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Abstract—The Solar Dynamics Observatory provides data to
research the connected Sun-Earth system and the impact of the
Sun on living on the Earth. Its part, the Atmospheric Imaging
Assembly, performs continuous full-disk observations of the solar
chromosphere and corona in seven extreme ultraviolet channels
with the 12-second cadence of high-resolution, over 16-megapixel
images. In the paper, we create a fast binary hash to retrieve
similar solar images in this vast collection. We use a fully
convolutional autoencoder working on preprocessed solar full-
disk projections.

Index Terms—solar activity analysis, solar image description,
CBIR, fast binary hashes

I. INTRODUCTION

In 2010 NASA launched the Solar Dynamics Observatory
(SDO) as a part of the Living with a Star program. The
goal was to provide data to research the connected Sun-Earth
system and the impact of the Sun on living on the Earth.
The Sun activity, for example, huge electromagnetic storms,
can affect electronics, navigation systems, or electric power
grids. The SDO is a 3-axis stabilized spacecraft with three
main sensory instruments. One of them is the Atmospheric
Imaging Assembly (AIA), which provides continuous full-
disk observations of the solar chromosphere and corona in
seven extreme ultraviolet (EUV) channels with the 12-second
cadence of high-resolution 4096 × 4096 pixel images. The
commencement of the SDO program allowed to analyze the
solar activity, yet, with all the problems associated with big
data, as SDO generates about 70 thousand images a day. It
is impossible to search and annotate manually such a waste
collection of images. Moreover, this type of images is very
repetitive and monotonous for humans, making the process
even more troublesome.

In the paper, we create a fast binary hash to retrieve
similar solar images in this vast collection. We use a fully
convolutional autoencoder working on preprocessed solar full-
disk projections. We focus on the efficiency of the retrieval
process and the proposed method is faster than the existing
methods with similar accuracy. The speed comes from the
size of the proposed solar hashes. It is worth to mention that
the direct full-disk solar image hashing is too computationally
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demanding what was the main rationale behind our work. The
presented hash can be used in content-based image retrieval
(CBIR) [1], [2] in solar domain.

The paper is organized as follows. Section II mentions
some works on solar image retrieval. Section III introduces
the method for generating learned solar hashes. Experiments
on the SDO solar image collection are described in Section
IV. Section V concludes the paper.

II. RELATED WORKS

A full-disk content-based image retrieval system is de-
scribed in [3]. The authors checked eighteen image similarity
measures with various image features resulting in one hundred
and eighty combinations. The experiments shed light on what
metrics are suitable for comparing solar images to retrieve or
classify various phenomena.

In [4] the full-disk SDO images images are segmented by
the 64×64 grid into sub-images. Then, ten parameters, namely,
entropy, fractal dimension, the mean intensity, the third and
fourth moments, relative smoothness, the standard deviation
of the intensity, Tamura contrast, Tamura directionality and
uniformity are computed for each subimage.

A general-purpose retrieval engine Lucene is used to retrieve
solar images in [5]. Each image is a document consisting of
64 elements (rows of each image), and every image-document
is unique. The solar images are then queried by setting some
wild-card characters in the query strings that allows to search
for similar solar events. The Lucene engine is compared in [6]
with distance-based image retrieval methods, however, without
a clear winner. It turned out that every tested method has its
pros and cons in terms of accuracy, speed and applicability.
The trade-off between accuracy and speed is significant, and
for accurate results, the retrieval time was several minutes.

A sparse model representation of solar images was de-
veloped in [7]. The method used the sparse representation
from [8] and outperformed previous solar image retrievals in
accuracy and speed. In [9] some solar image parameters are
chosen to track multiple solar events across images with 6-
minute cadence. Sparse codes for AIA images are used also
in [10], where ten texture-based image parameters are used
to create the code. The parameters are computed for regions
determined by a 64× 64 grid for nine wavelengths. For each
wavelength, a dictionary of k elements is learned, and then a
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sparse representation is computed. To overcome the curse of
dimensionality affecting the solar data, they use the Minkowski
norm and choose the right value of p parameter. Finally, the
authors used a 256-dimensional descriptor what is an efficient
and accurate outcome comparing to the previous approaches.
Images from AIA can be also retrieved by a sequential analysis
[11], [12].

