
A Developer Recommendation Method Based on
Code Quality

Matheus Camilo da Silva
Graduate Program in Informatics

Pontificia Universidade Catolica do Parana
Curitiba, Brazil

matheus.camilo@ppgia.pucpr.br

André Armstrong Janino Cizotto
Machine Learning Committee

Siemens Ltd
Curitiba, Brazil

andre.janino@siemens.com

Emerson Cabrera Paraiso
Graduate Program in Informatics

Pontificia Universidade Catolica do Parana
Curitiba, Brazil

paraiso@ppgia.pucpr.br

Abstract—During the development cycle of a project, it is
common for software requirements and functionality to change
and for code errors to occur. To deal with these unforeseen
changes, the artifact known as change request, which is a formal
proposal to alter a system, is used. Its assignment is an important
step in the development process. Projects can receive a very high
number of requests daily, which makes the automation of this
process compelling. This work proposes a method for assigning
unresolved requests, based on developer’s profiles. The proposed
method consists of three steps. The first step is to extract code
quality metrics, commit data and previously resolved requests,
in order to model developers through the mining of repositories.
The second step concerns with the selection of the profile of
potential developers through the application of natural language
processing and information retrieval techniques. And finally, in
the third step the appropriate developers are selected based
on the quality of their code and the impact of their commits.
Results from experimental evaluation show that the method is
able to recommend more developers with a positive impact on
the repository quality if compared to the iMacPro method.

Index Terms—Software quality, clustering, developer recom-
mendation, developer profile

I. INTRODUCTION

Collaborative software development is an activity carried
out by participants with different experiences, expertise and
behaviors, that play different roles in the development of a
project [1]. Regardless of the development paradigm used,
writing a concise and detailed project specification is essential
to the success of a project. A project specification is an
important artifact that assists the development process by
providing a description of the functional and non-functional
requirements of a project.

During the development cycle, a project’s specification
may change and collaborators must be selected to make
such changes [2]. However, due to the dynamic nature of
the collaborative development ecosystem, the task of finding
the most appropriate developer to perform such changes can
be a daunting effort. For effective maintenance and quality
assurance, it is necessary to evaluate the characteristics of a
developer that can represent their work [3]. This assessment is
often carried out with subjective criteria that may not reflect
the real skill of a developer or the environment in which
they finds themselves in, as shown by the work of [4], who
conducted a survey with several professionals working in the

industry, mostly in management positions within development
teams. The result of the aforementioned survey indicates that
the assignment of developers to change requests tends to be
carried out manually through subjective heuristics.

Notwithstanding, depending on the size of a project, rec-
ommending developers to address change requests may not
be feasible due to a myriad of factors, such as time and
resource constraints. Therefore, an automated approach should
be considered. Most methods found in the literature address
automated developer recommendation through one of the
following premises: the developer that is best suited is the
most experienced with similar requests [5] [6], or that the
most appropriate developer can be selected not only through
the analysis of past requests, but also from data mining of
code repositories [7] [8] and/or code defects. The proposal
presented in this paper follows the second approach. When
taking into account only the level of experience of developers
as a factor for the recommendation process, code quality is put
at risk, as the impact code changes may have is not assessed.
Furthermore, the side-effects of distinct work patterns of a
given developer, such as quantity and quality of changes for
a particular task, is not addressed by the [5] model.

Moreover, this work proposes a method for assigning
unresolved requests based on developer profiles, which is
structured in three steps. The first step extracts code quality
metrics, commit data and previously resolved requests through
repositories mining in order to model developers. The second
step concerns with the selection of candidate profiles through
the application of Natural Language Processing (NLP), Infor-
mation Retrieval (IR) and Machine Learning (ML) techniques.
Lastly, the appropriate developers are selected based on the
quality of their code and the impact of their commits. With
that, requests are recommended to developers who are best fit
for a given task, maintaining the overall project’s code quality.

