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Abstract—This work deals with an analysis of Granger 

Causality computation based on artificial neural networks, 

including a nonlinear relation between the involved variables. 

Information about the training parameters are exhibited in order 

to visualize how the conditions of the chosen model to obtain the 

connectivity information depend on the architecture of network. 

Three chaotic maps with a bivariate case built from two time series 

were employed to see the effect of training parameters of the 

models. Nonlinear autoregressive and nonlinear autoregressive 

with exogenous inputs were used to forecast the time series, and 

then, obtain the causality information based on differences of 

errors between both approximations. Results show that the 

causality computation is sensible to neural network parameters 

previously untreated in a detailed mode. 

Keywords—Granger causality, nonlinear models, transfer 

entropy, artificial neural networks, time series forecasting 

I. INTRODUCTION  

Causality is a proposed concept that aims to determine if 
some process or system contributes to other in some way. For 
this, a measure of this effect can be obtained through 
information from time series that represents any two or more 
systems involved [1]. In this way, when a first time series X1 
improves the prediction of a second time series X2, based on 
knowledge of the first one, means that there is a causality 
relation from X1 to X2.  

One way to capture the contribution or flow of information 
is carried out by Granger causality (GC), which quantifies the 
connectivity between two or more systems represented by the 
mentioned time series. Due to this, a classical computation of 
the GC measure is based on the use of multivariate 
autoregressive (MVAR) models [2], [3]. The utility of this tool 
is the extracted information related to the flow of the 
connections of the systems implicated. 

In spite of the wide use of GC in different applications, 
mainly in electroencephalographic signals [4], [5], some 
limitations have been reported, due to the model assumes 
linearity inside data and taking as basis parametric tests. 
Moreover, approximations that follow the same objective of the 
connectivity quantification have been emerged. An alternative 
based on information theory is known as transfer entropy (TE) 
[6]. In this case, TE does not employ a parametric basis as GC 

does and quantifies the flow of information through the 
computation of the communication of the processes under 
analysis. In addition, TE is a nonlinear and nonparametric 
mathematical tool that is employed in different applications, 
mainly in neurosciences [7]–[9]. Nevertheless, in some cases the 
GC and TE metrics can provide the same information about the 
systems or subsystems implicated. This is how some authors 
evinced that when the time series obey to a Gaussian 
distribution, the two measures are equivalent [10]. 

 Some years ago, the artificial neural networks (NN) have 
been proposed to modify the traditional computation of GC, 
allowing to formulate a Granger causality in a neural network 
sense (NNGC) [11], [12]. In this way, this updated 
approximation provides a nonlinearity that the basic model does 
not hold. For this, different architectures of NN have been 
utilized, such as radial basis function (RBF) networks in [13], 
[14], where the nonlinearity is a task of a hidden layer composed 
by Gaussian functions. For example, in the chapter five from the 
book [15], authors compared the RBF architecture and other 
models to analyze the Mackey-Glass system and to obtain a 
causal machine. The results showed that RBF and multilayer 
perceptron (MLP) models had comparable results. However, in 
most of the reports that employ MLP networks, the authors 
constrain the parameters to take into account of this type of 
implementations. One important parameter is the number of 
neurons in the hidden layer, which is not analyzed as it must. 

Other structures like recurrent neural networks, as echo state 
networks (ESN) or long short term memory (LSTM), have been 
employed due to its advantages in time series forecasting in 
specific contexts [16], [17]. Also, additional works related with 
the use of NN for GC computation, show the relevance of the 
computation through a interpretable way. This can be seen in 
[18], where a MLP and a LSTM networks were employed to 
understand the data in terms of GC computation in a nonlinear 
mode. For this, the connections inside the network are proposed 
in a sparse method, where the architecture named the 
componentwise allow to the MLP training the inclusion of 
penalties in the error minimization process. However, details 
with relevance in the NN architectures and its training have not 
been reported. For example, mostly of the employed models are 
adjusted to a fixed number of neurons in the hidden layer, 
modifying the number of hidden layers of the architecture. This 
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is opposite to the universal approximation theorem, which 
defends the use of just one hidden layer for MLP proposals [19]. 
This is a supported by authors that see these computational 
models as architectures based on kernels, where the hidden layer 
develops this function, making a nonlinear mapping of the data 
input. Examples of nonlinear GC at employing kernel have been 
reported in [13], [20]. 

