
CNN Based Perception System for Collision
Avoidance in Mobile Robots using Stereo Vision

Edgar Macias-Garcia, Deysy Galeana-Perez, and Eduardo Bayro-Corrochano, Senior Member, IEEE
Department of Electrical Engineering and Computer Science

CINVESTAV, Campus Guadalajara
Guadalajara, Mexico

email: {emacias, dgaleana, edb}@gdl.cinvestav.mx

Abstract—In this paper, a CNN based perception system
for collision avoidance in mobile robots is presented. In the
considered scenario, a mobile robot is ordered to reach a target
on its workspace, where several types of objects influence a
collision risk for a suitable movement to the desired goal. To
ensure collision-free planning through the environment, a set of
convolutional neural networks in parallel are employed to detect
a set of static or dynamic objects of interest in the environment, as
well as objects on the floor that could imply a collision risk during
a movement execution. Afterward, stereo vision and filtering
algorithms are employed to recover and track the spatial position
of detections, in order to generate enough information to plan
a collision-free trajectory. All the above steps are evaluated in
real-time and real environments, proving to be enough robust
and fast for a wide range of mobile robot applications.

Index Terms—Deep learning, Cognitive robotics, Computer
vision, Mobile robots

I. INTRODUCTION

Motion planning has become a crucial stage in robotics,
where the aim is to enable robots to automatically compute
their movements from high-level task descriptions and models
acquired through sensing [1]. In this area, obstacle detection is
probably the first challenge to face in order to ensure that the
robot can navigate safely through its environment. Through
artificial vision techniques, stereo cameras could serve as a
reliable sensor for mobile navigation; in comparison with other
navigation sensors such as radars or lasers, they generate a
richer set of features at a lower cost.

In recent years, computer vision techniques have been
employed modern camera sensors to acquire a set of features
from the environment that allows generating enough spatial
information for a collision-free navigation [2], [3]. Despite
the variability of applications, depending on the desired
activity, these techniques may require intensive engineering
efforts, as achieving a good performance could be difficult
or even unreachable. For example, recognizing certain types
of patterns in uncontrolled environments where variations in
illumination, position, occlusion, object morphology, or other
noise types complicate the detection task [4]. Thanks to a
notorious increase in available storage and processing capacity
of the modern computing devices, deep learning or deep neural
networks have gained focus attention in many areas from
pattern recognition and machine learning [5].

Historically, deep learning has been gaining ground since
the Deep Belief Network (DBN) [6] with three hidden layers
applied over the MNIST dataset [7] was presented, since then
it has served as the basis for other networks such as the
Convolutional Neural Networks (CNN). In this topic, there are
many efforts to avoid some related problems like overfitting,
with algorithms such as Dropout [8], batch normalization [9],
and dataset augmentation techniques. The main advantage of
the neural networks remains in that after training, a model is
capable of real-time inference with a model size no larger than
a few hundred megabytes [10], which in most of the cases is
faster and more accurate than traditional vision techniques,
thanks to its generalization capacity.

Recently, most deep learning works have been focused
on the solution of perception related problems, such as
road segmentation in autonomous driving [4], obstacle
detection [11], and mobile robot navigation [12]. In [13] a
convolutional neural network for office door detection was
presented by employing real images as dataset, showing good
generalization capacity against variations in terms of door’s
morphology. On the other hand in [14] a hybrid perception
system for pedestrian detection and evasion in corridors was
proposed, which was tested in real scenarios with moving and
stationary pedestrians, showing good performance in real-time
operations.

By taking advantage of the generalization capacity of the
neural networks, this work proposes a CNN based perception
system for collision avoidance in mobile robots. In this
scheme, two neural networks in parallel are employed to detect
objects on the floor that could imply a collision risk during a
movement execution through the environment, as well as a set
of potential targets that the robot may want to reach or interact
with. Then, stereo vision, filtering, and tracking algorithms are
employed to recover the position of each detected object, in
order to generate a collision-free trajectory. Compared with
other works, the main contributions of this work can be listed
as follows:

• The whole detections are developed directly from RGB
images, instead to process the information from depth
maps, which in turn would result in a better speed
performance by employing only those pixels with relevant
information.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

• For each object detection a Kalman filter [15] is used to
support filtering and tracking algorithms, which allows to
generate enough information to calculate a collision-free
trajectory for each detection frame.

• The system runs on a Jetson TX1 developer board, with
an average processing speed of 15 frames per second
(fps).