The remainder of the paper is organized as follows: Sections
2 and 3 present background information on developer recom-
mendation systems and related work, introducing key concepts
to understand of the present paper. Section 4 describes the
process of data acquisition. In Section 5, the proposed method
is presented, which is evaluated in Section 6 and its results
analyzed in Sections 7 and 8. Finally, Section 9 concludes
this paper with a brief summary of the conducted research.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. CHANGE REQUESTS MANAGEMENT

Software development is becoming more complex and col-
laborative due to the increase in demand and complexity [9]
of projects, leading to the involvement of developers with
different work patterns and characteristics. Moreover, the use
of source code management tools, such as version control
systems (VCS) and defect management platforms, is essential
to coordinate the processes of software development. These
platforms allow collaborators to register tasks related to bug
fixing and development of new features [10], that is, software
artifacts also known as change requests.

In general, defect management tools lean towards a change
request (issue) resolution cycle as presented in Figure 1.
The cycle starts with the creation of a new issue, which
is composed of textual elements that describe the requested
change. After its creation, the triage process takes place,
where it is assigned to one or more appropriate developers
for its resolution. What characterizes a developer as the most
”appropriate” varies in the literature and in the development
ecosystems [4]. The selection of the right assignee is funda-
mental, as each alteration may affect quality aspects of the
project’s code, such as maintainability and testability [11].

Fig. 1. The life cycle of a Change Request [12]

After the end of the triage step, the assigned developer
analyzes the change and assigns a resolution value regarding
the status of the issue. A FIXED resolution indicates that
the change has been accepted and resolved, while WONT-
FIX means that the assignee is not address the issue and
INVALID expresses that the change is not relevant. The value
DUPLICATE points out that a very similar or identical issue
already exists on the platform and WORKSFORME means
that the problem described in the issue was not possible
to reproduce, which may indicate that the problem is in
the author’s environment. From the creation of a resolution
value, the issue is considered resolved and must be verified
in the next step. An issue can be resolved and not necessarily
generate code changes.

The last stage of the cycle involves the verification of
the changes performed by the assignee, assessing the value
of the generated resolution and the requested change. If the
collaborators in charge of checking are not satisfied with the
resolution value, the issue can be re-opened and assigned to
another developer, starting the cycle again. If the assessment
is positive, the issue is closed.

The whole process is recorded in the software management
tool, which makes it a rich source of data to support the

creation of developers’ profiles based on code changes and
interaction between developers in a collaborative environment.

III. RELATED WORK

Although no work has been found in the literature that
models developers according to the requirements proposed in
this work, relevant related works that broaches the creation
of developer profiles based on historical quantitative and
qualitative features are presented in this chapter.

A. User Modeling

The methods presented by [13] and [14] characterize devel-
opers through a quantitative analysis of their work, in contrast
to [15], which profile developers based on subjective percep-
tions of productivity. Despite seeking objective characteristics
of the development activity, both methods are lacking, as only
one aspect of the development process is evaluated, the quality
of the developer code at [13] and the developer expertise at
[14]. The former assumes that the quality of the code produced
by a developer does not relate to the type of activity, and the
latter considers that the expertise of a developer is unrelated
to the quality of code produced.

B. Developer Recommendation

In the scope of this research, the recommendation model
regard developers as ”items” to be recommended resolve
change requests. The literature presents several papers that
propose different approaches to the task of assigning the most
suitable developer for the resolution of bugs, the addition of
new features and/or other change requests in general. Broadly
speaking, the approaches for recommending developers have a
similar structure, in which the main goal is to represent change
request through different NLP techniques. This allows the
identification of similar change requests based on the historical
analysis of the repository, and with so, the recommendation
of developers that carried out analogous change requests.

The paper [5] proposes an approach to predict severity
and recommend developers to maintain software bugs. The
proposal uses the KNN classifier and information retrieval
techniques to search the historical reports of bugs and retrieve
a set of reports semantically similar to the maintenance request
of interest. The list of possible developers is ordered by
the authors who have the highest number of maintenance
performed most similar to the target maintenance request.
Likewise, the severity of bug for this request is given by the
severity of bugs for similar requests.

Moreover, the paper [16] opted to use a developer-based re-
lationship network approach and expert assessment, consisting
of a sequence of steps. The first step regards the recovering
of maintenance requests for bugs that are more similar to the
target request, using natural language processing and cluster-
ing techniques. From these similar requests, features such as
authorship and maintenance time are extracted, which allows
the construction of a network of developers’ relationships.
Candidate developers are selected based on the number of
relationships in the network and through expert evaluation,

being sorted based on their experience and efficiency in the
task of maintaining bugs.

