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Abstract—Public transport buses suffer travel time uncertain-
ties owing to diverse factors such as dwell times at bus stops,
signals, seasonal variations and fluctuating travel demands etc.
Traffic in the developing world in particular is afflicted by
additional factors like lack of lane discipline, diverse modes of
transport and excess vehicles. The bus travel time prediction
problem on account of these factors continues to remain a
demanding problem especially in developing countries. The
current work proposes a method to address bus travel time
prediction in real-time. The central idea of our method is to recast
the dynamic prediction problem as a value-function prediction
problem under a suitably constructed Markov reward process
(MRP). Once recast as an MRP, we explore a family of value-
function predictors using temporal-difference (TD) learning for
bus prediction. Existing approaches build supervised models
either by (a)training based on travel time targets only between
successive bus-stops while keeping the no. of models linear in
the number of bus-stops OR (b)training a single model which
predicts between any two bus-stops while ignoring the huge
variation in the travel-time targets during training. Our TD-
based approach attempts to strike an optimal balance between
the above two class of approaches by training with travel-time
targets between any two bus-stops while keeping the number
of models (approximately) linear in the number of bus-stops. It
also keeps a check on the variation in the travel-time targets.
Our extensive experimental results vindicate the efficacy of the
proposed method. The method exhibits comparable or superior
prediction performance on mid-length and long-length routes
compared to the state-of-the art.

Index Terms—Travel Time Prediction; Markov reward pro-
cess; temporal-difference learning; Non-linear function approxi-
mation;

I. INTRODUCTION

Given the steady migration of people from rural pockets
into urban areas (especially in developing countries), city
populations are exploding leading to increased traffic volumes
across the globe. Improving the quality of public transport is
one sustainable approach to mitigate this ubiquitous problem.
This can potentially not only reduce traffic volumes and
congestion in turn, but also curtail pollution. To make public
transport an attractive option, it needs to be reliable. This will
require maintaining bus schedules to the extent possible while
providing accurate arrival time predictions. Accurate arrival
time estimates can help commuters waiting or planning to
board on time at a specific bus stop. Accurate Bus Arrival
time prediction (BATP) can also help travellers plan or decide
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to take a bus headed to a desired destination. BATP can also
aid transport authorities to administer necessary corrective
actions in real-time in order to maintain the overall quality
of the transport system. Hence providing quality BATPs is a
significant aspect of reliable public transport.

Research on BATP is about two decades old in the devel-
oped world. It is arguably a relatively well solved problem
in developed countries. However, in the context of developing
countries, BATP is far from solved and there is substantial
scope for improvement. The primary reasons for this include
(1)non-adherence to lane discipline (2) in-homogeneity of traf-
fic (i.e. transport modes can range from bicycles, two wheelers
to heavy vehicles like buses and trucks) with no dedicated
lanes for specific modes of transport. We compactly refer to
this as mixed traffic conditions. The real data considered in this
paper is collected on a bus route from an Indian metropolitan
city1 where such mixed traffic conditions exist. Currently,
public transport based bus travel time predictions in real time
via Google maps are mostly absent in India. Any travel time
query on google maps in most Indian cities returns a mostly
static travel time value irrespective of the time or date of query.
The travel times returned are almost fixed and seem to be
based on some pre-fixed schedules. Given the heterogeneous
and complex nature of traffic in developing economies like
India, bus schedules are currently very hard to implement.
Also, to the best of our knowledge there do not exist any
mobile app-based systems which can give real-time predictions
of the currently active buses in the Indian city considered in
this paper. Given all these various factors, BATP is still an
active research problem in general [1] and in particular under
mixed traffic conditions [2].

Gaps and Contributions: Over the years, researchers have
proposed a variety of approaches for BATP. Among these, the
data driven class of methods has been very prominent. Most
of these methods segment the entire route into smaller sec-
tions either uniformly [3] OR based on segments connecting
successive bus-stops. The data input in each of these various
methods can range from different quantities like speed, flow,
travel time and so on depending on the algorithm and the
sensing infrastructure in place. There has been a significant
class of methods which stick to travel time experienced at each

1Due to confidentiality issues, we are not in a position to reveal the name
of the city in this paper.
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of these sections/segments as the primary data input to the
prediction algorithm. In this paper, we stick to this approach.
The observed section travel times, include both the dwell time
(at the bus-stops in the section) and the actual running time
across the section. This data for instance can be obtained by
high-quality GPS sensing.