The rest of the paper is organized as follows: section II
describes the problem formulation addressed in this work,
as well as a brief introduction of the proposed perception
system. Sections III and IV describe the neural network
models employed for obstacle and target detection, describing
its architecture, training process, and processing scheme.
Section V describes the approaches considered to recover the
spatial position of each detection, as well as the filtering and
tracking algorithms employed before generating a collision-
free trajectory. Section VI describes several performance tests
applied over each stage of the system, and finally, conclusions
and future work are drawn in Section VII.

II. PROBLEM FORMULATION

In this work, the following situation is considered: a
mobile robot is standing in a workspace and there is a target
somewhere in the environment that it must reach, but there are
several objects along the way that may imply a collision risk
if a direct movement is employed. Using its vision, the robot
must extract enough information from the environment to plan
a trajectory that allows reaching the target while avoiding
collisions with the objects in its path (Fig. 1).

Fig. 1. Representation of the perception problem. A mobile robot must plan
a trajectory to reach a target while avoiding collisions with static or moving
objects on its path.

The proposed perception system scheme is summarized in
Fig. 2:
• First, an RGB image and a depth map are acquired from

the environment using a stereo camera, each one of size
480× 640 pixels.

• According to the input specifications of later modules,
the RGB input image is processed in two ways: a set of
stripes or ”Stixels” of size 100×10×3, and a 448×448×3
resized version of the original image.

• Two parallel neural networks are employed to detect
objects of interest in the workspace; a target to reach
and obstacles to avoid during a movement execution.

• Using the previous information, stereo vision is employed
to recover the position of each detected object.

• A set of tracking algorithms and Kalman filters [15] are
employed to classify and filtering the position of each
detected object, in order to deal with the noise related to
position estimation (due to a wrong depth calculation by
hardware, or multiple detections of the same object).

• Once the previous information is available, the RRT
algorithm [16] is employed to generate a collision-free
trajectory to a desired target.

• Between frames, if the goal changes its position or the
previously planned trajectory is crossed by an object, a
new trajectory to reach the goal is calculated.

Fig. 2. Perception system scheme. Several modules are employed to solve
different perception tasks: obstacle detection, target detection, 3D position
estimation, position filtering, tracking scheme and collision-free trajectory
generation.

In the scope of this work, the following restrictions are
considered:

• It is only considered the situation to reach a target from
the robot initial position (camera frame), whereby all the
distance measurements are related to this reference frame.

• To obtain the depth map at all times, a ZED stereo camera
is employed, which generates real-time depth information
of objects at a distance between 0.70 and 20 meters.

• It is assumed that all obstacles are at floor level, so if any
are above this, they are taken as if they were on the floor,
which is a common situation for indoor environments.

• When multiple targets are available, it is assumed that a
single desired goal is always known. Whereby, once it is
detected tracking algorithms are employed to follow the
changes in its position.

III. OBSTACLE DETECTION

In the proposed scheme, the objective of this module is
detecting a set of potential obstacles that could appear between
the robot and its goal. To address this problem, a modified
version of the network ”StixelNet” proposed in [11] for
autonomous driving is employed. Based on the literature, this
network offers advantages against other standard architectures
as follows:
• It employs a column regression problem scheme, which

allows saving computational cost by employing smaller
input images, as well as allowing to process multiple
columns simultaneously.

• A new semi-discrete loss function termed ”PL-Loss”
is proposed, which in turn allows having better
generalization capacity on the neurons in the last layer,
thanks to a redistribution of the output information
between neighboring neurons.

• From its original application for autonomous driving,
it had the objective of segmenting the free road space
in highways. Similarly, it can be employed to segment
the free space in a workspace for a mobile robot, by
retraining the model with a new specialized dataset.

This model is composed of five layers distributed in two
convolutional at the beginning followed by a set of three fully
connected layers. The ReLU non-linearity is applied at the
output of all layers except the last one, which has a Softmax
function, and for the convolutional layers, a Max-pooling layer
follows the ReLU operation as well (Fig. 3).

Fig. 3. StixelNet, modified neural network structure. Where F indicates the
number of filters, h and w the size of the kernel on convolutional and pooling
layers, N the number of neurons in fully-connected layers, and BN the position
of batch normalization layers.

In order to adapt the network for indoor applications, the
following modifications were considered:
• For obstacles at floor level just the region bounded by the

pixel limits h ∈ [hmin, hmax] was considered, avoiding
to process pixels with no relevant information.

