
Balance Control of a Bipedal Robot Utilizing
Intuitive Pattern Generators with Extended

Normalized Advantage Functions
Christos Kouppas

Department of Computer Science
Loughborough University

Loughborough, United Kingdom
C.Kouppas@lboro.ac.uk

Mohamad Saada
Department of Computer Science

Loughborough University
Loughborough, United Kingdom

M.Saada@lboro.ac.uk

Qinggang Meng
Department of Computer Science

Loughborough University
Loughborough, United Kingdom

Q.Meng@lboro.ac.uk

Mark King
School of Sport, Exercise and Health Sciences

Loughborough University
Loughborough, United Kingdom

M.A.King@lboro.ac.uk

Dennis Majoe
Motion Robotics LTD

Southampton, United Kingdom
dennis.majoe@motion-robotics.co.uk

Abstract—Herein, a combination of Local Pattern Generators
(LPG) with reinforcement learning is proposed to balance a
bipedal robot using minimal power consumption. This work
presents the extension of Normalised Advantage Function (eNAF)
algorithm to work with recurrent neural networks without sac-
rificing time-dependency between data in the same episode. Ad-
ditionally, a hybrid controller is introduced by combining eNAF
algorithm hierarchically with LPGs to provide more robustness
with less computational power requirements. The system was
asynchronous, as pattern generator had an activation frequency
of 100Hz, while eNAF algorithm had only 1Hz and were not
synchronised between them. Robot autonomy time was increased
through reduction of computational load by introducing variable-
ratio activation frequency between the LPGs and the eNAF
algorithm. Finally, a new and novel bipedal robot design with
non-conventional linear actuators was used as the basis of the
simulator model. These experiments were implemented using V-
Rep Edu simulator with the industrial Vortex Studio dynamic
engine. The results demonstrate a fast and agile recovery by the
trained robot after a push in transverse plane.

Index Terms—bipedal robot, deep reinforcement learning,
CPG, NAF agent

I. INTRODUCTION

Robust bipedal gait is one of the fundamental abilities
for robots that perform dexterous work in non-uniform en-
vironments. During the last few decades, scientists sought to
develop a stable and robust dynamic algorithm to stabilise
walking gait, especially on uneven surfaces [1]. However, even
in the current era, there are not many algorithms that can work
reliably in different environments. This is mainly caused by
the slow and limited adaptability during surface changes, as
most approaches are using hard defined dynamics. Two of the
most frequent methods of defining balance and locomotion are
the trajectory-based Zero-Moment Point (ZMP) and the Centre
of Mass (CoM) [2].

In the early 90s, some first steps of combining Neural
Networks (NN) with bipedal robots’ controllers took place
but they lacked computational power to have a sufficiently
successful gait cycle [3]. In the last 5 years, the computational
power increased exponentially, especially in embedded sys-
tems, thus scientists started implementing new and advanced
algorithms on bipedal robots [4]. However, these new algo-
rithms mostly used neural oscillators to form a Central Pattern
Generator (CPG) which in turn, generated locomotion [5].

The main disadvantage of neural oscillator is the need of
high speed NN outputs to synchronise the movement of all
joints at a real-time. The pattern generators in this case are
actually part of the network and cannot work independently.
Additionally, the robot’s environment adaptability can be lim-
ited in predefined trained function due to the fact that they
introduced correlation between the joints.

The approach in this research is inspired by invertebrate
and vertebrate animals and humans, with the brain being
a higher decision maker and each muscle having a Local
Pattern Generator (LPG) to act independently [6], [7]. In
nature, organisms use pattern generators to learn a specific
gait and then save it in local muscles to increase reaction
time and minimize brain use. Locomotion is based on different
sequential gaits based on brain decisions, that acts like a higher
decision maker.

The higher decision maker, of the examinated robot, was
assigned to a Reinforcement Learning (RL) algorithm that
utilises an extension of the Normalised Advantage Function
(NAF). The extended NAF (eNAF) algorithm offers the ability
to use Recurrent Neural Networks (RNN) efficiently without
losing information about the previous states of the robot. The
LPG were designed to work in an internally closed loop form,
based on a simple, intuitive, logic that can be executed with

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

a speed of up to 10kHz. The LPGs had a set of variables
that can be tuned from the eNAF agent in order to modulate
the gait and, in extend, the locomotion to adapt on the new
environment.

