figures 7 and 8. In general, it is possible to
see that the entropy curves decrease at a faster rate when
using TRPO, including the case of using the Gated-Attention
module. Although the evaluation reward curve (the purple
curve in Figure 8(b)) presents much less variance when not
using TRPO, the entropy curve shows the opposite. Therefore,
even though the evaluation reward varies a lot during the
training, by looking at the entropy curve we can empirically
suggest that the network can learn the near-optimal universal
policy.

VII. DISCUSSION

In this paper, we propose two architectures for UVFA that
improves the multi-goal learning when the state-space and
goal-space are defined as images. Experimentally, we show
that our architectures present better convergence properties and
reach better universal policy if compared with the architecture
based on the concatenation of state and goal embedding
vectors.

Also, as another contribution, we propose an exploration
strategy called ε-categorical, which is the combination of
the ε-greedy with the categorical (or softmax) policy. In
fact, categorical policy can provide more efficient exploration
strategy, allowing faster learning. However, in some cases it
might get stuck in a local minimum. In contrast, ε-categorical
provides a way to avoid this kind of situation by inserting a
certain probability ε of randomness in the categorical policy.
As one can expect, and what is shown empirically in this paper,
this small randomness increases the learning variance, but still
helps the agent to learn near-optimal solution for multi-goal
learning.

Regarding the TRPO, in most cases it indeed improves
the convergence, as proposed by Schulman et al. [13]. This
is because, it provides theoretical foundations that guarantee
monotonic improvement of the policy during training. How-
ever, since TRPO provides a constraint to the learning step
size according to the KL divergence, at some level, it can
slow down the network convergence.

Schaul et al. [11] proposed the UVFA concept and vali-
dated it in applications where the state-space was defined by
euclidean coordinates. After this, some other authors tried to
apply the same idea in other applications in which the state-
space is given by images, but keeping the simple concatenation
of vectors to combine the state and goal information. In this
paper, we propose different techniques to rethink the UVFA
architecture to improve performance on this kind of visual-
based application. Here, we applied the proposed architectures

for visual-navigation of a vehicle, but the same line of thought
could be applied for several other MDP problems. We hope
that the approach proposed serves as an inspiration for fur-
ther studies to define the best way of modeling the UVFA
architecture, given the application’s domain.

Concerning the exploration strategy, as far as we know, this
is the first time the concept of here presented as ε-categorical
is proposed and tested for multi-goal learning. Since this
technique was tested only in a controlled environment, we
expect it will serve as a jumping-off point for future works on
training agents in more challenging environments. Also, we
hope more sophisticated exploration policies can be derived
from ε-categorical, such that the ε can be changed during the
training according to reasonable criteria.

ACKNOWLEDGMENT

This research was financed in part by the Brazilian National
Council for Scientific and Technological Development - CNPq
(grant 465755/2014-3), by the Coordination of Improvement
of Higher Education Personnel - Brazil - CAPES (Finance
Code 001 and 88887.136349/2017-00), and the São Paulo
Research Foundation - FAPESP (grant 2014/50851-0). Not
less important, Sidia, an Institute of Science and Technology
located in Brazil that contributes to mobile-related projects of
globally leading companies of the industry, also supported in
part this work.

REFERENCES

[1] T. Naselaris, D. S. Bassett, A. K. Fletcher,
K. Kording, N. Kriegeskorte, H. Nienborg, R. A.
Poldrack, D. Shohamy, and K. Kay, “Cognitive
Computational Neuroscience: A New Conference for
an Emerging Discipline,” Trends in Cognitive Sciences,
vol. 22, no. 5, pp. 365–367, 5 2018. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S1364661318300433

[2] G. Tesauro, “TD-Gammon, a Self-Teaching Backgam-
mon Program, Achieves Master-Level Play,” Neural
Computation, vol. 6, no. 2, pp. 215–219, 3 1994.
[Online]. Available: http://www.mitpressjournals.org/
doi/10.1162/neco.1994.6.2.215

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore,
“Reinforcement Learning: A Survey,” Journal of
Artificial Intelligence Research, vol. 4, pp. 237–285, 5
1996. [Online]. Available: https://jair.org/index.php/jair/
article/view/10166

[4] A. Gosavi, “Reinforcement Learning: A Tutorial
Survey and Recent Advances,” INFORMS Journal
on Computing, vol. 21, no. 2, pp. 178–192, 5 2009.
[Online]. Available: http://pubsonline.informs.org/doi/
10.1287/ijoc.1080.0305

[5] A. Lieto, M. Bhatt, A. Oltramari, and D. Vernon, “The
role of cognitive architectures in general artificial intel-
ligence,” Cognitive Systems Research, vol. 48, pp. 1–3,
5 2018.