Finally, no work has presented a method of recommending
developer profiles for resolving change requests, based on code
quality, expertise and context.

IV. DATA PREPARATION

In order to create the developer model proposed by this
paper, it is necessary to mine code repositories in version
control systems in order to collect information about the
change request screening process in a collaborative develop-
ment environment, in addition to the quality of the code after
the changes. The model requires data that expresses features
of code quality, commits and textual elements of implemented
change requests.

A few projects developed on the GitHub versioning control
system were selected to be mined. The criteria for selecting
projects were: number of contributors; volume of commits;
number of repositories and programming language used. These
criteria were used to establish parameters that would allow a
massive data acquisition in different scenarios. The mining of
code repositories was done in two open source projects: Elastic
and Google. The Table I better details the repositories.

TABLE I
SELECTED REPOSITORIES FOR BASE CONSTRUCTION

Project Repository Developers Commits Closed
Issues

Mockito mockito 177 5,200 750
Google guava 218 5,000 2,500
Google closure-compiler 453 15,000 1,700

A. VCS’s Data Extraction

GitHub has an error management tool called Issues, avail-
able in all projects developed on its platform [17]. An issue
has certain textual elements with the purpose of elucidating
characteristics of the alteration requested to the development
team, such as title, description, comments of collaborators
about the alteration and an id of the issue.

The GitHub platform allows the mining of source code
repositories, commits and requests through its API 1, enabling
the acquisition of the database for creating the developer
model. The API is in its third version, it provides data in
JSON format, and has a limit of 5000 requests per hour.

To carry out the data acquisition process of the repositories
shown in Table I, it was necessary to create a tool to perform
data collection through integration with the GitHub API. Given
that it is in the interest of this work to collect only issues that
have generated code changes, the tool collects all “closed” of
each repository since the beginning of development. That is,
data collection is limited to change requests that were assigned
to a developer who performed code changes and completed the
screening cycle described in Figure 1.

1https://developer.github.com/v3/repos/commits/

After obtaining all issues relevant to the method proposed by
this paper through the GitHub events API, the acquisition tool
extracts data for each repository from all commits that meet the
aforementioned criteria. Notwithstanding, a single commit can
resolve multiple issues, while multiple commits can address a
single issue. In cases where one commit is related to several
issues, the tool simply links each issue to it. In cases where
there are multiple commits for the same issue, only the commit
that is present in the main branch of the repository is taken
into account, as only commits in that branch have code that
is part of the official version of the repository.

Lastly, the tool collects data from the source code files
that were changed by commits filtered in the previous step.
Once the repository code is obtained, it is possible to extract
quality metrics. While the quality of changes can be observed
subjectively in the code, it is necessary to use tools that extract
the code quality metrics for an objective assessment.

B. Extraction of Quality Metrics
As the repositories for this work were selected in order

to obtain the largest possible number of viable collabora-
tors, issues and commits, they tend to be bulky repositories,
occupying a relatively large memory space. This makes the
management of such repositories in several versions a costly
task of time and resources, making it difficult to manually
extract quality metrics for each commit. As the proposal of
the work involves evaluating the quality of changes in a non-
invasive way, it was necessary to employ an extraction tool
capable of being applied in any repository without the need
to be reconfigured at each extraction.

This present work used a tool called CK to classify the code
quality metrics proposed by Chidamber and Kemerer [18] in
repositories developed in Java without having to compile [19].
Originally, CK did not contemplate the extraction of metrics
in different versions of the same repository, so the tool was
adapted to enable this use case. Ultimately, the tool extracts a
set of quality metrics per commit.

C. Acquired Data
The extraction of the data made available by the VCS from

the selected repositories (Table II) and the quality metrics of
their change requests generated the database used by this work.
The database is presented in Table II and can be accessed on
https://bit.ly/2GBcnhV.