The agent was advertising the new values every 1s and the
LPGs were collecting the values (new or old) in every cycle.
For the simulation, LPG speed was limited to 100Hz instead
of 10kHz to reduce computational power and increase the
training of RL.

This paper makes the following contribution:
• Combine intuitive, asynchronous, white-box, pattern gen-

erators with RL to accelerate reaction time of robots.
• Extend NAF algorithm to handle RNN without losing

information about the previous states.
• Enable asynchronous acting-learning as the robot can act

with speed of up to 10kHz while eNAF can be much
slower learning to make a prediction every 2 seconds.

II. BACKGROUND

The current work began two years ago with the design of
a novel bipedal robot with the aim to solve the speed and
power consumption problem faced by other bipedal robots
[8]. The new robot was able to use minimal power while
standing still because all the actuators were able to power
off and lock without consuming energy. The use of these
actuators affected the control algorithms, as it removed its
ability of making small movements to adjust its position. If
the robot was allowed to make adjustments it meant that the
actuators were working continuously, consuming energy. The
balancing algorithm had a one-shot opportunity to balance the
robot and any corrections would have to take place in the next
movement.

A. Bipedal Robot

Current state-of-the-art humanoids are inspired by humans
and that is mainly why researchers designed them to look
and walk similarly to humans, despite their low efficiency [9],
[10]. However, there are new designs from other universities
that are focusing on the efficiency of the walking gait and are
inspired by animals [11]. In works that have been published
this year, it was demonstrated that the usage of NN and RL
could achieve faster walking gait and better stability. These
networks were able to update data from the policy framework
every 30ms with a closed-loop PD-controller acting at a speed
of 2kHz [12]. In their experiments, they had the robot requiring
predictions from the RL algorithm in each action.

B. Pattern Generators

One way to accelerate the acting speed and limit it to a
specific cycle is to use pattern generators. Pattern generators
are known for their stability and ability to move the dynamics
of the system to a cyclic activation pattern [13]. However, they
are not flexible in adapting to new environments. This can be
solved by modulating the activation pattern of the LPG using
a more powerful algorithm that can change the parameters
inside the LPG. This algorithm must be able to learn and

correlate gait and locomotion between different environments.
Additionally, it must be able to keep track of the previous
states of the robot and how they change to understand the
dynamic interaction between the robot and its environment.

C. Reinforcement Learning

Neural networks (NN) are a good candidate for modulating
LPGs, as they can learn from static or temporal data and keep
track of the system’s previous states by using RNN. Nowadays,
the increase of computational power in embedded systems is
at a point that it can run NNs in real-time on robotic platforms
without critically affecting power consumption. The main
power draw is moved from the computational requirements
to the actuation mechanics. RL was chosen, for this project,
due to its ability to learn while acting, as the training process
involves a real robot producing data in real-time.

The output of the RL was in a continuous action space
and NAF algorithm showed major advances in respect of
its learning and execution speed in comparison with other
algorithms [14], [15]. Choosing RL will make CPG slow,
as the robot will have to wait for the RL algorithm to
make predictions. In order to overcome this, an asynchronous
activation of the two systems was implemented. The NN had
to make predictions every second, while the CPG had to use
those predictions for multiple concurrent actions until the NN
produced newer predictions.

III. PRELIMINARIES

A. Silent Agile Robust Autonomous Host

For this research, a Silent Agile Robust Autonomous Host
(S.A.R.A.H.) was designed, with the help of Motion Robotics
LTD [16]. The gait of the robot was different in comparison
with traditional humanoids to increase the efficiency at the
cost of dexterity. The gait was inspired by ostriches, as it
was proven in the early 80s that animals are in general more
efficient than humans [17]. The first prototype of the robot can
be seen in Fig. 1.

In order to achieve that efficiency, a new linear actuator 1

was created to replace the mechanical actuation of the robots’
knee. The actuator was able to move with a precision of 5mm,
albeit this is not very precise but it did save energy. This is
because the actuation lasted for a specific period of time and
a mechanical brake held the joint in place instead of wasting
energy to correct its position, as with a closed-loop feedback
system. Additionally, when the motor is not powered, it can
still sustain the weight of the robot without collapsing.

