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Abstract—This work uses adversarial perturbations to enhance
deepfake images and fool common deepfake detectors. We created
adversarial perturbations using the Fast Gradient Sign Method
and the Carlini and Wagner L2 norm attack in both blackbox
and whitebox settings. Detectors achieved over 95% accuracy
on unperturbed deepfakes, but less than 27% accuracy on
perturbed deepfakes. We also explore two improvements to deep-
fake detectors: (i) Lipschitz regularization, and (ii) Deep Image
Prior (DIP). Lipschitz regularization constrains the gradient of
the detector with respect to the input in order to increase
robustness to input perturbations. The DIP defense removes
perturbations using generative convolutional neural networks in
an unsupervised manner. Regularization improved the detection
of perturbed deepfakes on average, including a 10% accuracy
boost in the blackbox case. The DIP defense achieved 95%
accuracy on perturbed deepfakes that fooled the original detector
while retaining 98% accuracy in other cases on a 100 image
subsample.

Index Terms—Deepfakes, Adversarial perturbations, Lipschitz
regularization, Deep Image Prior, Image restoration

I. INTRODUCTION

This work enhances deepfakes with adversarial perturba-
tions to fool common deepfake detectors. Deepfakes replace
a “source” individual in an image or video with a “target”
individual’s likeness using deep learning [1]. Adversarial
perturbations are modifications made to an image in order to
fool a classifier. An adversary can choose these perturbations
to be small so that the difference between the perturbed and
original images is visually imperceptible. Figure 1 shows a
deepfake generated from source and target images as well as its
adversarially perturbed version. A deepfake detector correctly
classifies the original as fake but fails to detect the perturbed
deepfake which looks almost identical. In our results, detectors
achieved over 95% accuracy on unperturbed deepfakes, but
less than 27% accuracy on perturbed deepfakes.

Deepfakes have been used for many malicious applications.
In 2019, an app called DeepNude was released which could
take an image of a fully-clothed woman and generate an
image with her clothes removed [2]. Furthermore, Facebook
found over 500 accounts spreading pro-President Trump, anti-
Chinese government messages using deepfake profile pictures
[3]. These harmful uses of deepfakes violate individuals’
identity and can also propagate misinformation, especially on
social media. Ahead of the 2020 U.S. election, Facebook and
Twitter stated plans to try and remove certain deepfakes [4].

Fig. 1. Deepfake creation and adversarial perturbation.
Example of creating a deepfake from source and target faces
and adding adversarial perturbations to it. A deepfake detector
correctly classifies the deepfake as fake but classifies the
adversarially perturbed deepfake as real.

But adversarial perturbations can compromise the performance
of deepfake detection methods used on these platforms.

To defend against these perturbations, we explore two im-
provements to deepfake detectors: (i) Lipschitz regularization,
and (ii) Deep Image Prior. Lipschitz regularization, introduced
in [5], constrains the gradient of the detector with respect to
the input data. We use Deep Image Prior (DIP), originally an
image restoration technique [6], to remove perturbations by
iteratively optimizing a generative convolutional neural net-
work in an unsupervised manner. To our knowledge, this is the
first application of DIP for removing adversarial perturbations.
Overall, the contributions of this work aim to highlight the
vulnerability of deepfake detectors to adversarial attacks, as
well as present methods to improve robustness.

II. DEEPFAKE CREATION AND DETECTION

We focus on deepfake images of celebrity faces as the scope
of this work. Our dataset consists of 10,000 images: 5,000 real
and 5,000 fake. The 5,000 real images were randomly sampled
from the CelebA dataset [7]. Fig. 2 includes examples of real
and fake images from our dataset.
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(a) Unperturbed Real Images (b) Unperturbed Fake Images

(c) Perturbed (FGSM) Fake Images (d) Perturbed (CW-L2) Fake Images

Fig. 2. Examples of real, fake, and perturbed images. Adversarially perturbed deepfakes (c and d) look similar to unperturbed
deepfakes (b). Some fake images look more realistic than others. We use the ResNet model to perturb the first 3 fake images
and the VGG model to perturb the last 2 fake images. All adversarial examples shown fool both models.