TABLE II
SELECTED REPOSITORIES FOR BASE CONSTRUCTION

Repository Issues Commits Files
mockito 184 286 1,797
guava 662 221 2,558

closure-compiler 1,035 548 4,394

V. METHOD

This paper proposes a method for recommending developers
to resolve change requests in collaborative development envi-
ronments. From the textual features of a new change request

https://bit.ly/2GBcnhV

in a repository, the proposed method is able to find a set of
collaborators with the greatest capacity to handle the present
task, and select from within that group the developer who will
have the least negative impact on the health of the repository
when implementing the required changes.

The method was designed according to the following as-
sumptions:

• The tool implemented from the method must have access
to a versioning platform with code repository, change
request management and commits;

• The analyzed projects must strictly follow the object-
oriented programming paradigm;

• The method must collect data from developers in a non-
invasive way, so that it does not influence any aspect of
development;

• The method will consider as a potential developer to
make a change to a project, only those who have already
resolved some change request previously;

The proposed method does not foresee human interference
to carry out the assignment of change requests to developers.
The main processes of the method can be essentially divided
into three stages.

1) Based on machine learning techniques and human-
computer interaction, representations of the character-
istics of developers related to resolution of change
requests are created. The product of this step is a base
of developer profiles, where individuals in a group have
similar characteristics.

2) The textual features of a target request are preprocessed
and employed to find similar closed requests through the
use of LSI, which is then used to select the authors of
the suggested requests as candidate developers.

3) Candidate developers are ordered according to their
impact on code quality. The developer with the least
negative impact is recommended for the resolution of
the target request.

A. User Modeling

The developer model proposed by this paper is a dynamic
model, since the characteristics of a developer may change
over time as more data is collected. According to [20] the
task of building dynamic models is organized in the follow-
ing phases: Model composition, Representation, Acquisition,
Learning and Maintenance of the Model. Each phase in turn
is characterized by the application of techniques and methods
as described in the following subsections.

1) Model Composition: For the proposed dynamic devel-
oper model’s composition, it is necessary to identify which
data is relevant to the representation of behavioral aspects
of developers in a collaborative development environment.
After reviewing the literature and defining the availability of
repositories, it was established the need to use three different
types of historical data for the composition of a model that
would assist in assigning developers to change requests: Data
on the quality of the code of a developer for inferring how
well he solves a request; Data about commits, which reveal

information about the size of changes made by that developer;
Data on the nature of the requests resolved by him / her, in
order to establish the concepts that he / she has expertise.

2) Representation: As the dynamic model has a machine
learning phase, the use of the arff format was established to
represent the developer model proposed by this work. This
file format describes a list of instances that share a set of
features, and it is used in dynamic models because it has, like
an Extensible Markup Language (XML), a flexible structure
with the ability to easily add or remove elements [21].

The code quality features are described using different code
metrics, chosen according to their influence on the objective
assessment of software quality and the resources available by
the CK extraction tool [19]. The metrics WMC, DIT and
NOC are part of the set of metrics from Chimdaber and
Kemerer [18], the latter being one of the most important sets
of object-oriented metrics [22], and more widely referenced
[23]. The metrics of Chimdaber and Kemerer were applied
in many researches to monitor the quality of software under
development [24] by establishing ranges of values for mea-
surements of interests. The relevant metrics to the proposed
developer model are:

• CBO: Coupling between objects
• DIT: Depth Inheritance Tree
• NOSI: Number of static invocations
• RFC: Response for a Class
• WMC: Weight Method Class
• LCOM: Lack of Cohesion of Methods
• NBD: Max nested blocks
• LOC: Lines of code
The data present in commits of repositories in version con-

trol systems is intended to characterize a developer’s activity
in the repository. This data provides information about the
developer’s behavior regarding factors such as frequency and
size of the code change. The relevant data present in commits
relevant to the proposed developer model are:

• Id repo
• Id author
• Id commit
• Creation date
• Commit additions
• Commit deletions
• Commit total changes
The features that identify the developer’s expertise in rela-

tion to the areas of knowledge necessary for the resolution of
requests for changes, can be found in the requests themselves.
Each change request has textual elements that are created by
the requesting author in order to describe the nature of the
required change, such as: title, description and comments.