The real robot, as well as its simulated model, had ten
Degrees of Freedom (DoF) from which only six were active.
The active joints had only one DoF and they were the
two rotational abductors, the two rotational hip and the two
translational linear actuators. Additional, active joints had a
brake mechanism that was energized only to allow a movement
of the joint. That means all the actuators could keep a posture
without consuming energy. The four passive DoFs were the

1Motion Robotics LTD holds all the rights on the details of the actuator.

Fig. 1: First Prototype of S.A.R.A.H. on a treadmill, as was
presented at Birmingham in Innovate UK 2017.

joints of calcaneus and metatarsals. Those joints were pushing
a pressure sensor to record information about forces that were
acted on the feet. Their movement was minimal and limited
by the pressure sensors to 3mm± 1.

In respect to computational power, the robot had one Atmel
SAMC21 microprocessor [18] for each LPG and one mas-
ter microprocessor for the coordination and communication
with the high-level controllers. For the high-level controllers,
one Raspberry Pi [19] was assigned to the neural network
predictions and one for data collection and preparation. The
computational system was powered by a 12V , 14Ah battery
while the actuators had three of those batteries in series,
resulting in 36V . The autonomy of the robot was estimated to
five hours of mix-use and over twelve hours of standby use.

B. Low-Level Controlling

The robot was divided into three main areas with one Local
Pattern Generator (LPG) controlling each area, representing
a muscle. Each LPG was executing a closed cyclic pattern
that was moving two joints and it had the ability to inform
other joints, if it was active or not. The LPGs were intuitive
controllers which were designed as white-box controllers, open
so the user can understand its dynamics [20]. The main pattern
generator was the one controlling the linear actuator. This LPG
was responsible for the lift of the legs and the activation of
just those LPG could make the robot rock from one leg to the
other with a specific rhythm.

Figure 3 shows the exact flow of the first LPG with
the movement starting where the Left|Right feet pressure
sensors get activated. If they were activated it means both

feet are on the ground. Then, the variable Factor (1) takes
information from the Inertial Measurement Unit (IMU) about
the acceleration and angular velocity of the robot’s trunk
and calculates a number that is representative of the robot’s
instability. Factor must become greater than 0.07 in order to
initiate the movement. Additionally, Factor is used to calculate
the height of each step (2). After the movement is initiated,
the first leg kicks upwards for a fraction of the required height,
to move the CoM on the other leg, and then contracts to the
required height. The movement stops with the return of the
leg to the resting position.

Factor =
1

1 + 2IMUA−5
+

1

1 + 35−10·IMUG
(1)

Step =
0.1

1 + 51−2·Factor
(2)

where, IMUA: Acceleration magnitude of the trunk.
IMUG: Rotational speed magnitude of the trunk.
Step: Target height for each foot (cm).

The second LPG was responsible for the movement of the
hip and it was enabled only when the leg was not touching the
ground. As can be seen in Fig. 2, the two variables (R Hip,
L Hip) were calculated first and based on those variables, each
leg was moving forwards|backwards with a constant speed. In
this LPG, the leg was not guaranteed to return to its initial
position as the actuators do not have a closed-loop controller,
to reduce power consumption. If the robot cannot be supported
by the new angles, the robot will have to make a new step to
correct its position.

The last LPG was identical to the previous LPG but it was
trained independently with its one variables. This LPG was
responsible for the movement of the abductors that were able
to move inwards|outwards with a specified speed, and again,
the LPG does not guarantee to return the leg to the resting
position. Those two LPGs were activated and stopped at the
same time based on the pressure sensors.

Table I summarises the training parameters for the LPGs.
The last column describes the effects of the control parameters
for each LPG. With those parameters, the shape of the stable
cyclic pattern can be changed based on the requirements of
the environment. It is worth mentioning that the parameters
for the LPG of the linear actuator were related only to the
forces (acceleration) of the actuator while the step length was
predefined by the Factor (1). The other LPGs had just one
parameter to define the speed but four parameters to calculate
the amount of movement of the controlled actuator.