Last years brought learned semantic hashes [13] to image
retrieval. Semantic hashing [14] aims at generating compact
vectors which values reflect semantic content of the objects.
Thus, to retrieve similar objects we can search for similar
hashes which is much faster and takes much less memory then
operating directly on the objects. The term was introduced in
[14]. They used for the first time a multilayer neural network
[15] to generate hashes. Autoencoder neural networks can be
used also for image reconstruction [16], [17] when we do not
use the latent space. Computing hashes from full-disk hi-res
solar images would be not be viable taking into account the
size of the solar image collections. That is way we create a
novel fast binary hash from the proposed engineered features
called further in the paper intermediate descriptors.

III. PROPOSED FAST BINARY HASH FOR CBIR ON SOLAR
IMAGES

In this section, we propose a novel approach for the solar
image description. The proposed hash can be used for image
retrieval of solar images in large repositories. We used images
from the Solar Dynamics Observatory, which were later ex-
tracted and published in the form of Web API by [18]. Among
many resolutions, we decided to use 2048 × 2048. We can
distinguish three main stages in the hash creation: calculating
binary descriptor, encoding, and retrieval.

A. Calculating Binary Descriptor

In this step, we have a 2048 × 2048 solar input image on
which we can distinguish Active Regions (AR, see. Fig. 1),
which are interesting in reference to solar flares. As can be
seen, these regions can have various shapes, and they can
change due to the Earth’s rotation. In the first step of the
presented method, we determine the positions and shapes of
those active regions. This step is performed by filtering the
pixel values higher than the provided threshold th. During
this process, we first convert the input image to the grayscale,
where pixel intensities have the following scale [0..255].
Afterward, we use the Gaussian blur in order to remove
insignificant, small regions. Thanks to this process, we can
analyze only important image features without noise. After
those simple steps, our image is properly preprocessed for
the thresholding stage. In this step, we compare every pixel
intensity with the provided threshold th value. If the value
is greater or equal, we assume that the pixel is a part of the
active region pixel. The th value was obtained empirically,
and it equals 180, and it was adjusted for the given type of
solar images. Every pixel above this value is treated as an
active region. Afterward, the thresholded image is subjected
to morphological operations like erosion and dilation. The

morphological erosion removes “islands” and small objects
so that only substantive objects remain. The dilation makes
objects more visible, fills in small holes in objects. Applying
those two operations emphasize the important features of the
active regions. More about morphological operations can be
found in [19], [20]. The previously described process can be
described in the form of pseudo-code Alg.1.

Fig. 1. Manually annotated solar active regions.

INPUT: SolarImage
OUTPUT: ActiveRegionDetectedImg
GrayScaleImg := ConvertToGrayScale(SolarImage)
BlurredImg := Blur(GrayScaleImg)
ThreshImg := Threshold(BlurredImg)
ErodedImg := Erode(ThreshImg)
ActiveRegionDetectedImg = Dilate(ErodedImg)

Algorithm 1: Active region detection steps.

The output image of the active region detection is presented
in Fig. 2. As can be seen in Fig. 2, the applied operations
allow to detect active regions. The location and shape of these
regions are very important on account of the Coronal Mass
Ejection (CME) and, thus, on the solar flare prediction.

After the detection of active regions, we need to create their
representation in the form of a descriptor. The data set that
we used provides images with 6-minute cadence; thus, we as-
sumed that active regions change slightly between consecutive
images. This phenomenon is caused by Earth’s rotation. We
propose an fast binary hash which is resistant to small changes
of perspective. The consecutive image descriptors will have
similar values. After the active region detection process, the
descriptor calculation procedure is performed. In the first step,



Fig. 2. Active region detection, top image is the input, bottom image is the
output.

we need to calculate values of width vector Wj and height
vector Hi. Vectors A and B are auxiliary variables.

Bj = | {i : ARIi,j > th, i = 0, .., h} |, j = 0, .., w

where w and h are width and height of the image active region,
th is the threshold value.