A. Deepfake Creation

Most deepfake creation methods use generative adversarial
networks (GAN) to replace the face of a “source” individual
with that of a “target” individual [1]. The generator in these
methods consists of an encoder-decoder based network. First,
the methods train a common encoder but different decoders
for each face. Then, the source image is passed through the
common encoder and the target’s decoder to create a deepfake.
A shortcoming of these methods is that training the encoder
and decoder networks requires many images of both the source
and target individuals. Creating a dataset of deepfakes using
these methods is difficult: We would require numerous images
for each individual and would also have to train separate
decoders for each target.

Instead, we created the 5,000 fake images in our dataset
using an existing implementation called the “Few-Shot Face
Translation GAN” [8]. This implementation takes inspira-
tion from Few-Shot Unsupervised Image-to-Image Transla-
tion (FUNIT) [9] and Spatially-Adaptive Denormalization
(SPADE) [10]. FUNIT transforms an image from a source
domain to look like an image from a target domain. Moreover,
it does so using only a single source image and a small
set of (or even a single) target image. It achieves this by
simultaneously learning to translate between images sampled
from numerous source and target domains during training;
this allows FUNIT to generalize to unseen source and target
domains at test time [9]. SPADE is a normalization layer
that conditions normalization on an input image segmentation
map in order to preserve semantic information [10]. The Few-
Shot Face Translation GAN adds SPADE units to the FUNIT
generator allowing us to create a deepfake using only a single
source and target image.

B. Detection Methods

Common deepfake detection methods use convolutional
neural networks (CNNs) to classify images as “real” or “fake”
[1]. Prior work has shown that the VGG [11] and ResNet
[12] CNN architectures achieve high accuracy for detecting

deepfakes from a variety of creation methods [1]. The original
architectures for both these models have thousand-dimensional
output vectors. Instead, we replaced the last layer of these
architectures to output two-dimensional softmax vectors cor-
responding to the real and fake classes. We chose a softmax
vector over a sigmoid scalar to make the models compatible
with the Carlini and Wagner L2 norm attack discussed in
section III-B.

We tested the VGG-16 and ResNet-18 architectures on
our dataset. The models achieved train accuracies of 99.9%
and 94.7% as well as test accuracies of 99.7% and 93.2%,
respectively. These results are based on a 75%-25% train-test
split after 5 epochs of training with a batch size of 16. Table I
reports Area Under the Receiver Operating Characteristic
(AUROC) curve values and additional performance metrics
for these deepfake detectors.

III. ADVERSARIAL ATTACKS

Deep neural networks and many other pattern recognition
models are vulnerable to adversarial examples – input data
that has been perturbed to make the model misclassify the
input [13]. The adversary can further craft these adversarial
perturbations to have small magnitude so that the adversarial
examples are difficult to distinguish from the original unper-
turbed input data. We tested the effect of adversarial perturba-
tions on deepfake detectors using the following two attacks:
the Fast Gradient Sign Method (FGSM) [14] and the Carlini
and Wagner L2 Norm attack (CW-L2) [15]. We chose FGSM
to try a popular, efficient attack and CW-L2 to try a slow
but stronger attack. This work only considers perturbations of
fake images: An adversary’s goal is to manipulate deepfakes so
that they are classified as real and not vice versa. Concurrent
work has extended adversarial perturbations of deepfakes with
additional attacks [16] and even to videos [17].