C. High-Level Controlling

In order to increase the adaptability of the LPGs to different
environments, a NN was connected hierarchically with them,
creating a hybrid controller. The NN was responsible for cal-
culating a set of parameters so that the LPG changed speed and
essentially, adjusted its pattern on the new environment. The
first LPG had three external parameters that were controlling
the force of pushing, lifting and resting motions. The second

TABLE I: Pattern Generators’ Parameters

Training
session

LPG Parameter Actuator Notes

1 1 P1 Linear Force/Speed of extending leg
1 1 P2 Linear Force/Speed of retracting leg
1 1 P3 Linear Force/Speed of extending leg
2 2 H1-H4 Hip Used to calculate if and which

hip to move
2 2 H5 Hip Force/Speed of moving hip
3 3 V1-V4 Abductor Used to calculate if and which

abductor to move
3 3 V5 Abductor Force/Speed of moving abductors

and third LPGs had four parameters that were used in a
quadratic equation to decide the direction and the amount
of the motion and one parameter that was regulating the
force/speed of the motion. On the real robot, the force can
be controlled by the amount of voltage that can be applied to
the actuators.

Standard RL, without NN, can utilise time-series [21] but

Fig. 2: LPG responsible for the movement of the hip actuators.
Red and green circles are input flags from the knee LPG that
start and stop this LPG, respectively.

there are not many implementations utilising time-series with
NNs in RL. That is acceptable in the majority of problems, as
static data at a single instant can describe the possible evolu-
tion of a scene. In problems with static data, RNN are used
after extruding the features of the network and they are able to
track the features’ changes and not the actor’s changes [22].
Additionally, RL is used mainly in predefined action space
with only few algorithms acting with temporal outputs. The
main two algorithms that utilise model-free robotic learning
with continuous action space are Deep Deterministic Policy
Gradient (DDPG) [23] and Normalised Advantage Function
(NAF) [14], with NAF outperforming DDPG in real-world
robotic tasks [15], [24].

On the original NAF algorithm (3-4), the training occurs
after each step only once, which is suitable in situations where
the algorithm will change the state of the robot in every
single step. As the proposed algorithm has an asynchronous
training-acting configuration, the training happens only once,
every second (time set by the user) while several simulation
steps occur. To improve training, a training depth variable was
introduced such as, to retrain the network multiple times every
second, based on the previous data, but act only once.

Q(x, u) = A(x, u) + V (x) (3)

A(x, u) = −1

2
[(u− µ(x))TL(x)L(x)T (u− µ(x))] (4)

where, x: Observations
u: Actions
Q: Q-Learning function
A: Actor function
V : Value function (neural network)
µ: Predicted actions based on actor (neural network)
L: Lower-triangular matrix (neural network)

IV. EXTENDING NAF ALGORITHM AND REPLAY

In RL, real-time dynamic systems need special treatment in
respect of the replay of memory as postural data usually are
not enough to give a full picture of the current situation. In a
dynamic system, the posture of the robot hides the dynamics of
it, which may be catastrophic as momentum can destabilise the
system but cannot be detected from postural data. The current
algorithms are randomly sampling data from the memory and
learn from them which is not ideal. In this work, the episodes
were saved individually and data from them were used as a
whole and not randomly sampled.

Figure 4 demonstrates how the data are stored for replay
learning. At the end of each episode, the Observations, Actions
and Rewards are saved individually. When training takes place,
the episodes are randomly chosen and passed to the replay
memory. Replay memory flattens the timesteps of all the
episodes, despite each episode having different amount of
timesteps. In order to utilise batch training, the length of the
replay memory is trimmed to the requested training depth.

To reduce the computational power requirements of the
robot, the NNs were making predictions every second and

Fig. 3: LPG responsible for the movement of the linear actuators; knee. Red and green circles are output flags that start and
stop the other two LPGs, respectively.

the standard NAF algorithm was able to be trained only once
per second. This indicates that in a complete episode of 30
seconds, the algorithm will be trained only 30 times, which is
not enough to learn the dynamics of the system. In order to
increase the training cycles, a variable called training depth
was introduced. This variable extended the replay memory and
therefore caused the training to be repeated training depth
X times. This reduced the amount of simulations needed to

Fig. 4: Continuous time episodic replay.

take place to learn system dynamics proportionally to the value
of the training depth variable.

Repeated training under the same epoch, with the use of a
high training depth value, may lead to the overfitting of data
and not allow the NN to get trained in a wide range of input
values. To eliminate that possibility, a random value was added
to the actor’s actions based on OrnsteinUhlenbeck process.
The process was converging the random values slowly to zero
and that is ideal as the NN gets trained further needs less
exploration. To make things more robust, the randomness was
randomly enabled based on a binary variable at the beginning
of the simulation. This guaranteed that some recorded data in
the replay memory had unbiased data from the actor’s NN.
Double randomness is beneficial in systems that interact with
the real world as they include learning data with realistically
expected values that are coherent between them, without any
type of noise.