The aim of the present work is to determine what training 
aspects of neural networks can affect the computation of GC 
connectivity. For this, the employment of nonlinear 
autoregressive (NAR) models is proposed joint to the same 
representation, but including an additional exogenous input 
approximation. Experiments were developed considering just a 
bivariate case, showing some aspects that have not been detailed 
for some authors in previous works.  For example, the GC 
computation in relation to the number of parameters implicated 
in the NN architectures and its capacity of learning from data. 
The parameters considered here are: i) number of inputs used to 
compute the NNGC, ii) number of neurons in hidden layer of the 
models, and, iii) the quantity of data employed to train the 
network. The paper is divided into a section II that explains the 
time series, models and tools used to develop the comparison. 
Section III shows the results in terms of computed causalities 
emphasizing in the NN models with a discussion in the section 
IV. Finally, section V describes some conclusions obtained after 
of realization of this work. 

II. MATERIALS AND METHODS 

A. Time series 

For developing the experiments and to compare the  
proposed models for connectivity identification, three scenarios 
with different generation of time series were simulated: i) A 
multichaotic map employed in [21], ii) Hénon chaotic map, and 
iii) Ikeda chaotic map. First one, an approximation consist of 
two couple chaotic maps employed by Montalto in [21]. There, 
the series were generated by: 

𝑥𝑛 = 1 − 𝛽𝑏1
2 + 𝑑𝜀𝑛 

𝑦𝑛 = (1 − 𝐶1)(1 − 𝛽𝑏1
2) +  𝐶1(1 − 𝛽𝑏1

2) + 𝑑𝜀𝑛 
(1) 

where the influence of two time series with n samples and 
determined as from x to y, is given by a coupling coefficient  C1 
= 0.2, b1=|means(x,n-1)|, b2=|means(y,n-1)|, β = 1.8, d = 0.03 is 
the value that control the noise and ε is the Gaussian noise. The 
data were obtained by a function given by the same toolbox 
described in [21]. For the present paper, this map is named 
Montalto map for comparison of the results. 

Second map was built through the simulation from Hénon 
map, according to the expression: 

𝑥𝑛+1 = 1 −  𝑎𝑥𝑛
2 +  𝑦𝑛 

𝑦𝑛+1 =  𝑏𝑥𝑛 
(2) 

considering a classical map where a=1.4 and b=0.3, which 
produces a chaotic behavior. 

Finally, the Ikeda map was employed for simulating a 
coupled time series in the way: 

𝑥𝑛+1 = 1 +  𝑢(𝑥𝑛𝑠𝑖𝑛𝑡𝑛 −  𝑦𝑛𝑐𝑜𝑠𝑡𝑛) (3) 

𝑦𝑛+1 =  𝑢(𝑥𝑛𝑐𝑜𝑠𝑡𝑛 − 𝑦𝑛𝑠𝑖𝑛𝑡𝑛) 

where u=0.9 and 𝑡𝑛 = 0.4 −
6

1+𝑥𝑛
2+𝑦𝑛

2 . 

For all scenarios, the time series were composed by 500 data 
points, allowing to develop the computational experimentation 
with different algorithms without to take into account the 
hardware for the processing. In addition, time series were 
normalized to interval [-1, 1] before applying the used methods. 

B. Transfer entropy approximation 

The process to compute the TE connectivity measure 
between two systems x and y is based on the quantification of 
the mount of uncertainty. This method employs the quantity 
given by Shannon’s entropy. In our case, the MuTE toolbox 
computed an embedding stage, applying parameters as 
dimension and delay for reconstruction in a phase space. Then, 
the optimization the paramenters selection was obtained for each 
time series. This allows to reduce the redundant information, 
compared to when the embedding is complete fixed parameters. 

For x and y, which represent two subsystems (source and 
target respectively), are sampled at a present time n. Then, the 
TE from x to y is given by: 

𝑇𝐸𝑥→𝑦 = 𝐻(𝑦𝑛\𝑦𝑛−1:𝑛−𝐿)

− 𝐻(𝑦𝑛\𝑦𝑛−1:𝑛−𝐿 , 𝑥𝑛−1:𝑛−𝐿) 
(4) 

where H(a) is the Shannon entropy of a and the ‘\’ operator 
means dependence from other samples or time series. Surrogate 
data analysis was applied to evaluate the significance of the 
results. At last, the quantification of connectivity is obtained, 
showing the relation between the subsystems and its direction. 
The employed toolbox computes the TE connectivity through 
different techniques, proposing embedding before the obtain the 
metric [21]. The employed techniques for the embedding were: 
i) linear estimation, where an autoregressive (AR) model is used 
to compute the relation between the series, ii) binning 
estimation, based on fixed state space partitioning, and iii) 
neural network estimation, where models based on NN with 
limitations about the manipulation of the parameters is used. The 
first two estimators were applied with a nonuniform embedding, 
according to [21]. The third method was used as it was explained 
in [11], [22], and in this way, compare to the detailed use of NN 
in the present work. 