A. Fast Gradient Sign Method (FGSM)

Let x be the vector of pixel values in an input image and y
be the corresponding true target class value. Let J(x, y, θ) be
the training loss function (e.g. categorical cross-entropy loss



for a softmax classifier) where θ represents the parameters of
the model. FGSM exploits the gradient of the loss with respect
to the input, ∇xJ(x, y, θ), to generate the adversarial example,
xadv:

xadv = x + ε sign(∇xJ(x, y, θ)). (1)

Here, ε is a hyperparameter that controls the magnitude of
the perturbation per pixel. By keeping ε small, we can limit
the magnitude of the perturbations and thus minimize visual
distortions in the adversarial examples. In practice, the pixel
values of the adversarial examples are further clipped to a
range of floating point values between 0 and 1. We used an
ε value of 0.02 to generate our FGSM adversarial examples.
This value was chosen after evaluating the attack effectiveness
and visual distortions for several ε values in the range [0.01,
0.10].

To see why this attack is effective in causing a misclassifi-
cation, we examine the linear approximation of the loss using
its Taylor series expansion:

J(xadv, y, θ) ≈ J(x, y, θ)
+ ε∇xJ(x, y, θ)T sign(∇xJ(x, y, θ)). (2)

Using the sign function of the gradient ensures that the dot
product in the second term of (2) is non-negative. Thus, FGSM
chooses the perturbation that causes the maximum increase in
the value of the linearized loss function subject to the ε pixel-
perturbation control parameter.

B. Carlini and Wagner L2 Norm Attack (CW-L2)

This attack simultaneously minimizes two objectives. Let x’
be a perturbed image. The first objective is to minimize the
L2 norm of the perturbation:

min
x′
{‖x’− x‖22}. (3)

The second objective tries to make the perturbation cause a
misclassification. Let Z(x) represent the pre-softmax vector
output (or logits) of a multi-class neural network classifier.
The second objective is as follows:

min
x′
{f(x’)}

where f(x’) = max(max
i 6=y
{Z(x’)y − Z(x’)i},−κ).

(4)

Here, i and y index into Z(x’) with y being the index of the
true target class. By minimizing f(x’), we try to maximize the
difference between the logit of an incorrect class and the logit
of the true class. Since the predicted class corresponds to the
maximum logit, minimizing f(x’) effectively tries to cause a
misclassification. κ is a parameter that defines a threshold by
which the logit corresponding to the incorrect predicted class
should exceed the logit of the true target class.

The attack also performs a change of variable from x’ to
ω:

x’ =
1

2
(tanh(ω) + 1). (5)

This ensures that the perturbed image (x’) has floating point
pixel values between 0 and 1. Putting (3), (4) and (5) together,
we obtain the CW-L2 attack:

ω∗ = argmin
ω
{‖x’− x‖22 + c f(x’)}

xadv =
1

2
(tanh(ω∗) + 1).

(6)

c is positive and controls the relative strength of the two objec-
tives. In practice, c is chosen using a modified binary search
which finds the smallest value of c in a provided range, such
that f(xadv) is less than 0. This search along with the iterative
gradient descent optimization process makes the attack very
slow. However, this attack breaks many previously proposed
defenses against adversarial examples [13]. For further details
about the attack, we refer the reader to the CW-L2 paper [15]
and the implementation we used [18].

For all adversarial examples generated using this method,
we chose [102, 104] as the range for c with 5 search steps.
We performed a maximum of 1000 iterations for optimization
with a learning rate of 0.01. We used 200 for the value of κ.
The value of κ was chosen by trying out values in the range
[0, 500]. The range of c was chosen by initially performing
attacks using a range of [10−10, 1010] and then narrowing
down the range to include the values of c most commonly
chosen by the search steps. The values for κ and range of c
were evaluated objectively based on the decrease in accuracy
of the classifier under attack and subjectively based on the
amount of visible distortions in the perturbed images. We
left all other parameters to the defaults recommended by the
implementation [18].