• To adjust the neural network parameters to the work
resolution, the size and stride of all the filters were
modified, as well as the number of neurons in each layer.

• To improve the training process and to avoid overfitting,
batch normalization layers [9] were added after each
activation function ReLU on the network, as well as
Dropout layers [8] after the first two fully connected
layers.

• The final structure is presented in Fig. 3, which is able
to detect up to 32 obstacles for each input image.

A. Forward processing

A 480× 640× 3 input RGB image is trimmed horizontally
over the pixels [hmin, hmax] (floor level), then it is resized at
a half of its dimensions, producing an array of (hmax−hmin

2)×
320 × 3 size, which is divided in 32 vertical stripes V (i)
of 10 pixels of width, producing a final input array of
32× (hmax−hmin

2)× 10× 3 stripes or stixels. For each stripe,
the neural network must determine the average vertical pixel
location v(i) of the nearest obstacle presented (Fig. 4).

Fig. 4. StixelNet, output layer behavior. The network is trained to predict the
nearest obstacle position for every 20 pixels of the image.

Thus, each neuron k at the output layer of size N assigns
a probability P (v) that the nearest obstacle on the stripe is
presented in the row v, which by applying a simple linear
regression is given by the expression:

v =
h− hmin

N
k + hmin (1)

while the pixel column u is determined by the middle column
w of the stripe s, according to the relation:

u = ws− w

2
, (2)

In this paper, an obstacle detection zone with limits h ∈
[280, 480] pixels, N = 50 sections and stixel dimensions of
w = 20 pixels were considered. Furthermore, by taking the
maximum probability row according a threshold measurement
max(v(i)) > thresh, the position v of the nearest obstacle
presented in V (i) is determined.

B. Training set building process

To build the training dataset, a ZED stereo camera was
employed to take RGB images and depth maps from different
scenes through indoors, where people, walls and a wide
variety of objects were presented. For each image, manual
segmentations were carried out to detect the nearest obstacle
for every 20 pixels of width, in order to generate 100 labeled
images distributed in 3,200 RGB stripes. Then, by taking
advantage of the proposed detection zone h ∈ [hmin, hmax] a
data augmentation process was carried out; by defining new
detection zones h ∈ [h′min, h

′
max] on each labeled image,

a single stripe could generate multiple labeled samples (at
different pixels of height). At the end of the process, 115,500
stixels distributed in 104,000 for training and 11,500 for
testing were generated.

The neural network was implemented and trained using the
Caffe framework [17], during 20,000 iterations with a batch
size of 64 using Adam [18] as learning law with a learning rate
of 5.25 × 10−5, using the PL-Loss [11] cost function. Once
trained, the neural network learns to detect obstacles for each
20 horizontal pixels in the image, showing good generalization
capacity with new samples (Fig. 5).

Fig. 5. Generalization capacity of StixelNet using two validation images,
detected obstacles are drawn with red lines for every 20 horizontal pixels.

IV. OBJECT DETECTION

The objective of this stage is the detection of potential
targets that the robot may want to reach or interact with
during a movement execution. Particularly for this work, the
network is intended to detect pedestrians that can be presented
in the workspace, which is one of the most common situation
for dynamic obstacles through indoor environments. Based on
recent works, You Only Look Once (YOLO) [19] is a state
of the art neural network that employs bounding boxes to
localize and classify different object classes. Recently, the last
version (YOLOV3) was released to recognize effectively 100
different classes with reasonable processing speed in most of
the modern hardware systems. In practice, however, it was
difficult to run the model alongside the other modules of the
system due to memory limitations. Whereby, a fewer set of 9
classes (including pedestrians and a small set of other object
types) were considered to develop and train a new smaller
model.

This architecture is based in a simplified version of Tiny
YOLO, with a reduced number of neurons on the last layer
to recognize a fewer set of classes; this architecture has 13
convolutional layers followed by a set of YOLO detection
layers, where Maxpool layers are placed at the output of each
one in order to reduce the processing volume gradually to a
final detection layer at the output, which generates bounding
box coordinates for the objects corresponding to a selected
set of classes: person, bottle, cup, chair, dining table, monitor,
laptop, mouse and keyboard.

A. Forward processing

In this scheme, the neural network gets a 416 × 416 × 3
RGB image and produces a 3D tensor of size N ×N × [3(4+
1 + classes)] with codified information about the position
(bounding box coordinates), objectivity and class scores about
the objects detected in the image.