V. EXPERIMENTS

The robot was designed with the help of Motion Robotics
LTD and the basic skeleton was imported in V-Rep Edu.
The specific simulator was chosen as it was offering sim-
ulations in three-dimensional space with imported designs
from computer-aided design (CAD) software. Additionally, it
was offering several dynamics engines with Vortex dynamic

Fig. 5: Robot simulated in V-Rep Edu. White mark demon-
strate the center of mass. The actuators are illustrated with red
color and blue rods in the inside.

engine being the only industrial evaluated one [25]. As such,
Vortex dynamic engine was used for the experiments. After
the import of the model, the main code of the CPG was im-
plemented using Lua scripting language inside the simulator.
The independently run RL algorithm, remotely controlled the
CPG through a client-server remote API. This enabled the
RL algorithm to run using a different programming language
(python) at a different speed to that of the CPG.

Figure 5 shows the simulated robot and its center of mass.
The robot was simplified but the weight distribution was kept
the same as the actual robot. Also, the modelled actuation
system was similar with the robot and could stop in a particular
position but could not perform micro-adjustments. That was
done deliberately in order to preserve energy and push the
robot to learn one-shot movements.

The experiments began by pushing the robot randomly in
order to unbalance it. The main purpose of training was to
keep balance and not fall while performing 3 steps per second.
By the end of a training cycle, the output of the RL can
be hardcoded into the LPGs, then the robot could balance
in that specific training environment without the supervision
of any NNs. This provided stability to the controlling loop
of individual actuators in scenarios where the top NN was
not ready to provide information or where it got disconnected
abruptly. That is the key difference between the suggested
methodology and other NN based balancing algorithms [26],
[27]. Others use neuron oscillators which require values from
a NN for each step that they made.

For the RL, the reward was decoupled from the input
sensors and involved the position of the robot’s trunk and the
amount of steps per second that the robot was performing
(5). Each LPG was optimised to deal with specific aspects
of the reward. More specifically, the first LPG was focusing
on step frequency as it was training only the activation
of the linear actuators. The second LPG was changing the
forwards|backwards movements in the x-axis. The last LPG
was responsible for side movements in the y-axis. The maxi-
mum reward score could be achieved while the robot was not
moving away from its origin and while performing 3 steps per
second. The reward was not depended on the RL states as the
purpose of this method is to be as open to the user as possible.

reward = (1−Mainx)·(1−Mainy)·Mainz·2−(Frequency−3)2

(5)
where, Main[x|y|z]: Movement of robot’s trunk in x|y|z axis.

Frequency: Steps per second.

As can be seen in Fig. 6, the linear actuator’s LPG parame-
ters were merging to specific values, which were maximizing
the reward and it can be cross-referenced with the reward plot
in Fig 7. In the reward plot, there are several peaks that do not
relate to peaks of predicted parameters. That can be attributed
to the introduction of exploration randomness, which was not
recorded in Fig. 6. Additionally, the robot had asymmetric
dynamics as it exhibited different behaviours when it was
pushed from different sides. The reason is that the robot’s foot
looked like a human’s foot, with the metatarsal part being
longer than the calcaneus. Due to the length limitations of
this paper, only the linear actuators’ parameters are presented
however, H and V parameters followed similar trends.

In order to evaluate the results, the trained parameters for
all three LPGs were implemented in V-Rep Edu simulator
manually and can be found in Table II. The robot was disturbed
randomly and the disturbance of its trunk was recorded. The
validation experiments started with the robot free falling from
10cm and stabilizing during the first second. Afterwards, a

Fig. 6: Linear actuator parameters results in respect of the
training episodes.

Fig. 7: Reinforcement Learning reward during training.

random force was applied in the transverse plane in order to
destabilise the robot and make it initialise its CPG. The robot
then gained stability after making few stationary steps.