C. Attack Types

Adversarial attacks on machine learning models fall into
two types depending on the amount of information available
to the adversary about the model under attack:
• Whitebox Attack: The adversary has complete access to the

model under attack, including the model architecture and
parameters. It may be unlikely for an adversary to have
access to model parameters in many scenarios. However,
machine learning solutions such as deepfake detectors often
use existing, publicly known and accessible architectures for
transfer learning purposes [1].

• Blackbox Attack: The adversary has limited or almost no
information about the model under attack. Previous research
[14], [19], [20] has shown that adversarial examples cre-
ated using whitebox attacks on one model also damage
performance of different models trained for the same task.
Furthermore, these attacks do not even have to be in
the same family of classifiers. For example, adversarial
examples created using a neural network also work on
support vector machines and decision tree classifiers [20].
This transferability of adversarial examples is what makes
blackbox attacks possible. Blackbox attacks can involve
varying degrees of access to the model under attack, such as
access to the predicted probabilities, predicted class or even
the training data [21]. This work assumes the last of these



and performs blackbox attacks on the VGG model by cre-
ating whitebox examples for the ResNet model. Similarly,
blackbox examples for the ResNet model are generated by
creating whitebox examples for the VGG model. We note
that since our models obtained over 94% training accuracy,
access to ground-truth class information is almost equivalent
to access to only the predicted class information.

D. Attack Results

Adversarial attacks significantly reduced the performance
of both the VGG and ResNet deepfake detection models. We
compare results on datasets of unperturbed and perturbed fake

Fig. 3. Adversarial attack results. VGG and ResNet accu-
rately detected unperturbed fake images but performed signifi-
cantly worse on adversarially perturbed fake images. Blackbox
attacks were less effective than whitebox attacks. CW-L2 was
generally more effective than FGSM.

images created using the test set. The datasets exclude real
images since they were not perturbed. Fig. 3 and Table II
show the adversarial attack results.

For unperturbed fake images, VGG achieved an accuracy
of 99.7% and ResNet achieved 95.2%. In the blackbox FGSM
case, the accuracy decreased to 8.9% for VGG and 20.8% for
ResNet. Blackbox CW-L2 reduced the accuracy of VGG to
26.6% and ResNet to 4.6%. In the whitebox FGSM case, the
accuracy dropped to 0.0% for VGG and 7.5% for ResNet.
Whitebox CW-L2 lowered the accuracy of both VGG and
ResNet to 0.0%. As in section II-B, these results are based
on a 75%-25% train-test split.

Fig. 4. Regularization results. Regularization improved the
detection of adversarially perturbed deepfakes overall. Regu-
larization mostly maintained accuracy on unperturbed images.
Results are plotted for the average and best performances
among models with varying regularization strength.

TABLE I. Unperturbed Data Results

Model Accuracy AUROC Fake Real
Precision Recall Precision Recall

VGG 99.7% 99.9% 99.8% 99.7% 99.7% 99.8%
ResNet 93.2% 97.9% 91.5% 95.4% 95.2% 91.1%
ResNet (Regularized: λ=5) 95.0% 99.5% 91.5% 99.3% 99.2% 90.8%
ResNet (Regularized λ=50) 94.1% 98.6% 96.6% 91.4% 91.8% 96.8%
ResNet (Regularized λ=500) 87.5% 92.3% 85.3% 90.6% 89.9% 84.4%
ResNet (Regularized λ=5000) 96.2% 99.1% 98.0% 94.2% 94.5% 98.1%
ResNet (Average Regularized) 93.2% 97.4% 92.9% 93.9% 93.9% 92.5%
ResNet (Data Augmented) 98.7% 99.9% 98.5% 98.9% 98.9% 98.5%
Note: Unperturbed results listed for a test dataset containing 1,250 images each of real and fake classes.