B. Training set building process

The training and testing datasets for this network were taken
from a subset of images from the MS-COCO dataset [20],
where for all the considered classes a total set of 137,645
images distributed in 118,287 for training and 19,358 for
testing were taken. This neural network was implemented and
trained using the Darknet framework [19], trough 500,200
iterations with a batch size of 64 and a learning rate of
2× 10−4.

V. TRAJECTORY GENERATION

A. 3D Position recovering

By employing the camera intrinsic matrix K, the 3D
position of each detected object p(u, v) can be calculated using
the transformation [21]:xcyc

zc

 = zcK
−1

uv
1

 , (3)

where zc is obtained directly from the depth map, according
to the median pixel neighborhood of each detection.

B. Filtering and tracking scheme

Once the position of all detected objects is calculated, it
is necessary considering some problems related to possible
changes in the environment; once a target is selected to reach,
a scheme to follow the changes in its position is required,
in the case that other potential targets are available, or when
an occlusion occurs. Also, there could be noising problems
related to a wrong object detection (by false positives) or
a wrong depth calculation (due hardware). Whereby, the
following scheme is proposed:

• In both cases, the available information (on the image
plane p = {u, v}, and the spatial position P = {x, y}
of bounding boxes and stixels) are employed between
frames to establish a relation between the objects detected
in old and new frames [22].

• For incoming bounding boxes, a Kalman filter with states
P̃t = {x̃, ỹ, ˜̇x, ˜̇y} is assigned to estimate and track the
changes in their position.

• In the case of obstacles, just the position P̃o = {x̃, ỹ}
is considered to deal with the noise related to a wrong
depth estimation.

• If any of the bounding boxes presents occlusion, the
Kalman filter is updated with no measurements using a
constant velocity [23].

• For incoming objects where a relation can not be
established. a new filter is assigned.

• Any bounding box detection is preserved during T
frames, after this period it is deleted.

By considering a general processing speed of the modules
(15 fps), a period of T = 60 is considered to keep the
information of previously detected bounding boxes.

C. Trajectory generation

Per each frame, once the position of all the incoming
objects is filtered, the standard RRT algorithm is employed to
generate a collision-free trajectory. This algorithm considers
two branches Porigin and Ptarget with initial points at the
origin and goal respectively, both branches grows iteratively
in the direction of a random point xrand once a connection
between both can be established, where each branch could
establish a new connection only if no collisions are presented
with other objects in the workspace. Between frames, a
previously trajectory is preserved until the position of an object
compromises a new collision, or when the target moves away
by a radius R from the previously trajectory end point.

VI. EXPERIMENTAL RESULTS

A. Obstacle detection

The neural network was evaluated through a controlled
digital validation dataset, which is composed of 5,000 images
of 10 digital obstacles distributed in 10 scenarios according
to the 50 positions in the detection zone h ∈ [hmin, hmax],
according to the following scheme:

1) For each true label vr(i), an estimation v(i) is generated
by the neural network.

2) For each sample, only detections that meet the condition
vr(i) − ε ≤ v(i) ≤ vr(i) + ε are taken as correct,
where ε = 4 pixels is a tolerance measure in accordance
with contiguous detection regions (the minimum error
measurement).

3) Finally, the average mean squared error e(vr, v) between
real and detected positions is calculated.

After evaluations, the neural network presented an average
mean squared error of 41.51 squared pixels on the entire
dataset, with an average performance of 85% according to
the aforementioned evaluation scheme. As can be seen in Fig.
6, all the zones have a good performance with exception of
the first one (near the starting point of the detection zone,
on the horizon level), this may be a consequence of the data
augmentation process, as this is the zone that gets a fewer
number of examples. Nevertheless, this may not a problem
during a movement execution, because as the robot approaches
to far objects, closer detection regions where the performance
is good enough will be employed, allowing to detect them
prior representing a collision risk.

B. Object detection

For object detection according to YOLO evaluations, the
MS-COCO dataset was employed to validate the network
according to the mean Average Precision (mAP) metric. In
this scheme, the following metrics are considered:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (4)

where TP , FP and FN indicate the number of true positive,
false positive, and false negatives samples respectively.

Using the above measurements, the Mean Average Precision
was calculated under an Intersection over Union (IoU) index
of 0.5. These results are presented in Fig. 6 for the selected
set of classes, where a general performance of mAP = 35.9
is achieved, which is consistent with the results of the original
publication [19].