Wj =
∑
i∈Bj

1

Subsequently, we can define Hi

Ai = | {j : ARIi,j > th, j = 0..., w} |, i = 0, .., h

Hi =
∑
j∈Ai

1

For every pixel in an active region we project it to height
and width vectors H, W. This step is performed in order
to obtain the combined W and H vectors as intermediate
descriptors. This stage is presented in Fig. 3. In the last
step we concatenate both H and W vectors. The projection

Fig. 3. Active region detection projection step.

process is also presented by the pseudo-code in Alg. 2. The

INPUT: ActiveRegionDetectedImg, th
OUTPUT: Descriptor
foreach i ∈ ActiveRegionDetectedImg do

foreach j ∈ ActiveRegionDetectedImg do
if ActiveRegionDetectedImg[i][j] > th then

H[i] := 1
W[j] := 1

end
end

end
Descriptor := Concatenate(HV,WV )

Algorithm 2: Active regions projection.

binary descriptor calculation stage allows reducing the amount
of analyzed data significantly. The autoencoder applied in
the encoding stage operates on one-dimensional data instead
of two-dimensional, in the case of full-disc approaches. The
presented approach allows reducing the time of data training,
which will be significant when we add new images to the
dataset. It should be noted that the computational complexity
of the proposed method for descriptor calculation is O(n2).
By using the projection of active regions, we reduce one
dimension of our data. In the encoding step, we analyze data of
length ‖H‖+ |W‖ instead of ‖H‖·‖W‖, which conventional
methods do.

B. Encoding

In this section the encoding process is described. We used
a convolutional autoencoder for encoding in its latent space



a one-dimensional hash from the previously obtained inter-
mediate descriptors. The rationale behind the autoencoder is
that it is a unsupervised convolutional neural network and
does not require labelled data for training. The autoencoder
architecture is presented in Fig. 4. A more detailed description

Fig. 4. Autoencoder model architecture. The bottleneck layer is the latent
space for generating the fast binary hash.

of the model is presented in Tab. I. As can be seen in Fig. 4

TABLE I
TABULAR REPRESENTATION OF THE MODEL. THE SECOND COLUMN

CONTAINS FEATURE MAP DIMENSIONS, NUMBER AND SIZE OF FILTERS.

Layer (type) Output shape Filters (no., size)
input 1(InputLayer) (4096, 1)
conv1d 1(Conv1D) (4096, 2) 2,3

max pooling1d 1(MaxPool1D) (2048, 2)
conv1d 2(Conv1D) (2048, 1) 1,3

bottleneck(MaxPool1D) (1024, 1)
conv1d 3(Conv1D) (1024, 1) 1,3

up sampling1d 1(UpSamp1D) (2048, 1)
conv1d 4(Conv1D) (2048, 2) 2,3

up sampling1d 2(UpSamp1D) (4096, 2)
autoencoder(Conv1D) (4096, 1) 1,3

and Table I, we used an autoencoder with two convolutional
layers with max-pooling, where pool size parameter is equal

2. After two convolutional layers with pooling, we have the
latent space, bottleneck layer, which is encoded layer. We
used a one-dimensional autoencoder because we use it for
the intermediate descriptor encoding. This stage allows us to
reduce the hash length without significant loss of accuracy. By
applying the encoding stage, we reduce the hash length for
times over (4096 vs. 1024). After encoding layers, we have
convolutional decoding layers with up-sampling. The decoding
layers are used only for training. For a hash generation, we
only use encoding layers. During the experiments, we used
the Keras package along with Tensorflow 2.0. We applied
the binary cross-entropy loss function. We empirically proved
that 40 epochs are sufficient to obtain the required level of
generalization and not cause the network over-fitting. The
learning curve is presented in Fig. 5. After the learning
process, every descriptor created in the previous step (Sec.
III-A) is fed to the encoded layers of the autoencoder. As a
result of this process, we obtained encoded fast binary hash
of 1024 length. Such hash can be used for content-based solar
image retrieval applications (see Sec. III-C).

Fig. 5. The autoencoder learning curve.