TABLE II. Adversarial Attack Results

Model Unperturbed Perturbed: FGSM Perturbed: CW-L2

Blackbox Whitebox Blackbox Whitebox

VGG 99.7% 8.9% 0.0% 26.6% 0.0%
ResNet 95.4% 20.8% 7.5% 4.6% 0.0%
ResNet (Regularized λ=5) 99.3%∗ 42.2% 26.5%∗ 14.5% 0.0%
ResNet (Regularized λ=50) 91.4% 17.8% 12.7% 6.2% 0.0%
ResNet (Regularized λ=500) 90.6% 53.2%∗ 9.0% 19.8%∗ 0.0%
ResNet (Regularized λ=5000) 94.2% 12.8% 1.9% 16.7% 2.2%∗

ResNet (Average Regularized) 93.9% 31.5% 12.5% 14.3% 0.5%
ResNet (Data Augmented) 98.9% 17.0% 2.2% 3.8% 0.1%
Note: Adversarial attacks conducted using only the fake images. ∗Best regularized performances.



Whitebox attacks were more effective than blackbox attacks.
This is expected because whitebox attacks have complete
access to the model under attack whereas blackbox attacks
do not. Whitebox attacks reduced model accuracies on fake
images to 0% in all cases except ResNet with FGSM. Still,
blackbox attacks resulted in less than 27% accuracy on per-
turbed fake images. Furthermore, CW-L2 was more effective
than FGSM in all cases except the blackbox attack on VGG.
We suspect CW-L2 overfits to the ResNet model in this case.

IV. REGULARIZATION AS A DEFENSE

A. Lipschitz Regularization

Lipschitz regularization, introduced in [5], constrains the
gradient of the detector with respect to the input data. We
achieve this by training the model using an augmented loss
function involving the L2 norms of the logit gradients:

Jaug(x, y, θ) = J(x, y, θ) +
λ

CN

C∑
i=1

‖∇xZ(x)i‖22. (7)

Here, we use Jaug(x, y, θ) to represent the augmented loss
function and J(x, y, θ) to represent the training loss function
before augmentation. Z(x)i represents the pre-softmax scalar
output (or logit) corresponding to class i for a multi-class
neural network classifier. C is the total number of target classes
and N is the dimensionality of the input vector. As before, x is
the input vector, y is the corresponding true target class value
and θ represents the model parameters. λ controls the strength
of the regularization term in the augmented loss function.

Linearizing the (non-augmented) loss function provides
some intuition into why this regularization can help:

J(xadv, y, θ) ≈ J(x, y, θ) +∇xJ(x, y, θ)T (xadv − x)

= J(x, y, θ) +
C∑
i=1

∂J

∂Zi
∇xZ(x)Ti (xadv − x).

(8)

As shown above, the linear approximation can be written
in terms of the gradients of the detector logits with respect to
the input. Then, we expect that minimizing the norm of these
gradients will desensitize the loss from small perturbations,
allowing the network to retain performance on inputs with
adversarial perturbations. In the extreme case, if the norms of
these gradients are zero, then the loss for the original unper-
turbed image equals the loss for the adversarially perturbed
image (subject to the linear approximation).

B. Regularization Results

Lipschitz regularization improved the detection of adversar-
ially perturbed deepfakes by ResNet models on average. We do
not report regularization results for VGG given computational
constraints and the slow nature of the CW-L2 attack (around 2
minutes per image). We trained models with the following
values for the regularization strength (λ): 5, 50, 500, and
5000. Table II shows the results for all λ values. Fig. 4
and our discussion below focus on results for the values on
average and for the values that achieved the best results.
Regularization did not affect the accuracy on the unperturbed

test data: We observed 93.2% accuracy for both unregularized
and regularized models on average (Table I).

In the blackbox case, unregularized models obtained an
accuracy of 20.8% for FGSM and 4.6% for CW-L2 on per-
turbed fake images. Regularized models improved detection
of perturbed images to 31.5% for FGSM and 14.3% for CW-
L2 on average. In the best case, regularized models achieved
an accuracy of 53.2% for FGSM and 19.8% for CW-L2 on
perturbed images.