Existing data-driven methods have adopted a diverse range
of techniques which include ARIMA models [4], linear statis-
tical models like Kalman filters [5], nonlinear Kalman filters
[6], support vector machines [7], [8], feed-forward ANNs
[9], recurrent neural networks [10], CNNs [11] and so on.
Most of the existing approaches suffer from a variety of
issues like (i)not exploiting the historical data well enough
for model calibration [3], [12], [13] OR (ii)fail to capture
spatial correlations [8], [14] (iii) do not exploit the temporal
correlations( [9], [10]) (iv)do not exploit the current real-time
information sufficiently( [15]). The earliest work (to the best
of our knowledge) on exploiting spatio-temporal correlations
was in [7], while there has been some very recent work [5],
[6], [11] as well in this direction. The current work is a unique
attempt to capture the spatio-temporal correlations in a fashion
distinct from the above methods. Specifically:
• Unlike other methods, the proposed approach builds mod-

els by training on travel-time targets between arbitrary
sections while keeping a check on variation in the target
travel times and the number of models built (refer to
Sec. II-B for details).

• We construct an associated Markov reward process to re-
formulate the dynamic bus travel time prediction problem
as a value function prediction problem under the MRP.

• This reformulation allows us to explore a family of
predictors based on temporal difference learning [16]
unlike any of the other approaches. In particular, we
explore the n-step TD and the TD(λ) class of predictors
for training. Towards final prediction, we choose the best
of the predictors in these classes.

• The nature of the state in the Markov process is naturally
continuous, which warrants use of function approxima-
tion (ANN based) for learning. The state definition is
made sufficiently rich to account for various features
influencing travel-time prediction.

• The effectiveness of the proposed method is demonstrated
on real data collected in a mixed traffic condition. Our
experiments indicate how the proposed method outper-
forms a range of existing methods by at least 17% (in
the best case) over routes of mid and long length ranges.

II. LITERATURE REVIEW AND RELATED WORK

Research on BATP over the years has seen diverse ap-
proaches. Researchers have considered diverse data inputs
like speed, travel times, flow information, weather, scheduled
time tables [17], crowd-sourced data [18] and so on. The
computational landscape can be broadly divided into two
categories: (i)traffic-theory based (ii)data-driven. Given that
the current work is a purely data-driven approach, we elaborate
only on the data-driven approaches further.

A. Data-driven methods

Data-driven methods typically impose a coarse model
(based on measurable entities) that is just enough for the
prediction problem at hand instead of modeling based on
underlying physics of the traffic. There exist a subclass of
methods which employ a data-based model but do not employ
a full-fledged learning based on historical data. The remaining
approaches typically use past historical data to learn the
necessary parameters of a suitable prediction model before
employing it to perform real-time predictions.

Without Learning: Amongst the class of methods which
don’t employ explicit historical-data based learning, [19],
arguably one of the earliest Kalman filter based approaches,
uses the previous bus travel times and the previous day
travel times experienced at the same time as data inputs. The
method exploits only temporal correlations while the choice
of parameters of the state space model looks adhoc. The later
methods which use a linear state-space model capturing travel
times, calibrate (or fix) the data-based model parameters for
the current bus just before prediction, either based on (a) the
current data of the previous bus [3], [12] or (b)a suitably
optimal travel-time data vector from the historical data-base
[20].