C. Retrieval
In the last step of the presented method, we perform the

image retrieval process. Let us assume that every solar image
has a hash assigned in our image database. On the input of the
image retrieval step, we have a query image; it is an image
to which we will compare images stored in the database. In
the first step of this process, we need to create the same type
of hash that we created for all images in the database. The
image retrieval scheme is presented in Fig. 6. As can be seen
in Fig. 6, the encoded binary hash for the query image is
generated. The retrieval step requires to have a solar image
database with a hash generated for every image. In the next
step, we calculate the distance between the query image hash
and every hash in the database. The distance d is calculated
by the cosine distance measure [21]

cos(Qj , Ij) =

n∑
j=0

(Qj • Ij)
‖Qj‖ ‖Ij‖

,



Fig. 6. Active region detection projection step.

where • is dot dot product. During the experiments, we
determined that this distance measure is the most suitable
for the proposed hash. We also supported our decision by
analyzing similar methods [21]. In the next step, the images

INPUT: Hashes, QueryImage, n
OUTPUT: RetrivedImages
foreach hash ∈ Hashes do

QueryImageHash = CalculateHash(QueryImage)
D[i] = Cos(QueryImageHash, hash)

end
SortedDistances = SortAscending(D)
RetrivedHashes = TakeF irst(n)
RetrievedImages =
GetCorrespondingImages(RetrievedHashes)

Algorithm 3: Image retrieval steps.

are sorted in the ascending order by the distance to the query.
In the last step, we take n images closest to the query.
Those images are returned to the user as the retrieved images.
Parameter n is provided during query execution along with
the query image. The entire retrieval process is described by
Alg. 3.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results along with
our approach to method evaluation of unlabelled images.

Due to the lack of labeled data, we had to resort to the
unsupervised learning for encoding descriptors. Therefore,
there is no possibility to evaluate the proposed method with
state of the art approaches. We decided to develop a new
approach to this problem. We can use Earth’s rotation to
determine similar images. The consecutive images within a
small time window should have similar active regions. They
should be slightly shifted relative to the previous image if we
define the next and previous image by their creation date. The
provided API allows fetching solar images with a 6-minute
window (cadence). Therefore we can assume the similarity
of consecutive images. The only condition is adjusting the
difference time window. During performed experiments, we
determined that a 48-hour window allows determining the
similarity of the images. Let us take an image taken at 2012-
02-15, 00:00:00; we can now assume that 24 hours before and
24 hours after the images are similar. Images are identified by
the timestamps. This process is presented in Table II. Based

TABLE II
DEFINING IMAGE SIMILARITY.

Timestamp SI (similar image), NSI (not similar image)
2012-02-13, 23:54:00 NSI
2012-02-14, 00:00:00 SI
2012-02-14, 00:06:00 SI
2012-02-14, 00:12:00 SI
2012-02-14, 00:18:00 SI
2012-02-14, 00:24:00 SI
2012-02-14, 00:30:00 SI

........ SI
2012-02-15, 00:00:00 QI (query image)

........ SI
2012-02-15, 23:24:00 SI
2012-02-15, 23:30:00 SI
2012-02-15, 23:36:00 SI
2012-02-15, 23:42:00 SI
2012-02-15, 23:48:00 SI
2012-02-15, 23:54:00 SI
2012-02-16, 00:00:00 NSI

on that assumption, we performed series of experiments in
order to determine similar images (SI). The experiments are
composed from the following steps:

1) Execute image query and obtain the retrieved images.
2) For every retrieved image compare its timestamp with

the query image timestamp.
3) If the timestamp is the 48 hour window, the image is

similar to the query.
After defining similar images (SI) and (NSI) we can define
performance measures precision and recall [22], [23]. They
are defined using:
• SI - set of similar images,
• RI - set of retrieved images for query,
• PRI(TP ) - set of positive retrieved images (true posi-

tive),
• FPRI(FP ) - false positive retrieved images (false pos-

itive),
• PNRI(FN) - positive not retrieved images,
• FNRI(TN) - false not retrieved images (TN).