Similarly, regularized models also performed better than
unregularized models in the whitebox case. Unregularized
models obtained an accuracy of 7.5% for FGSM and 0.0% for
CW-L2 on perturbed fake images, as reported in section III-D.
On average, regularized models improved detection of per-
turbed images to 12.5% for FGSM and to 0.5% for CW-L2.
In the best case, regularized models achieved an accuracy of
26.5% for FGSM and 2.2% for CW-L2 on perturbed images.
Overall, although regularization slightly improved robustness
to adversarial perturbations, the performance remains imprac-
tical for real world applications.

V. DEEP IMAGE PRIOR

Another approach for defending against adversarial attacks
is to pre-process the input to remove perturbations before
feeding it to the classifier. We do this by using an unsupervised
technique called Deep Image Prior (DIP) which was originally
introduced in [6] for image restoration purposes such as image
denoising, inpainting and super resolution.

A. Image Restoration with DIP

This section summarizes the key ideas from the original DIP
paper [6]. Let xc be a corrupted image (e.g. a noisy image) and
x be the ground truth uncorrupted image. Recovering x from
xc can be formulated as the following optimization problem:

min
x
{E(x, xc) +R(x)}. (9)

Here, E(x, xc) represents a domain-dependent “distance”
or dissimilarity between xc and x. R(x) is a regularization
term that represents knowledge about ground truth images. The
prior knowledge from regularization is critical since recovering
x from xc is generally an ill-posed problem.

We can replace x in (9) with a surjective function g : θ → x
and optimize over θ instead:

min
θ
{E(g(θ), xc) +R(g(θ))}. (10)

The DIP technique uses a generative CNN, f(θ, z), with
parameters θ and random seed z in place of g(θ). Through
experimentation, [6] shows that the architecture of a convolu-
tional neural network itself encodes a prior that favors natural
images over corrupted ones. This allows us to get a good
reconstruction even if we ignore the regularization term R,
leading to the following optimization problem:

min
θ
{E(f(θ, z), xc)}. (11)



Fig. 5. Generated images during DIP optimization. These are images generated along the optimization path for a perturbed
(FGSM) fake image. The image sharpness increases along with the number of optimization iterations. However, as the images
gain detail, adversarial perturbations become more apparent. The generated image at iteration 9,000 is slightly noisier than the
ones at iteration 3,000 and 6,000. Image format from [6]. (Electronic zoom-in recommended).

TABLE III. DIP Defense Results Overall

Classifier
Threshold Accuracy AUROC Fake Real

Precision Recall Precision Recall

0.50 97.0% 99.2% 96.8% 100% 100% 70.0%

0.25 97.0% 99.2% 98.9% 97.8% 81.8% 90.0%

Baseline 60.0% 41.9% 100.0% 55.5% 20.0% 100.0%
Note: DIP Results based on 100 images subsampled according to section V-C.

TABLE IV. DIP Defense Results by Category

Classifier
Threshold Attack Unperturbed Blackbox: Perturbed Whitebox: Perturbed

Fake-Correct Real-Correct Fake-Wrong Fake-Correct Fake-Wrong Fake-Correct

0.50 FGSM 100% 70% 100% 100% 100% 100%
CW-L2 100% 100% 100% 100%

0.25 FGSM 100% 90% 100% 100% 80% 100%
CW-L2 100% 100% 100% 100%

Baseline FGSM 100% 100% 0% 100% 0% 100%
CW-L2 0% 100% 0% 100%

Note: DIP Results based on 100 images subsampled according to section V-C.

In practice, if the network is optimized for too long, it
learns to generate the corruptions. However, the network learns
to generate “natural” features before learning to generate the
corruptions due to the prior that the CNN encodes. In other
words, a good image reconstruction tends to exist somewhere
along the optimization trajectory.