Fig. 6. General performance of the detection system under the generated
validation dataset. StixelNet at the first two rows for performance and
absolute error measurement (in pixels), and TinyYOLO at the last row for
its performance on the selected set of classes: 1: Person, 2: Bottle, 3: Cup, 4:
Chair, 5: Dining table, 6: TvMonitor, 7: Laptop, 8: Mouse, 9: Keyboard.

C. Spatial reconstruction

In order to test the performance of the position estimation
module, the position of 54 manually measured obstacles was
tested using the obstacle detection module according the
following scheme:
• As mentioned in previous sections, the camera position
q0(x0, z0) was considered as the reference frame,
whereby all the measurements are referred to this point.

• For each manually measured object, the system was
employed to detect and estimate its 3D position.

• For detections, in order to avoid false positives, only those
with a probability P (k) > 0.30 were considered.

• For obstacles detected in more than one stripe, the
average position was considered.

• Once the position was calculated, the mean squared error
e = e(Pr, Pd) between real and estimated positions was
calculated.

• As an additional measurement rule, those obstacles with
a mean squared error below the threshold measurement
e < 0.1m2 were considered as correct detections, while
the rest as wrong.

As can bee seen in Fig. 7, the system achieves a mean
squared error of e = 0.084 m2 across both dimensions, with
a performance of 87 % in spatial reconstruction after obtaining
47/54 detections inside the aforementioned tolerance range
e < 0.1m2.

Fig. 7. Position estimation of several obstacles samples employing the
modules of the perception system. Top: Horizontal distance estimation,
Middle: Depth estimation, Bottom: Mean squared error.

D. Trajectory generation and tracking

All modules were implemented on an Nvidia Jetson-TX1
developer board under C++ and C, using libraries from
OpenCV, Caffe, Darknet, ROS, and ZED. All the modules
were programmed from scratch, except for the YOLO module
which is a modified version from the original implementation
presented in [24], where the 3D position estimation and object
tracking modules were added. Once implemented, the whole
system achieves an average processing speed of 15 fps, an
implementation scheme of the system is presented in Fig. 8.

In order to evaluate the whole implementation, the system
was employed to detect and calculate the position of different
object types across an indoor environment, as well as generate
a collision-free trajectory to a selected target according to the
following scheme:
• Different types of obstacles were placed through an

indoor scene, with pedestrians walking around.
• Two proofs were carried out; with a single and two

pedestrians walking around the obstacles randomly.
• A single pedestrian was considered as the target to reach,

while the second as a mobile obstacle to avoid during
trajectory calculations.

Fig. 8. Perception system ROS implementation in several nodes. A trajectory
is preserved until a condition for recalculation meets.

• For the pedestrian selected as the target, a zone of radius
R = 0.6 meters with center in its position (end zone)
was considered. This zone is intended to consider small
variations on the target position before calculating a new
trajectory.

• Between frames, an evasion trajectory is generated and
preserved until a collision compromises the path, or when
the target moves out from a previous end zone.

• In order to avoid collisions, a security zone of radius
r = 0.2 meters was considered around each obstacle and
pedestrian during the trajectory generation step.

• For the general detections a bounded area of size 8 × 8
meters was considered, where points outside the range
were not considered during the trajectory generation
process (avoiding far objects).

These experiments are presented in Fig. 9 by employing
several interfaces to represent each one of the obstruction
problems, for 2D segmentation (OpenCV) and 3D problem
representation (RViz). As can be seen, the different system
stages were able to work together in order to detect all the
relevant information from the obstruction problems (potential
targets to reach, and obstacles to avoid), where in all the
cases a collision-free trajectory can be generated from the
robot initial position to the selected target. The system is
also capable to generate a new trajectory each time that
one of the previously mentioned recalculation conditions
meet, as well as distinguish and track the position of the
desired target when multiple of them are available, even
when an occlusion (with other object) covers the goal
for a few frames (row 4 on Fig. 9), proving to be robust
against the problems presented in section V. For additional
multimedia resources about the experiments, please consult:
https://drive.google.com/drive/folders/1pOFP1poUn_zYCbZp
QsmxyoOIcNDdANDi.

Fig. 9. Experiments evaluated in real-time using the full perception system,
for a single (2 top images), and two pedestrians (3 bottom images). Left:
segmented image, center: ROS Rviz visualization, right: Problem scheme.