3) Acquisition: In this step, the method performs feature
extraction from resolved historical requests, starting with the
textual characteristics of closed issues. This is done by trans-
forming all the textual elements of requests into documents,
where each document represents the concatenation of the title
and description of a request. A corpus is created from these

documents, which is indexed using the application of Latent
Semantic Indexing. This technique creates a unique signature
(index) for each document [25], as each index is a set of term
values that represent the conceptual content of a document.
Finally, the K-means machine learning technique is applied to
the corpus, in order to group documents based on the similarity
between their indexes. The group ID is saved by the method.

By extracting a resolved and assigned request, the extraction
of the commit related to its resolution is initiated. The data
about commit and its repository, is obtained through the
Github API. From the extraction of the previous set, the
repository files are obtained in the commit’s version. The
files are extracted through the CK tool, and quality metrics
are calculated only for files changed by the developer in the
commit related to the change request.

4) Machine Learning: Once the data that composes the
developer’s model has been acquired, it is possible to carry
out the task of creating developer profiles. This task is re-
sponsible for creating different profiles based on the analysis
of the dynamic model’s instances of developers. This induction
can be performed through both supervised and unsupervised
learning techniques [20].

In the research carried out by [13], a series of Machine
Learning algorithms were proposed for profile generation. Due
to the relationship between the level of the programming
course that the participants of the experiment were registered,
with their performance during the performance of the same
task, It was possible to use classifiers to create developers
profiles in [13],

However, for the scope of this work, it is not possible to
induce relations in an objective and automatic way for any de-
veloper in any project based only on repository characteristics.
Due to the nature of these data and the proposal itself, it is
feasible that profiles may be inferred by unsupervised learning
techniques.

In order to induce developer profiles, the k-means clus-
tering algorithm was used. The algorithm is able to divide
the model’s base population into groups of instances with
respect to the similarity of its attributes. Thus, the groups are
composed of change requests data that were solved in a similar
way in the same repository. The ideal number of clusters for
each repository was determined using the so-called ”elbow
method”, which consists of executing k-means for a range
of values, and calculating the sum of squared distances from
each point to its assigned center (inertia) for each run. When
plotted, the graph of inertia resembles a curved arm, where
the ”elbow” indicates the optimal value for k Figure 2.

5) Model Maintenance: Software development is a com-
plex and dynamic task, which entails that the model proposed
by this work must follow a dynamic approach. The model
allows data exchanges, in order to track the progress of
developers over time. There are two ways to perform model
maintenance: the model is updated by explicitly/manually
changing the profile; or the model is updated implicitly, where
the data is obtained in a continuous and non-invasive way
[20]. The maintenance of the proposed model can be carried

Fig. 2. Elbow method on the Guava repository

out periodically as new requests are resolved by the developer
recommendation of the proposed method.

B. Candidate Developers

The first task of the method assignment step is preprocessing
the target request. This task consists of applying Natural
Language Processing techniques to the text found in requests’
elements (title, description and comments). This task aims to
eliminate textual noise in order to extract features that help
to represent the context of the target request, facilitating the
selection of similar historical requests through information
retrieval techniques. After the application of NLP techniques
for the preprocessing of the target requisition, the search for
developers begins.

As an example, one can take into account the texts of a
request presented below:

Currently deleting snapshots can be a
very slow process if the delete entails
removing a large number of blobs from
the repository (i.e. when one or more
indices that consistent of many files
becomes unreferenced and has to
be deleted).

After the application of tokenization, removal of stop words
and stemming, the result is:

Currently deleting snapshot slow
process delete entail removing large
number blob repository.
one index consistent many file
becomes unreferenced deleted.

The texts of historical requests are indexed and added as
documents in a corpus created in the first stage of the method.
Latent Semantic Indexing generates a vector space where each
document is represented by a sequence of values that indicate
the relevance of topics to its textual content. The method uses
cosine similarity in order to find in this vector space, the
document (solved request) with the highest similarity index.
From the found request, the proposed approach retrieves from
the profile base, the list of candidate developers who have
historically worked on requests belonging to the same group
as the found request, as shown in the figure Figure 3.

Fig. 3. Selection of Candidate Developers

C. Developer Recommendation

The last step of the method has as its main task to rec-
ommend the most appropriate developer for the target change
request. Given the list of candidate developers for resolving
the request, it is necessary to select the most appropriate
contributor. Adhering to the premise that the most appropriate
developer has the least number of bad quality metrics within
his group, the list of candidates is ordered according to code
quality metrics commits.