B. Eliminating Adversarial Perturbations with DIP
We can use the image restoration framework described

above to remove adversarial perturbations from adversarial
examples. We simply replace xc with xadv in (11). We chose
Mean Squared Error (MSE) calculated pixel-wise over the
images as our dissimilarity metric, E. This metric was chosen
since it was effective in [6] for various applications including
image denoising, super resolution and JPEG compression
artifact removal. Thus, we modify the DIP optimization in
(11) to remove adversarial perturbations as follows:

min
θ
{MSE(f(θ, z), xadv)}. (12)

We propose the following deepfake defense using (12).
Given that an unperturbed image tends to occur somewhere
along the DIP optimization trajectory, we feed the generated
image at an intermediate iteration into an existing classifier.
The classifier output for the generated image at the interme-
diate iteration is then used to make a final classification for
the image. Throughout section V, the “classification of the
DIP defense” refers to the final classification made using this
process, and “classifier” refers to the CNN model used to
obtain the classification.

We used only the ResNet model for DIP due to com-
putational constraints as described in section V-C. We also
trained the classifier for an additional 10 epochs on the
training dataset. For these 10 epochs, the training dataset was
augmented so that approximately 40% of it contained blurry
images. This was done because the reconstructed DIP images
without the perturbations tended to be slightly less sharp
compared to the original images in the training and test sets.



We created the blurry images by preprocessing training images
using a Gaussian blur kernel with σ values selected uniformly
from the range [3.0, 5.0]. Table I lists the performance metrics
of the ResNet model trained on the augmented dataset. Table II
reports the adversarial attack results for this model, which are
similar to the results for the model without data augmentation.

(a) Perturbed (FGSM) Fake-Wrong Image

(b) Perturbed (CW-L2) Fake-Wrong Image

(c) Unperturbed Fake-Correct Image

(d) Unperturbed Real-Correct Image

Fig. 6. DIP optimization graphs. This figure plots the ResNet
classifier softmax output corresponding to the real class for
the generated images along the DIP optimization path for
four cases. The grey curves plot the output at every iteration,
while the red curves plot the average of the outputs over a
window size of 10 centered at each iteration. We use 0.5 as our
classification threshold for this figure. (a) and (b) correspond
to fake images perturbed in a whitebox setting using FGSM
and CW-L2 respectively. (c) and (d) correspond to unperturbed
fake and real images respectively. In each case, the model
classifies the generated image correctly at iteration 6,000.

Fig. 5 shows a perturbed (FGSM) fake image being recon-
structed using the DIP framework. This image was chosen
such that the ResNet model classifies it as real. We observe
that as the number of DIP optimization iterations increases, the
images gain more detail. But as the image sharpness increases,
the generated images also tend to include adversarial perturba-
tions: The generated image at iteration 9,000 is slightly noiser
than the ones at iterations 3,000 and 6,000.

Fig. 6a shows the classifier output for the perturbed (FGSM)
fake image in Fig. 5 along the DIP optimization path. We
ignore the predictions for the first 500 iterations where the
generative CNN is still learning how to produce a natural-
looking image. We observe that, after this, the classifier output
remains flat and close to 0 (fake) until around iteration 5,000.
Following this, the classifier output increases as the generated
image begins including the perturbations until it flattens out
at 1 (real). Fig. 6b shows a similar pattern for a perturbed
fake (CW-L2) image. In contrast, for an unperturbed fake
image (Fig. 6c), the graph flattens out at a fake prediction and
never reaches a real prediction. For a real unperturbed image
(Fig. 6d), the graph reaches a real prediction much earlier than
in the perturbed fake cases. In each case, the classifier predicts
the correct class at iteration 6,000.