Precision and Recall are defined as follows [23], [24]

prec =
Total no. of retrieved relevant images

Total number of retrieved images
, (1)

recall =
Total no. of retrieved relevant images

Total number of relevant images
. (2)

Based on the previously described sets and above formulas we
can adapt formulas to CBIR needs

precision =
|PRI|

|PRI + FPRI|
, (3)

recall =
|PRI|

|PRI + PNRI|
. (4)

The performed experiment results were presented in Tables
III and IV. As can be seen in the presented tables, our
method obtains a high value of the precision measure.
Most of the images close to the query are correctly
retrieved. The farther from the query, the more positive not
retrieved images (PNRI) are searched. This is caused by
the Earth’s rotation and missing active regions. If in the
48-hour window, the significant active region will change its
position, this may significantly change the hash; therefore,
the distance to the query will be increased. This is not a
typical case, but it was observed during the experiments.
The lower value of the Recall measure is caused by this
phenomena. The presented simulation environment was
created in Python using Tensorflow and Keras libraries.
The presented solution is available on the BitBucket
repository under the following link: https://bitbucket.org/rafal-
grycuk/novel encoded solar binary descriptor/src/master.
The hash creation time was the longest stage; it took
approximately 12 hours for 167638 images. The learning
took 6 hours. The average retrieval time is 700 ms.

V. CONCLUSIONS

We proposed a novel fast binary hash for content-based
solar image retrieval on solar images. The algorithm uses
morphological operations for preprocessing and active regions
detection, and then the binary descriptor is calculated. After-
ward, we use an unsupervised convolutional autoencoder to
encode the descriptors. After this process, we obtain the fast
binary hash, which length was reduced four times over com-
pared to the descriptor obtained before encoding. Reducing the
hash length is significant relative to calculating the distances
between hashes.The performed experiments and comparisons
(see Tables III and IV) proved the efficiency of the proposed
approach. The presented method has various potential applica-
tions. It can be used for searching and retrieving solar flares,
which has crucial importance for many aspects of life on Earth.
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TABLE III
EXPERIMENT RESULTS FOR THE PROPOSED ALGORITHM, PERFORMED ON
AIA IMAGES OBTAINED FROM [18]. DUE TO LACK OF SPACE, WE PRESENT
ONLY A PART OF ALL QUERIES. DATES RANGE: 2012-01-01 : 2012-12-31.
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2012-01-01 00:00:00 188 241 141 47 100 0.75 0.59
2012-01-04 15:00:00 358 481 320 38 161 0.89 0.67
2012-01-08 06:00:00 349 481 326 23 155 0.93 0.68
2012-01-16 05:00:00 386 481 343 43 138 0.89 0.71
2012-01-20 01:00:00 320 481 309 11 172 0.97 0.64
2012-01-24 22:00:00 352 481 310 42 171 0.88 0.64
2012-01-27 10:06:00 379 481 336 43 145 0.89 0.7
2012-02-01 16:12:00 336 481 324 12 157 0.96 0.67
2012-02-04 11:18:00 336 481 313 23 168 0.93 0.65
2012-02-06 02:18:00 376 481 321 55 160 0.85 0.67
2012-02-14 12:24:00 310 481 305 5 176 0.98 0.63
2012-02-21 17:24:00 334 481 329 5 152 0.99 0.68
2012-02-22 21:30:00 365 481 320 45 161 0.88 0.67
2012-02-26 20:30:00 365 481 325 40 156 0.89 0.68
2012-03-03 17:36:00 359 481 312 47 169 0.87 0.65
2012-03-09 16:36:00 365 481 328 37 153 0.9 0.68
2012-03-13 08:36:00 364 481 322 42 159 0.88 0.67
2012-03-18 16:36:00 343 481 318 25 163 0.93 0.66
2012-03-26 09:36:00 326 481 293 33 188 0.9 0.61
2012-03-30 06:36:00 337 481 319 18 162 0.95 0.66
2012-04-01 12:36:00 359 481 310 49 171 0.86 0.64
2012-04-04 12:42:00 365 481 322 43 159 0.88 0.67
2012-04-10 13:42:00 330 481 311 19 170 0.94 0.65
2012-04-13 22:48:00 349 481 315 34 166 0.9 0.65
2012-04-19 15:48:00 361 481 327 34 154 0.91 0.68
2012-04-24 16:48:00 380 481 331 49 150 0.87 0.69
2012-04-29 19:54:00 352 481 325 27 156 0.92 0.68
2012-05-06 13:00:00 331 481 316 15 165 0.95 0.66
2012-05-10 02:06:00 365 481 328 37 153 0.9 0.68
2012-05-14 10:12:00 359 481 329 30 152 0.92 0.68
2012-05-21 05:12:00 320 481 303 17 178 0.95 0.63
2012-05-29 00:12:00 380 481 345 35 136 0.91 0.72
2012-06-04 22:18:00 329 481 319 10 162 0.97 0.66
2012-06-06 05:18:00 375 481 328 47 153 0.87 0.68
2012-06-13 23:18:00 329 481 308 21 173 0.94 0.64
2012-06-18 00:24:00 344 481 329 15 152 0.96 0.68
2012-06-21 12:24:00 380 481 335 45 146 0.88 0.7
2012-07-07 22:30:00 372 481 327 45 154 0.88 0.68
2012-07-14 07:30:00 328 481 322 6 159 0.98 0.67
2012-07-30 20:42:00 317 481 302 15 179 0.95 0.63
2012-08-12 06:48:00 334 481 321 13 160 0.96 0.67
2012-08-22 20:54:00 342 481 332 10 149 0.97 0.69
2012-08-24 23:00:00 321 481 305 16 176 0.95 0.63
2012-09-01 09:12:00 376 481 331 45 150 0.88 0.69
2012-09-09 21:12:00 308 481 299 9 182 0.97 0.62
2012-09-14 09:18:00 339 481 326 13 155 0.96 0.68
2012-09-20 07:24:00 344 481 322 22 159 0.94 0.67
2012-09-25 08:30:00 333 481 312 21 169 0.94 0.65
2012-10-08 10:42:00 354 481 308 46 173 0.87 0.64
2012-10-17 22:48:00 336 481 313 23 168 0.93 0.65
2012-10-23 03:00:00 332 481 315 17 166 0.95 0.65
2012-10-29 19:06:00 362 481 320 42 161 0.88 0.67
2012-11-02 08:12:00 336 481 318 18 163 0.95 0.66
2012-11-11 05:12:00 379 481 338 41 143 0.89 0.7
2012-11-17 02:18:00 348 481 313 35 168 0.9 0.65
2012-11-21 00:24:00 376 481 338 38 143 0.9 0.7
2012-11-22 17:24:00 333 481 303 30 178 0.91 0.63
2012-11-25 12:24:00 346 481 300 46 181 0.87 0.62
2012-11-26 20:30:00 354 481 316 38 165 0.89 0.66
2012-12-08 22:42:00 368 481 345 23 136 0.94 0.72
2012-12-13 04:48:00 367 481 321 46 160 0.87 0.67
2012-12-26 14:00:00 355 481 310 45 171 0.87 0.64