C. Granger causality computation 

For the GC computation, the multivariate GC (MVGC) 
toolbox was used to obtain the connectivity information [3]. The 
time series were passed by a process of order computation, 
stability and finally, a test that estimated the significance of 
differences between the time series forecasting [3]. Models were 
obtained through the computation of a bivariate AR system with 
order ρ. This system can be represented by: 

𝑥𝑛 = ∑ 𝐴11,𝑗𝑥𝑛−𝑗 + ∑ 𝐴12,𝑗𝑦𝑛−𝑗 + 𝜀1(𝑡)

𝜌

𝑗=1

𝜌

𝑗=1

 

𝑦𝑛 = ∑ 𝐴21,𝑗𝑥𝑛−𝑗 + ∑ 𝐴22,𝑗𝑦𝑛−𝑗 + 𝜀2(𝑡)

𝜌

𝑗=1

𝜌

𝑗=1

 

(5) 



where xn and yn are two time series that represent two process 
components and ρ the order of the model. Aj is a matrix 

containing the regression coefficients for each j=1... ρ, and ε1 

and ε2 are the residual (or prediction error) for each variable, 
respectively.  

Two models were considered: i) full model, this includes 
information from two time series, and ii) reduced model, which 
holds the information from just one series. The computation of 
GC from y to x is obtained through: 

𝐺𝐶𝑦→𝑥 = 𝑙𝑛
𝑣𝑎𝑟(𝜀𝑅)

𝑣𝑎𝑟(𝜀𝐹)
 

(6) 

where 𝜀𝑅 is the error of the restricted model, and 𝜀𝐹 indicates 
the error of the full model. 

D. Granger causality in the neural network sense. 

For determining the Granger causality in a NN sense 
(NNGC), NAR and NARX models were employed. First one 
uses just one time series to obtain the forecasting of itself such 
us the linear AR model. Second model includes an exogenous 
input given by the other time series, and in this way, develop the 
forecasting. Then, the error of both proposals is compared, 
finding what forecasting was better and determining the 
causality. Capacity of NN to learn patterns and achieve 
approximations of nonlinear functions was taken in advantage 
[23]. This compared to the linear approximation that GC does 
when develop the model from data. 

In a similar mode that the reduced and full models from the 
GC approximation, it is possible to have a nonlinear 
representation of xi, adjusting the ai coefficients such as the AR 
model was obtained. For this, the computation is given by the 
way: 

𝑥𝑖 = 𝑡𝑎𝑛ℎ(∑ 𝑎𝑖𝑥𝑖−𝐿
𝑝
𝑘=1 + 𝑏)  (7) 

where xi is the time series to be modeled, ai are the 
coefficients of the AR model and known as synaptic weights 
(wij). The nonlinearity that changes the AR model to a NAR 
model is hold in the hyperbolic tangent (tanh) in (7). When 
information from other time series is included, the NAR model 
is modified to an exogenous with this data in the way: 

𝑥𝑖 = 𝑡𝑎𝑛ℎ(∑ 𝑎𝑖𝑥𝑖−𝐿
𝑝
𝑘=1 + 𝑏𝑖𝑦𝑖−𝐿) (8) 

Here, it is included the data from the y time series. In this 
case, the b parameter is related to the synaptic weights that will 
be computed to do the forecasting in the x series. Figure 1 shows 
the architectures of NAR and NARX models. 

NN models have the particularity that its dependence of the 
synaptic weights. In this way, the number of inputs were 
adjusted in an experimental mode. For this, lags of the input was 
modified from one to five, searching a model with low error and 
low complexity. In addition, the number of units in the hidden 
layer was changed from one to five. For training, a subset with 
50, 60, 70, 80 and 90% from the time series was employed to 
train the model. The resilient backpropagation algorithm was 
used due to speed performance compared with other training 
algorithms [24], [25]. Best model was considered based on 
computation of errors using the developing subset. 

   

Fig. 1. NAR and NARX employed architectures. 

To deal with the initialization problem from NN models, in 
each architecture 100 initializations were tested. Also, the 
portion of time series to train and validate was modified from 
50% to 90% in the training set. This allowed to observe the 
overfitting of the models, when the network learnt the time 
series in a specialized way. 

The computation of GC in terms of NN models was obtained 
in a similar way as in [11], given by: 

𝑁𝑁𝐺𝐶𝑦→𝑥 =  𝜀𝑅 − 𝜀𝐹    (9) 

where 𝜀𝑅 is forecasting error obtained by a reduced model 
that just uses the NAR for modeling the time series x and 𝜀𝐹 is 
the NARX full model that includes the information of time 
series y.  