The sum of the normalized metric values for all commits in
relation to the target request is calculated for each candidate
developer.

VI. RESULTS

There are currently no code bases that have performed
their screening processes as proposed in this paper, which
hardens the evaluation step as there is no gold model to

be compared with. Therefore, evaluating the accuracy of the
proposed method is not be sufficient, as developers of a test set
repository may have been chosen by subjective characteristics,
or even randomly [26].

The metric proposed in [1] was chosen to assess whether
the developers recommended by the proposed method would
have an equal or better impact on the code quality of a
change compared to the actual author. This metric aims to
measure the degree of developers contribution in collaborative
environments. The metric can be described in the equation
below where X is the value of a quality metric and i is the
commit number:

n∑
i=0

Xi −Xi−1 (1)

If the difference between sequential commits is high, it
means that there is an increase in the value of the quality
metric being evaluated and consequently a negative influence
on the health of the repository and a poor degree of contribu-
tion. Therefore, the developers recommended by the proposed
method must have a degree of contribution better or equal to
the average of all their code quality metrics in relation to the
developers who originally made the evaluated change.

However, it is also necessary to evaluate the accuracy of
the proposed method in order to validate the profiles of the
developers. Since the profile base is created from the history
of requests resolved by collaborators in a repository, the
developer who originally solved the evaluated issue must be
at least on the list of candidate developers, even if he is not
the most appropriate. To evaluate this part of the method,
the metric recall@k was selected, as it is successfully used
by similar works in the literature [27]. According to [26],
recall is the proportion in which relevant items are found in
the recommended items and its modification ”@k” refers to
the application of the metric for recommended item sets with
different sizes.

The equation used to evaluate recall in different set sizes is
shown below, where Nrsrefers to the number of recommended
developers who are the original authors of changes, and Nr,
which refers to the number of recommended developers:

Recall@k =
Nrs

Nr
(2)

The proposed approach was evaluated on 409 change re-
quests from three different repositories that used the Java
programming language, as presented in Table I. As the number
of change requests is relatively small, an exhaustive cross-
validation method as employed in order to use all of the data
set’s instances as part of the validation set, by the leaving-
one-out method for each repository separately. The model
was trained using all but one of the data set’s instances and
validated using the particular instance left out, repeating this
process for each instance until all possible ways to divide a
repository’s data set into a training set and a validation set of
one have been done. The method was evaluated using both the

Contribution (Equation 1) and Recall@k (Equation 2) metrics,
as presented in the evaluation session.

In order to better evaluate the developer recommendation
method proposed by this paper, its results must be compared
to a state-of-the-art recommendation method. For this task,
we selected the iMacPro developer recommendation method,
as it requires only an access to a repository’s source code
and its change history. The iMacPro approach is akin to
the one proposed by us with the most notable exception of
using change proneness of a relevant unit of source code as
a key factor for recommending developers instead of quality
metrics. It uses Latent Semantic Indexing to locate source-
code units that may relate to an incoming change request and
rank them based on their historical change frequency. Finally,
any developer that has contributed to those relevant units of
source code are put together on a list forming the best-fit
candidates for resolving the incoming change request. This list
of developers is ranked based on the number of changes they
made to the relevant units and the date in which they made
them, favoring developers who worked more and recently [27].
The iMacPro approach recommends the top n developers of
that list without creating a machine learning model.

Both methods were applied for each of the acquired repos-
itories data, one repository at a time. Table III presents the
recall values for the proposed method in contrast to the
iMacPro. The recall value tends to increase as the number
of k increases for both methods. The statistical Student’s t-
test was applied to determine if the means of the recall
values produced by both methods are significantly different
from each other. The performed t-test’s resulted in a t-value
of 0.30537 and p-value of 0.382012. As the obtained p-
value is higher than 0.05, there is no statistically significant
difference between the compared methods, which indicates
that the proposed approach can recommend developers as well
as a well established approach from the literature.