Historical-Data based learning: Among the learning based
methods, there are methods which do not factor enough the
current real-time position OR the travel-time information of
the bus in question (current). For instance, approaches based
on support vector regression [8] and a feed-forward ANN
[14] have been proposed which exploit only the temporal
correlations that come from multiple previous bus travel times.
[15] considers a SVR based prediction scheme with static
inputs like link length and dynamic inputs like speed, rate
of road usage. However it doesn’t factor the position of the
current bus OR exploit the previous bus information. [21]
considers an ANN based prediction with arrival time, dwell
time and schedule adherence as inputs without using any
previous bus information. the previous bus information. [7]
consider a dynamic prediction scheme where the travel time of
the subsequent section is predicted using an SVR. The inputs
include previous bus’s travel time at the same section and
the current bus’s travel time at the previous. This prediction
scheme utilizes both temporal and spatial characteristics of
the data in a minimal way. [9] learns a one-hidden layer feed-
forward ANN based on current time and bus position to predict
arrival times across all subsequent stops. Since it learns one
model to predict travel times between any two bus stops on the
route, dynamic range of the target travel time will be very large
in this method. An LSTM based RNN approach was proposed
in [10] which basically uses a many to many architecture for
training and captures the spatial correlations in the data. A
recent approach capturing spatio-temporal correlations based
on linear statistical models (non-stationary) was proposed in
[5] which uses a kalman filter for prediction across sections. A
non-linear extension of this idea was carried out in [6] which
employed an extended kalman filter for prediction after an



SVR based learning. A CNN based approach was proposed
in [11] recently where the conditional predictive distributions
were parameterized using masked-CNNs. The CNN output
modelled the travel-time between any two bus-stops in a
quantized form.

B. Relevance of the Contribution

Overall one can deduce that existing methods either do
not exploit historical data for learning OR do not sufficiently
capture the spatial and temporal correlations for prediction.
Even if some methods exploit the spatial and temporal cor-
relations in different ways [5]–[7], [11], the models built
during training by any of them only use travel-time targets
either across a section OR between two consecutive bus-stops
only. This aspect of these methods leads to the number of
models built by any of them to be just linear in the number
of sections. Since travel-time prediction needs to be carried
out between any two bus-stops, this strategy of first predicting
between consecutive bus-stops (OR individual sections) and
then aggregating the predictions can potentially accumulate
errors. An approach which partly addresses this issue is by
training using travel-time targets between arbitrary bus-stops
directly and was considered in [9]. This method also builds a
single compact model for prediction between arbitrary bus-
stops. However, this method ignores the huge variation in
the target travel times during training which can lead to poor
performance on routes of large and short lengths.

The proposed method strikes a balance between these
two approaches by training with travel time targets between
arbitrary sections, keeping the number of trained models
(approximately) linear in the number of bus-stops while also
not allowing the range in the travel-time targets to be too
large. Another strong distinguishing feature of our method
includes posing the prediction problem as a value function
prediction of a suitably constructed Markov reward process.
This recast crucially enables us to explore a spectrum of
predictors based on temporal-difference learning for superior
prediction as compared to standard supervised learning. This
aspect of the current work is significantly novel compared to
existing supervised learning approaches for BATP.

III. PROPOSED METHOD

Data Input: A bus route can be segmented uniformly into
sections/segments and the travel times experienced to traverse
each of these sections in a trip constitute the input data. The
segment length could be minimum of the distance between
any two consecutive bus-stops. The travel time across a section
includes running time and dwell times at bus-stops.

A. Markov Reward Process formulation:

Given the Nsc number of sections, we need predictions
between any two sections i and j. While one can build separate
models for each i and j, the number of models needed would
grow quadratically with the number of sections. The data
may also not be rich enough to build so many such accurate
models. On the other hand, there have been methods which

build a single model to predict the travel time between any
two sections. One can strike a balance between these two
extreme approaches and instead build a single model for every
destination section j. As described later in Sec. IV-C and
Alg. 1, we slightly relax this strategy and consider multiple
models (depending on the value of j but not more than
5) for each destination section. The no. of models built is
approximately linear in the number of sections.

For the current problem, one can construct a Markov process
based on the current position and the trip elapsed time. Based
on this, the state has two components: (a)section number the
bus is about to enter (k) (b)time elapsed to reach the current
position from the start (Tel). The state (k, Tel) evolves as the
bus moves ahead towards the destination j. Specifically, as
the bus moves from section k to section k + 1 (for any k ≤
j experiencing a section travel time of Tk, the current state
s = (k, Tel) changes to the next state s′ = (k+ 1, T ′el), where
T ′el = Tel+Tk. Fig. 1 indicates the state transition pictorially.
For a fixed destination section j, a state with section number
j + 1 indicates the bus has reached its destination section.
Hence, any such state would be a terminal or an absorbing
state irrespective of the value of the second field, trip elapsed
time. The MRP performs exactly j state transitions before
entering the terminal state (j + 1, Tel) and from then on it
continues to remain in this state with zero terminal reward as
is the case in standard episodic MRPs [22] or the equivalent
stochastic shortest path MRPs [23].