TABLE IV
EXPERIMENT RESULTS FOR THE PROPOSED ALGORITHM, PERFORMED ON
AIA IMAGES OBTAINED FROM [18]. DUE TO LACK OF SPACE, WE PRESENT
ONLY A PART OF ALL QUERIES. DATES RANGE: 2017-01-01 : 2017-12-31.
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2017-01-01 00:00:00 166 241 154 12 87 0.93 0.64
2017-01-08 11:00:00 348 481 317 31 164 0.91 0.66
2017-01-16 02:06:00 320 481 307 13 174 0.96 0.64
2017-01-20 12:12:00 360 481 327 33 154 0.91 0.68
2017-01-25 11:12:00 345 481 314 31 167 0.91 0.65
2017-01-27 03:18:00 377 481 334 43 147 0.89 0.69
2017-02-02 21:18:00 344 481 322 22 159 0.94 0.67
2017-02-08 14:18:00 342 481 318 24 163 0.93 0.66
2017-02-15 06:24:00 377 481 332 45 149 0.88 0.69
2017-02-24 02:24:00 361 481 321 40 160 0.89 0.67
2017-02-28 07:30:00 347 481 327 20 154 0.94 0.68
2017-03-03 04:36:00 351 481 324 27 157 0.92 0.67
2017-03-11 07:36:00 335 481 324 11 157 0.97 0.67
2017-03-16 15:42:00 373 481 326 47 155 0.87 0.68
2017-03-19 01:42:00 333 481 307 26 174 0.92 0.64
2017-03-22 22:48:00 340 481 318 22 163 0.94 0.66
2017-03-28 10:48:00 352 481 318 34 163 0.9 0.66
2017-04-05 05:54:00 335 481 326 9 155 0.97 0.68
2017-04-09 19:00:00 364 481 317 47 164 0.87 0.66
2017-04-21 04:12:00 378 481 332 46 149 0.88 0.69
2017-05-06 09:18:00 347 481 324 23 157 0.93 0.67
2017-05-11 17:18:00 343 481 316 27 165 0.92 0.66
2017-05-13 00:24:00 378 481 334 44 147 0.88 0.69
2017-05-26 18:30:00 344 481 337 7 144 0.98 0.7
2017-05-29 18:30:00 330 481 314 16 167 0.95 0.65
2017-06-04 21:36:00 341 481 323 18 158 0.95 0.67
2017-06-09 02:42:00 342 481 317 25 164 0.93 0.66
2017-06-20 20:54:00 356 481 316 40 165 0.89 0.66
2017-06-26 21:00:00 376 481 338 38 143 0.9 0.7
2017-07-16 15:00:00 321 481 310 11 171 0.97 0.64
2017-07-25 09:06:00 370 481 322 48 159 0.87 0.67
2017-08-05 21:12:00 370 481 330 40 151 0.89 0.69
2017-08-11 08:18:00 342 481 321 21 160 0.94 0.67
2017-08-13 18:24:00 348 481 333 15 148 0.96 0.69
2017-08-16 08:24:00 331 481 311 20 170 0.94 0.65
2017-08-24 13:30:00 333 481 316 17 165 0.95 0.66
2017-08-29 05:30:00 357 481 311 46 170 0.87 0.65
2017-08-30 23:36:00 357 481 319 38 162 0.89 0.66
2017-09-06 07:42:00 348 481 317 31 164 0.91 0.66
2017-09-09 22:48:00 358 481 343 15 138 0.96 0.71
2017-09-14 03:48:00 341 481 311 30 170 0.91 0.65
2017-09-15 17:54:00 347 481 299 48 182 0.86 0.62
2017-09-24 15:00:00 357 481 317 40 164 0.89 0.66
2017-10-02 16:06:00 358 481 324 34 157 0.91 0.67
2017-10-09 18:12:00 356 481 313 43 168 0.88 0.65
2017-10-14 00:18:00 359 481 332 27 149 0.92 0.69
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variational pde model for computed tomography image reconstruction,”
Pattern Recognition, vol. 92, pp. 64–81, 2019.