TABLE III
RECALL@K MEASUREMENT FOR THE PROPOSED METHOD

Recall@k Proposed Method iMacPro

Mockito
1 0.11 0.13
3 0.40 0.22
5 0.81 0.29

Closure-Compiler
1 0.13 0.15
3 0.28 0.48
5 0.50 0.54

Guava
1 0.11 0.13
3 0.22 0.28
5 0.25 0.34

With the evaluation of proposed method’s accuracy for
recommending sets of developers to resolve change requests,
the need to assess the impact on software quality that rec-
ommendations may have still remains. Table IV presents the
values for the contribution metric described in [1] for both
developer recommendation methods. In this evaluation, every

TABLE IV
DEVELOPER CONTRIBUTION MEASUREMENT FOR THE PROPOSED

METHOD

Contribution Proposed Method iMacPro
Mockito

150
Change Requests

Equal 17 20
Negative 8 71
Positive 125 59

Closure-Compiler
188

Change Requests

Equal 25 28
Negative 3 96
Positive 160 64

Guava
118

Change Requests

Equal 12 15
Negative 15 62
Positive 91 41

developer in a repository had their contribution calculated,
then the contribution of the most appropriate developer for re-
solving a change request, recommended by each method, was
compared to the original change request’s assignee. Moreover,
the statistical Student’s t-test was applied in a subset composed
only of Positive values in order to determine if there is a
significant difference between the recommendation made by
the evaluated methods regarding software quality. The results
obtained from the test leads to the conclusion that there is a
significant difference at p < 0.05, with a t-value of 3.34783
and p-value of 0.014313.

Results from experimental evaluation show that 93% of
the recommended developers have equal or higher levels of
contribution than evaluated change request’s assignees, in
contrast to only 49% obtained by the iMacPro method.

Conclusively, since our method is based on the extraction
and modeling of not only historical commit data but also code
quality related to resolved change requests, in contrast to the
iMacPro approach that uses change history as well but does
not take into account the changes in code commit by commit,
our method requires more computational effort to acquire data
and to create the developers profiles. However the evaluation’s
results shows that there’s a statistically difference between
both methods concerning the recommending of developers
with a better impact to a repository’s code quality. It indicates
that the trade off can be worth it when taking technical debt
into account. Moreover once the acquisition step is done, the
proposed method’s maintenance step can be done without a
high computational effort.

VII. CONCLUSION

In this work we proposed a method for assigning unresolved
change requests based on developer profiles. Those profiles are
build from clustering historical developing data.

The outcome of the evaluation phase demonstrates that the
proposed approach can be beneficial to a repository’s health, as
it takes into consideration the quality of a developer’s previous
alterations when recommending a change request assignee.
Moreover, while it has presented a similar recall@k result
when compared to the iMacPro developer recommendation

method, it presents a superior performance in terms of as-
signing developers with a better track record in terms of code
quality for the evaluated task.

To further validate the method a real world application is
under development using real code from a company in the
energy market. This would also allow us to explore possible
recommendation models with features that cannot be found on
a open code base, such as a developer schedule and position
in the company.

ACKNOWLEDGMENT

We would like to thank Siemens Ltd for partially supporting
this work financially.

REFERENCES

[1] P. R. BASSI, G. M. P. Wanderley, P. H. Banali, and E. C. Paraiso, “Mea-
suring developers’ contribution in source code using quality metrics,”
in 2018 IEEE 22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)), May 2018, pp. 39–44.

[2] N. Ali and R. Lai, “A method of requirements change management for
global software development,” Information and Software Technology,
vol. 70, pp. 49–67, 2016.

[3] N. E. Fenton and M. Neil, “Software metrics: roadmap,” in Proceedings
of the Conference on the Future of Software Engineering. ACM, 2000,
pp. 357–370.

[4] y. Cavalcanti, I. Machado, P. Anselmo da Motal S. Neto, and E. San-
tana de Almeida, “Towards semi-automated assignment of software
change requests,” Journal of Systems and Software, vol. 115, 02 2016.

[5] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more
accurate severity prediction and fixer recommendation of software
bugs,” J. Syst. Softw., vol. 117, no. C, pp. 166–184, Jul. 2016. [Online].
Available: https://doi.org/10.1016/j.jss.2016.02.034

[6] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects,” in
2009 3rd International Symposium on Empirical Software Engineering
and Measurement, Oct 2009, pp. 439–442.