VII. CONCLUSIONS

In this work, a set of CNN based modules in parallel
were developed to detect a set of objects of interest through
the environment of a mobile robot, where stereo vision and
tracking and filtering algorithms were employed to recover
the 3D position of each detection, in order to generate a
collision-free trajectory to a desired target by employing the
RRT algorithm. A replanning scheme was also proposed to
deal with the position of dynamic objects, in order to calculate
a new trajectory each time that is required. Each stage was
evaluated through several performance test, proving to be
enough robust and fast for a wide-range of practical real-time
applications. As future work, we will consider interactions
with other types of targets and obstacles, scenarios with a
high complexity like outdoor environments, and the situation
of replanning when the robot is following the generated path.

ACKNOWLEDGMENT

The authors would like to thank CONACYT and
CINVESTAV-IPN for the scholarship and the economic and
technologic support for the realization of this work.

REFERENCES

[1] H. Choset, Principles of robot motion: theory, algorithms, and
implementation. Cambridge, MA: MIT press, 1 ed., 2005.

[2] A. Burlacu, S. Bostaca, I. Hector, Herghelegiu, et al., “Obstacle detection
in stereo sequences using multiple representations of the disparity
map,” in 20th International Conference on System Theory, Control and
Computing (ICSTCC), pp. 854–859, IEEE, 2016.

[3] S. Mane and S. Vhanale, “Real time obstacle detection for mobile
robot navigation using stereo vision,” in International Conference on
Computing, Analytics and Security Trends (CAST), pp. 637–642, IEEE,
2016.

[4] B. Huval, T. Wang, S. Tandon, J. Kiske, et al., “An empirical evaluation
of deep learning on highway driving,” arXiv:1504.01716, 2015.

[5] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, no. 1, pp. 85–117, 2015.

[6] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[7] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, et al., “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv:1502.03167,
2015.

[10] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, pp. 1097–1105, 2012.

[11] D. Levi, N. Garnett, E. Fetaya, and I. Herzlyia, “Stixelnet: A deep
convolutional network for obstacle detection and road segmentation,”
in British Machine Vision Conference, pp. 109.1–109.12, 2015.

[12] E. Macias, A. Cruz, J. Zamora, and E. Bayro, “Indoor navigation based
on model switching in overlapped known regions,” in Robot Motion and
Control (RoMoCo), 2019 12th International Workshop on, pp. 38–43,
IEEE, 2019.

[13] W. Chen, T. Qu, Y. Zhou, K. Weng, et al., “Door recognition and deep
learning algorithm for visual based robot navigation,” in International
Conference on Robotics and Biomimetics (ROBIO), pp. 1793–1798,
IEEE, 2014.

[14] D. Ribeiro, A. Mateus, P. Miraldo, and J. C. Nascimento, “A real-time
deep learning pedestrian detector for robot navigation,” in International
Conference on Autonomous Robot Systems and Competitions (ICARSC),
pp. 165–171, IEEE, 2017.

[15] R. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. 1,
pp. 35–45, 1960.

[16] T. Ho, “Random decision forests,” in International Conference on
Document Analysis and Recognition, vol. 1, pp. 278–282, IEEE, 1995.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, et al., “Caffe:
Convolutional architecture for fast feature embedding,” in Proceedings
of the 22nd ACM international conference on Multimedia, pp. 675–678,
ACM, 2014.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[19] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767, 2018.

[20] T. Lin and M. Maire, “Microsoft coco: Common objects in context,” in
European conference on computer vision, pp. 740–755, Springer, 2014.

[21] R. Davies, Computer and machine vision: theory, algorithms,
practicalities. Egham, Surrey: Academic Press, 4 ed., 2012.

[22] M. Buehrem, “Functions for the rectangular assignment
problem.” MATLAB Central File Exchange, 2019.
Accessed on: Nov. 5, 2019. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/6543-
functions-for-the-rectangular-assignment-problem.

[23] K. Saho, “Kalman filter for moving object tracking: Performance
analysis and filter design,” Kalman Filters-Theory for Advanced
Applications, pp. 233–251, 2017.

[24] M. Bjelonic, “YOLO ROS: Real-Time Object Detection for ROS.”
leggedrobotics, 2018. Accessed on: Mar. 15, 2019. [Online]. Available:
https://github.com/leggedrobotics/darknet ros.