[6] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser,
“Heuristic approaches in robot path planning: A survey,”
Robotics and Autonomous Systems, vol. 86, pp. 13–28,
12 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0921889015300671

[7] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real Deep
Reinforcement Learning: Continuous Control of Mobile
Robots for Mapless Navigation,” in 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 31–36.

[8] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta,
L. Fei-Fei, and A. Farhadi, “Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning,”
in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 3357–3364.

[9] J. Bruce, N. Sünderhauf, P. Mirowski, R. Hadsell, and
M. Milford, “Learning Deployable Navigation Policies
at Kilometer Scale from a Single Traversal,” 7 2018.
[Online]. Available: http://arxiv.org/abs/1807.05211

[10] P. Mirowski, M. K. Grimes, M. Malinowski, K. M.
Hermann, K. Anderson, D. Teplyashin, K. Simonyan,
K. Kavukcuoglu, A. Zisserman, and R. Hadsell, “Learn-
ing to Navigate in Cities Without a Map,” in Proceedings
of the 32nd International Conference on Neural Infor-
mation Processing Systems. Montreal, Canada: Neural
Information Processing Systems Foundation, Inc., 2018,
pp. 2424–2435.

[11] T. Schaul, D. Horgan, K. Gregor, and D. Silver,
“Universal Value Function Approximators,” in 32nd
International Conference on Machine Learning, vol. 37,
6 2015, pp. 1312–1320. [Online]. Available: http:
//proceedings.mlr.press/v37/schaul15.html

[12] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, O. P.
Abbeel, and W. Zaremba, “Hindsight Experience
Replay,” pp. 5048–5058, 2017. [Online]. Available: http:
//papers.nips.cc/paper/7090-hindsight-experience-replay

[13] J. Schulman, S. Levine, P. Moritz, M. Jordan,
and P. Abbeel, “Trust Region Policy Optimization,”
in International Conference on Machine Learning.
Proceedings of Machine Learning Research, 2015.
[Online]. Available: http://proceedings.mlr.press/v37/
schulman15.pdf

[14] L. Pack Kaelbling, “Learning to Achieve Goals,” in
International Joint Conference on Artificial Intelligence,
1993, pp. 1094–1099.

[15] A. Arleo, F. Smeraldi, and W. Gerstner, “Cognitive
navigation based on nonuniform Gabor space sampling,
unsupervised growing networks, and reinforcement learn-
ing,” IEEE Transactions on Neural Networks, vol. 15,
no. 3, pp. 639–652, 2004.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, O. P.
Abbeel, and W. Zaremba, “Hindsight Experience
Replay,” pp. 5048–5058, 2017. [Online]. Available: http:
//papers.nips.cc/paper/7090-hindsight-experience-replay

[17] V. Veeriah, J. Oh, and S. Singh, “Many-Goals
Reinforcement Learning,” 6 2018. [Online]. Available:
http://arxiv.org/abs/1806.09605

[18] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi,
D. Rajagopal, and R. Salakhutdinov, “Gated-
Attention Architectures for Task-Oriented Language
Grounding,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 4 2017. [Online]. Available:
http://arxiv.org/abs/1706.07230

[19] B. Dhingra, H. Liu, Z. Yang, W. W. Cohen, and
R. Salakhutdinov, “Gated-Attention Readers for Text
Comprehension,” 6 2016. [Online]. Available: http:
//arxiv.org/abs/1606.01549

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
Methods for Deep Reinforcement Learning,” 2 2016.
[Online]. Available: https://arxiv.org/abs/1602.01783

[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez,
and V. Koltun, “CARLA: An Open Urban Driving
Simulator,” 11 2017. [Online]. Available: http://arxiv.
org/abs/1711.03938

[22] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos,
K. Kavukcuoglu, and N. de Freitas, “Sample Efficient
Actor-Critic with Experience Replay,” 11 2016. [Online].
Available: http://arxiv.org/abs/1611.01224