[7] X. Sun, H. Yang, X. Xia, and B. Li, “Enhancing developer
recommendation with supplementary information via mining historical
commits,” J. Syst. Softw., vol. 134, no. C, pp. 355–368, Dec. 2017.
[Online]. Available: https://doi.org/10.1016/j.jss.2017.09.021

[8] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software Mainte-
nance, vol. 24, pp. 3–33, 01 2012.

[9] M. Mohtashami, T. J. Marlowe, and C. S. Ku, “Metrics are needed for
collaborative software development,” Journal of Systemics, Cybernetics,
and Informatics, vol. 9, no. 5, pp. 41–47, 2011.

[10] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Fourth International Workshop on Mining
Software Repositories (MSR’07:ICSE Workshops 2007), May 2007, pp.
1–1.

[11] S. Lock and G. Kotonya, “An integrated, probabilistic framework for re-
quirement change impact analysis,” Australasian Journal of Information
Systems, vol. 6, no. 2, 1999.

[12] M. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the performance
of automated approaches for the retrieval of duplicate reports in issue
tracking systems that perform just-in-time duplicate retrieval,” Empirical
Software Engineering, 12 2017.

[13] F. Beal, P. R. de Bassi, and E. C. Paraiso, “Developer modelling
using software quality metrics and machine learning,” in ICEIS
2017 - Proceedings of the 19th International Conference on
Enterprise Information Systems, Volume 1, Porto, Portugal, April
26-29, 2017, S. Hammoudi, M. Smialek, O. Camp, and J. Filipe,
Eds. SciTePress, 2017, pp. 424–432. [Online]. Available: https:
//doi.org/10.5220/0006327104240432

[14] E. Constantinou and G. M. Kapitsaki, “Identifying developers’ expertise
in social coding platforms,” in 2016 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2016,
pp. 63–67.

[15] A. N. Meyer, T. Zimmermann, and T. Fritz, “Characterizing software
developers by perceptions of productivity,” in Proceedings of the 11th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. IEEE Press, 2017, pp. 105–110.

[16] T. Zhang and B. Lee, “How to recommend appropriate developers for
bug fixing?” 07 2012.

[17] GitHubInc. (2008) Mastering issues. [Online]. Available: https:
//guides.github.com/features/issues/

[18] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object
oriented design,” 1991.

[19] M. Aniche, Java code metrics calculator (CK), 2015, available in
https://github.com/mauricioaniche/ck/.

[20] I. Barth, “Modelando o perfil do usuário para a construção de sistemas de
recomendação: um estudo teórico e estado da arte,” Revista de Sistemas
de Informação da FSMA, vol. 6, pp. 59–71, 2010.

[21] R. Robu and V. Stoicu-Tivadar, “Arff convertor tool for weka data min-
ing software,” in 2010 International Joint Conference on Computational
Cybernetics and Technical Informatics, May 2010, pp. 247–251.

[22] T. H. A. Soliman, A. El-Swesy, and S. H. Ahmed, “Utilizing ck metrics
suite to uml models: A case study of microarray midas software,” in 2010
The 7th International Conference on Informatics and Systems (INFOS).
IEEE, 2010, pp. 1–6.

[23] R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave Macmillan, 2005.

[24] R. Plosch, H. Gruber, C. Korner, and M. Saft, “A method for continuous
code quality management using static analysis,” in 2010 Seventh Inter-
national Conference on the Quality of Information and Communications
Technology. IEEE, 2010, pp. 370–375.

[25] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, pp. 391–407,
1990.

[26] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Transactions on
Information Systems (TOIS), vol. 22, no. 1, pp. 5–53, 2004.

[27] M. K. Hossen, H. Kagdi, and D. Poshyvanyk, “Amalgamating source
code authors, maintainers, and change proneness to triage change
requests,” in Proceedings of the 22nd International Conference on
Program Comprehension. ACM, 2014, pp. 130–141.

https://doi.org/10.1016/j.jss.2016.02.034
https://doi.org/10.1016/j.jss.2017.09.021
https://doi.org/10.5220/0006327104240432
https://doi.org/10.5220/0006327104240432
https://guides.github.com/features/issues/
https://guides.github.com/features/issues/