TABLE II: Pattern Generators Final Parameters

Training 1 Training 2 Training 3
P1 1.81± 0.05 H1 0.05± 0.01 V1 0.07± 0.01

P2 1.45± 0.05 H2 1.13± 0.03 V2 1.06± 0.03

P3 2.09± 0.05 H3 2.31± 0.03 V3 2.54± 0.03

H4 1.72± 0.05 V4 1.85± 0.05

H5 1.51± 0.05 V5 2.77± 0.05

In figure 8, the movements in three-dimensional space can
be observed, while the IMU data can be seen in Fig. 9. The
first disturbance measurements were due to the fall (0.5− 1s)
but the second disturbance measurements (2s− 5s) were due
to the steps that the robot took, in order to get stabilised. The
robot made six steps in three seconds, as can be determined
by the change in direction of the derivative of the X-axis
movement in Fig. 8. Moreover, in those three seconds the
robot moved only 7.5cm in the Y-axis. The aim of the training
session was to achieve 3 steps/s with minimal movement in
transverse plane. By the end of the validation episode, all
the measurable variables were stabilised which shows that the
robot was stabilised.

VI. DISCUSSION

Herein, a new approach that utilises reinforcement learning
for dynamic balance control is presented. Neural networks
might not be robust and fast enough to solely control a robot
that has to adapt to different dynamic environments. Therefore,
the addition of pattern generators can guarantee that the robot
will always act in a stable, closed cyclic pattern. Additionally,
in real-time applications, power consumption efficiency is a
very important factor that can be achieved using reduction of
resources without compromising the stability of the system.

In this work, power consumption reduction has been ad-
dressed in two ways. Firstly, by designing the robot to use

Fig. 8: Trunk Movements in 3D space.

minimal power by powering off its actuators while not being
in use. Secondly, by introducing a hybrid, asynchronous con-
troller that utilised fast, yet power-efficient pattern generators
that were connected with slow but adaptable recurrent neural
networks. In addition, the neural networks offered the capabil-
ity of learning and transferring knowledge between different
environments.

The presented work has focused on the integration of
reinforcement learning with local pattern generators, and not
into pattern generators, to create a central pattern generator.
The process of training reinforcement learning algorithms
with recurrent neurons is challenging, as the memory of
previous episodes must be called randomly without breaking
the coherence between the time-steps of each episode. Also,
decisions from reinforcement learning were executed every
100 steps, and that introduced a challenge as the algorithm
must be able to learn and adapt to the dynamics of a system
that was not able to act on.

The results demonstrated that the robot achieved stability
in less than 300 episodes. The validation experiments also
demonstrated that the robot could act without the continues
supervision of the reinforcement learning algorithm. The re-
sults showed minimal movement in the transverse plane and a
speed of 2 steps/s, out of the ideal 3 steps/s that it was trained
for.

The natural evolution of this work is to be implemented on
the actual robot, and then evaluate the response in different
environments. At the same time, different real-time systems
will be tested and evaluated to explore the full potentials and
limitations of the eNAF algorithm.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support
of the Engineering and Physical Sciences Research Council
(EPSRC) Center for Doctoral Training in Embedded Intelli-
gence under grant reference EP/L014998/1. Additionally, to
pay special regards to Motion Robotics LTD for their support
and input to this research.

(a) Acceleration of robot’s trunk. (b) Angular velocity of robot’s trunk.

Fig. 9: IMU data from robot during evaluation.

REFERENCES

[1] Honda Motor Co., “Robot Development History, Honda Motor
Co.” [Online]. Available: https://global.honda/innovation/robotics/robot-
development-history.html

[2] H. Van der Kooij, R. Jacobs, B. Koopman, and F. Van der Helm, “An
alternative approach to synthesizing bipedal walking,” Biol. Cybern.,
vol. 88, no. 1, pp. 46–59, 2003.

[3] D. Lee and W. ElMaraghy, “A neural network solution for bipedal gait
synthesis,” in [Proceedings 1992] IJCNN Int. Jt. Conf. Neural Networks,
vol. 2. IEEE, jun 1992, pp. 763–768.

[4] H. Shahbazi, K. Jamshidi, A. H. Monadjemi, and H. Eslami,
“Biologically inspired layered learning in humanoid robots,”
Knowledge-Based Syst., vol. 57, pp. 8–27, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.knosys.2013.12.003

[5] S. F. Rashidi, M. R. S. Noorani, M. Shoaran, and A. Ghanbari, “Gait
generation and transition for a five-link biped robot by Central Pattern
Generator,” 2014 2nd RSI/ISM Int. Conf. Robot. Mechatronics, ICRoM
2014, pp. 852–857, 2014.

[6] J. Massion, “MOVEMENT , POSTURE AND EQUILIBRIUM : IN-
TERACTION AND COORDINATION,” Prog. Neurobiol., vol. 38,
no. 1, pp. 35–56, 1992.