[17] W. Wei, X.-L. Yang, B. Zhou, J. Feng, and P.-Y. Shen, “Combined
energy minimization for image reconstruction from few views,” Mathe-
matical Problems in Engineering, vol. 2012, 2012.

[18] A. Kucuk, J. M. Banda, and R. A. Angryk, “A large-scale solar dynamics
observatory image dataset for computer vision applications,” Scientific
data, vol. 4, p. 170096, 2017.

[19] E. R. Dougherty, “An introduction to morphological image processing,”
SPIE, 1992, 1992.

[20] J. Serra, Image analysis and mathematical morphology. Academic
Press, Inc., 1983.

[21] K. Kavitha and B. T. Rao, “Evaluation of distance measures
for feature based image registration using alexnet,” arXiv preprint
arXiv:1907.12921, 2019.

[22] M. Buckland and F. Gey, “The relationship between recall and preci-
sion,” Journal of the American society for information science, vol. 45,
no. 1, p. 12, 1994.

[23] K. M. Ting, “Precision and recall,” in Encyclopedia of machine learning.
Springer, 2011, pp. 781–781.

[24] S. Das, S. Garg, and G. Sahoo, “Comparison of content based image re-
trieval systems using wavelet and curvelet transform,” The International
Journal of Multimedia & Its Applications, vol. 4, no. 4, p. 137, 2012.