C. DIP Experiments

We performed the DIP optimization for 10,000 iterations
on a total of 100 images based on the test set. Iteration 6,000
was used to obtain the classification of the DIP defense after
evaluating iterations in the range of 2,500 to 7,500. We used a
U-Net architecture [22] for the generative CNN, f(θ, z), in the
DIP optimization described in (12). This architecture was used
because it was shown to be effective in [6] for both denoising
and removing JPEG compression artifacts from images. For
the exact architecture details, we refer to our code repository
linked at the end of this paper. The optimization process is
slow and took approximately 30 minutes for each image using
a NVIDIA Tesla K80 GPU on Google Colab. For this reason,
we chose only 100 images for the experiments.

We randomly sampled 10 images each from the following
2 categories for both perturbed FGSM and CW-L2 images in
blackbox and whitebox settings (80 images total):

• Perturbed Fake-Wrong: A perturbed fake image that the
classifier predicts as real.

• Perturbed Fake-Correct: A perturbed fake image that the
classifier predicts as fake.

In addition, we sampled 10 images each from the following 2
categories for unperturbed images (20 images total):

• Unperturbed Fake-Correct: An unperturbed fake image that
the classifier predicts as fake.

• Unperturbed Real-Correct: An unperturbed real image that
the classifier predicts as real.

All images were sampled such that the ResNet model (trained
on the augmented dataset) obtained a correct prediction on the
unperturbed versions of the images.



D. DIP Results

We report DIP results using classification thresholds of 0.5
and 0.25. Table III reports the overall performance of the DIP
defense across all 100 images while Table IV includes the
accuracy of the DIP defense for each category of images. The
tables also include a baseline performance from the classifier
without the DIP defense.

The DIP defense achieved 95% on perturbed deepfakes
that fooled the original detector (Perturbed Fake-Wrong),
while retaining 98% accuracy in other cases (Real-Correct
and Fake-Correct) with a 0.25 threshold. Overall, on the 100
image subsample, the defense obtained 97.0% accuracy and
99.2% AUROC for both classification thresholds. Varying the
threshold reveals the tradeoff between incorrectly predicting
real images as fake (false positives) and fake images as real
(false negatives). For deepfake detection, false positives are
generally less of a problem than false negatives.

Using a threshold of 0.5 yielded 100% recall for both
unperturbed and perturbed fake images. But this threshold
resulted in only 70% recall for real images. On the other hand,
using a threshold of 0.25 improved the recall for real images
to 90%, but also reduced recall for fake images to 97.8%.
Specifically, the accuracy in the whitebox perturbed (FGSM)
fake-wrong category decreased from 100% to 80%.

VI. DISCUSSION AND LIMITATIONS

Our results demonstrate that adversarial perturbations can
enhance deepfakes, making them significantly more difficult to
detect. Lipschitz regularization made the CNNs more robust
to adversarial perturbations in general. However, the perfor-
mance boost from regularization alone may not be enough for
practical use in deepfake detection. This was especially true
in the whitebox CW-L2 setting where even the regularized
model only classified 2.2% of the perturbed fake images
correctly. The DIP defense shows more promising results. It
achieved a recall of 97.8% for perturbed and unperturbed fake
images using a classification threshold of 0.25 (Table III).
Furthermore, the DIP defense retained at least 90.0% of
the classifier’s performance on real images using the same
threshold value.

While the DIP defense showed success for deepfake detec-
tion on the 100 images tested, we emphasize that additional
experiments would be required to demonstrate success on
adversarial attacks in other domains. For example, deepfake
classifiers only need to be robust to adversarial perturbations
for one class of images (the fake class), while in other
domains, robustness to adversarial attacks on more than one
class may be important. Another limitation of the DIP de-
fense is the time it takes to process a single image. As
described in section V-C, each image took a little under 30
minutes to process on a NVIDIA Tesla K80 GPU. This may
limit the practicality of the defense in situations where there
are resource constraints or where many images need to be
processed in real time. Future work involves finding more
efficient methods for improving deepfake detector robustness
to adversarial perturbations.
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CODE AVAILABILITY

Code and additional architecture details are available at:
https://github.com/ApGa/adversarial deepfakes.
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