[7] J. B. Nielsen, “How we Walk: Central Control of
Muscle Activity during Human Walking,” Neurosci., vol. 9,
no. 3, pp. 195–204, jun 2003. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1073858403009003012

[8] C. Kouppas, Q. Meng, M. King, and D. Majoe, “S.A.R.A.H.: The
Bipedal Robot with Machine Learning Step Decision Making,” Int. J.
Mech. Eng. Robot. Res., vol. 7, no. 4, 2018.

[9] American Honda Motor Co. Inc., “ASIMO Specifications —
ASIMO Innovations by Honda,” 2018. [Online]. Available:
asimo.honda.com/asimo-specs/

[10] Boston Dynamics, “ATLAS - The World’s Most Dynamic Humanoid,”
2018. [Online]. Available: www.bostondynamics.com/atlas

[11] Agility Robotics, “Cassie.” [Online]. Available:
http://www.agilityrobotics.com/robots

[12] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de
Panne, “Iterative Reinforcement Learning Based Design of Dynamic
Locomotion Skills for Cassie,” mar 2019. [Online]. Available:
http://arxiv.org/abs/1903.09537

[13] R. L. Calabrese, “Cellular, synaptic, network, and modulatory mecha-
nisms involved in rhythm generation,” Curr. Opin. Neurobiol., vol. 8,
no. 6, pp. 710–717, dec 1998.

[14] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous
Deep Q-Learning with Model-based Acceleration,” Transplant. Proc.,
vol. 32, no. 5, pp. 932–934, mar 2016. [Online]. Available:
http://arxiv.org/abs/1603.00748

[15] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine,
“Composable Deep Reinforcement Learning for Robotic Manipulation,”
Proc. - IEEE Int. Conf. Robot. Autom., no. 1, pp. 6244–6251, 2018.

[16] C. Kouppas, M. Rodosthenous, N. Sagyndyk, Q. Meng, M. King, and
D. Majoe, “Designing a novel bipedal Silent Agile Robust Autonomous
Host (S.A.R.A.H),” in UK-RAS Conf. ’ROBOTS Work. AMONG US’,
Bristol, 2017, pp. 114–117.

[17] C. R. Taylor, N. C. Heglund, and G. M. Maloiy, “Energetics and
mechanics of terrestrial locomotion. I. Metabolic energy consumption
as a function of speed and body size in birds and mammals.” J. Exp.
Biol., vol. 97, no. 1, pp. 1–21, 1982.

[18] Microchip Technology Inc., “Microchip SAM
C, ATSAMC21J18A,” 2019. [Online]. Available:
https://www.microchip.com/wwwproducts/en/ATSAMC21J18A

[19] Raspberry PI Foundation, “Raspberry Pi 3 Model B,” 2019.
[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-
3-model-b/

[20] J. Pratt and G. Pratt, “Intuitive control of a planar bipedal walking robot,”
Proc. - IEEE Int. Conf. Robot. Autom., vol. 3, no. May 1998, pp. 2014–
2021, 1998.

[21] K. Doya, “Reinforcement Learning In Continuous Time and Space,”
Neural Comput., vol. 12, no. 1, pp. 219–245, 2000.

[22] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser,
J. Quan, S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. van
Hasselt, D. Silver, T. Lillicrap, K. Calderone, P. Keet, A. Brunasso,
D. Lawrence, A. Ekermo, J. Repp, and R. Tsing, “StarCraft II: A New
Challenge for Reinforcement Learning,” 2017. [Online]. Available:
http://arxiv.org/abs/1708.04782

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” sep 2015. [Online]. Available: http://arxiv.org/abs/1509.02971

[24] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE Int. Conf. Robot. Autom. IEEE, may 2017, pp. 3389–
3396.

[25] CM Labs Simulations, “Theory Guide: Vortex Software’s Multibody
Dynamics Engine,” Tech. Rep., 2016.

[26] T. Matsubara, J. Morimoto, J. Nakanishi, M. aki Sato, and K. Doya,
“Learning CPG-based biped locomotion with a policy gradient method,”
Rob. Auton. Syst., vol. 54, no. 11, pp. 911–920, 2006.

[27] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,
“Learning CPG-based biped locomotion with a policy gradient method:
Application to a humanoid robot,” Int. J. Rob. Res., vol. 27, no. 2, pp.
213–228, 2008.