Finally, the Mann-Whitley Wilcoxon test was employed to 
determine if the differences from NAR and NARX models were 
statistically significant [26]. This allowed to detect the 
connectivity between the subsystems given by the x and y time 
series. 

III. RESULTS 

Results for the connectivity according to GC, TE and NNGC 
are shown in a separate mode. The emphasis was put on the 
approximation based on NAR and NARX architectures, where 
the aspects of the error based on quantity of data for training the 
models, lags, neurons in the hidden layer are indicated. 

A. Transfer Entropy  

Results obtained through the use of information of entropy 
were obtained employing the toolbox shown in [21]. Table I 
visualize the entropy values for each couple of time series in 
each of the three scenarios studied.  

It is possible to see how the binning and linear methods can 
find the connectivity from x to y series, but the flow of 
information in the opposite way was not found for the Montalto 
map, where TE value is zero. This is supported by same authors 
in the work where the toolbox is described [21]. In spite of this, 
the both methods based on neural networks reported 
connectivity from y to x (see Table I), which show that the use 



of this kind of models can be sensitive if its parameters did not 
studied. 

TABLE I.  RESULTS FOR THE CONNECTIVITY BETWEEN TIME SERIES X 

AND Y USING TRANSFER ENTROPY 

Method Map Connectivity TE value 

Binning 
Nonuniform 
Embedding 

Montalto 
x→y 0.2941 

x←y 0 

Hénon 
x→y 1.7248 

x←y 0 

Ikeda 
x→y 0.6752 

x←y 1.0120 

Linear 
Nonuniform 
Embedding 

Montalto 
x→y 0.0453 

x←y 0 

Hénon 
x→y 13.9278 

x←y 0.0503 

Ikeda 
x→y 0.9704 

x←y 0.1074 

Neural  
Networks 
Uniform  

Embedding 

Montalto 
x→y 0.5110 

x←y 0.1035 

Hénon 
x→y 0.0845 

x←y 0.5902 

Ikeda 
x→y 3.2392 

x←y 0.2386 

Neural  
Networks 

Nonuniform  
Embedding 

Montalto 
x→y 0.6016 

x←y 0.0192 

Hénon 
x→y 1.1059 

x←y 0.0579 

Ikeda 
x→y 2.8542 

x←y 1.1986 

The Hénon map evinced same effect, showing flow of 
information from y to x, direction that was not reported in a 
previous work that dealt with five systems [11]. In this case, the 
toolbox show disagreement in this point with same methods 
mentioned for the Montalto case. 

B. Granger Causality  

Results obtained through the use of MVGC models, 
employing the toolbox shown in [3] can be seen in Table II. 
There, the ones indicate that exists a flow of information from y 
to x for all the cases. This computation was given by a statistical 
test that obtains as a result the connectivity or not between 
subsystems, according to expression (6). For the Montalto and 
Hénon scenarios, there were not established causalities in a 
wrong way as a previous method.  However, the results depict 
that this linear method is not enough to find the nonlinear 
relations between data for Hénon map. Order for the AR model 
employed were three for two first maps and five for the last. 
Here, it is possible to see that this method achieved to find this 
representation of data. 

C. Granger Causality with Neural Networks models 

Employing only NAR models, the forecasting for x time 
series for the Montalto map had a minimum error when the 
training was developed employing 60% of the series. Therefore, 
the error value was 0.0381+0.0505 for the x time series and 
0.0286+0.0079 (using 70% for training) for the y time series (see 
figures 2 and 3) with specific values for lags and neurons in the 
hidden layer as shown in Table III. In a similar way, for the 
Hénon chaotic map the minimum mean error value was 
0.0408+0.0465 for the x time series and 0.0382+0.0489 for the 
y time series. Finally, for Ikeda map this value was 
0.1476+0.0343 and 0.0920+0.0423 for x and y time series 
respectively. 

TABLE II.  RESULTS FOR THE CONNECTIVITY BETWEEN TIME SERIES X 

AND Y USING GRANGER CAUSALITY 

Map Connectivity GC 

Montalto 
x→y 0 

x←y 1 

Hénon 
x→y 0 

x←y 1 

Ikeda 
x→y 1 

x←y 1 

 

Figures 2 and 3 visualizes how each time series has a 
different condition for its training. For the x and y forecasting 
applying NAR models the map that presents the highest level of 
error was the obtained by Ikeda. At the same time, the figures 
show that the Hénon map has time series that need more quantity 
in the data to do the best forecasting. In this case, it was 
necessary the 90% of the time series to do the forecasting. 

According to the information from Table III, NARX models 
with the same parameters were used to developed the 
forecasting. Here, the information from the couple of time series 
was attached in the input of the model, observing the differences 
between the errors from both approaches. Figures 4 to 6 exhibit 
the histograms for the error from 100 training results given by 
architectures mentioned. Table IV resumes the connectivity 
devised with NNGC computation. There, it is seen that the 

Montalto map has only the flow x← y as reported in the 

literature. For the Hénon and Ikeda scenarios, NNGC obtained 
the connectivity for both directions in the bivariate cases.  

 

Fig. 2. Results of NAR models for the x time series forecasting for the three 

studies scenarios. 

IV. DISCUSSION 

The Ikeda map time series presented the highest error value, 
showing that this series is more difficult to forecast (see Fig. 2). 
In spite of that, models trained with 60% of the series was 
enough to find the best result. At the same time, it is possible to 
see that the Montalto and Ikeda maps exhibit opposite behavior, 
while one of these presents minimum trendy, the other show 
higher values for the error. This evidence allows to determine 
that depending on the time series type, the segments used to train 
and validate the NN play an important role for the forecasting, 
making that the interpretation of the NNGC changes for each 
context. 



 

Fig. 3. Results of NAR models for the y time series forecasting for the three 

studies scenarios. 

TABLE III.  RESUME FOR THE RESULTS FOR INDIVIDUAL TIME SERIES 

FORECASTING 

Chaotic 

Map 

Time 

Series 

Training parameters  

Percentage Lags Neurons Error 

Montalto 

X 60 4 5 0.0009+0.0017 

Y 70 1 4 0.0009+0.0023 

Hénon 
X 90 2 5 0.0006+0.0005 

Y 90 3 3 0.0009+0.0021 

Ikeda 
X 60 4 5 0.0046+0.0029 

Y 70 2 4 0.0024+0.0294 

 

Fig. 4. Comparison of the errors when NAR and NARX models were applied 

to the Montalto time series map. Histograms corresponds to the errors for 
trainings of the model with characteristics in Table III. 

An interesting aspect established was the effect of the MuTE 
toolbox. There the binning and linear methods determined the 
connectivity x→y, which was reported by the same authors, but 
the approach given by NN models could not obtain this 
behavior, indicating causality for both directions. At the same 
time, more details about this outcome could be not studied. The 
election of the parameters for NN are restrictive and an 

exploration as made in this work is not easy to implement. In 
addition, for the present case, the use of visual information 
related to the histograms obtained allow to understand better the 
performance of models, and to permit to assess the error in a 
complementary way. This can be seen in Figure 5, where in spite 
of visual differences observed in the histogram, the statistical 
test confirmed that the error for both models was different.  

In relation to the GC computation base on linear models, it 
was seen that for the Hénon map the connectivity x←y was not 
obtained. This corresponds to different studies about the 
relevance of nonlinear GC computation, something that was 
dealt in this work. As a complement of this study, and making 
use of the presented information with a deeper analyses, it could 
be helpful to understand how the nonlinearity works in this level. 

Further analysis with other NN models must be explored. 
Examples of this can be seen in [17], where the use of LSTM 
networks was compared with other NN models. However, 
aspects related to training parameters and architecture of the 
models were missing. Also, other recurrent neural networks can 
be included in order to compare the advantages of the LSTM 
models in this specific application. 

 

Fig. 5. Comparison of the errors when NAR and NARX models were applied 

to the Hénon time series map. Histograms corresponds to the errors for trainings 

of the model with characteristics in Table III. 

V. CONCLUSIONS 

Neural networks are sensitive to different parameters that 
modify the capacity of learning. In this work, these aspects were 
analyzed in order to compute a nonlinear Granger causality 
(NNGC). Results show how each case of NNGC computation 
needs special attention of NN parameters, due to the forecasting, 
which is an important step of the NNGC measure, is determined 
for the specific characteristics of the time series used. As future 
work, the exploration of other architectures, as for example 
recurrent neural networks, must be analyzed, due to its 
advantages for time series forecasting. 
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Fig. 6. Comparison of the errors when NAR and NARX models were applied 

for the Ikeda time series map. Histograms corresponds to the errors for trainings 

of the model with characteristics in Table III. 

TABLE IV.  RESULTS FOR THE CONNECTIVITY BETWEEN TIME SERIES X 

AND Y USING GRANGER CAUSALITY 

Map Connectivity NNGC p-value 

Montalto 
x→y 0 0.0849 

x←y 1 0 

Hénon 
x→y 1 0 

x←y 1 0 

Ikeda 
x→y 1 0 

x←y 1 0 
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