(k, Tel) (k + 1, T ′
el)

r(s, s′) = T ′
el − Tel

s s′

Fig. 1. State Transition Structure

The first component transitions are deterministic as the
section number increments by one for every transition. The
second component transition is stochastic as the section traver-
sal times have uncertainties involved. We assume the trip
elapsed time to reach section k + 1 given the elapsed time to
reach k is probabilistically independent of all past trip elapsed
times. This assumption vindicates the Markovian nature of the
process. For every such state transition (s, s′), we define the
reward to be the difference of the trip elapsed times at these
two states (Fig. 1). Hence we now have a MRP.

The value function of a MRP starting at a state s is the
expected long-term sum of rewards if the process starts starts
at this state s. Based on our reward definition, it is easy to
see that the value function at any state is the expected time to
reach the destination section j. This is the desired quantity of
prediction interest.



V (s) = E

( ∞∑
i=0

r(si, si+1)/s0 = s

)
(1)

Eqn. 1 even though is an infinite sum for general episodic
MRPs, is a finite summation in our setting. The number of
non-zero terms starting from any state is at most j.

B. TD based Learning

If the state space is finite and not too large, then the value
function prediction is relatively straightforward as one needs to
estimate the value function for each state based on data. When
the state space is finite but very large OR infinite and con-
tinuous, employing function approximation is a typical work-
around to mitigate this curse of dimensionality. Essentially the
tabular approach of storing the value function for each state
value breaks down. Under a linear function approximation
idea, each state s is mapped to real valued feature vector Φ(s)
and the value function V (s) is hypothesized to be a linear
combination of the features. Its a linear approximation since
the value function is a linear function of the unknown weights.

V (s) = wTΦ(s),where Φ(s) = [φ1(s), . . . φN (s)] (2)

Instead of learning tabular entries (value function values for
each state) directly, function approximation methods learn a
weight vector which indirectly store the entire value function
possibly for a infinite or continuous state space. For each state,
the value is not prestored but is computed on the fly when
presented with the state and its associated feature vector. In
the current application, the second component of the state
is the elapsed time to reach the current position. It seems
most appropriate to leave the continuous nature of this entity
as it is than trying to quantize this. Also, we don’t have a
system or environment here to interact with which can generate
arbitrary amount of data for a fixed policy. We essentially
have a fixed policy based on which we have finite limited
data. Both these issues in addition to limited data compel
us to use function approximation. Function approximation
also enables generalization of the value function across states
(which assume a continuum of values here) based on finite
data.

Monte-Carlo based and one-step ahead temporal-difference
learning methods are two extreme approaches to learn the
value function. Both approaches essentially minimize the same
training error and employ a stochastic gradient weight update
as follows.

wt+1 = wt + α
[
Ut − V̂ (st,wt)

]
∇V̂ (st,wt) (3)

where w can be the weights of Eqn. 2 if a linear function
approximation is employed OR can be the weights of Figure 2
for a nonlinear approximation.

However, both methods differ in the manner in which the
targets Ut are defined. In Monte Carlo learning, Ut is the sum
of rewards till the end of the episode. It is also referred to as
return and denoted as Gt.

Gt = r(st, st+1) + · · ·+ r(sT−1, sT ) (4)

In one-step TD, the target is a bootstrap estimate computed
as

Ut = r(st, st+1) + V̂ (st+1, wt). (5)

The estimate is based on the immediate reward and the boot-
strapped estimate of the value function of the next state, which
is motivated directly from the one-step Bellman equation [23].

The n-step TD methods provides a discrete range of learning
methods where one-step TD and Monte-Carlo methods are at
two extremes. The n-step return (Gt:t+n) is defined as follows.

Gt:t+n = r(st, st+1) + · · ·+ r(st+n−1, st+n) + V̂ (st+n,wt)
(6)

The associated target Ut in Eqn. 3 is set to Gt:t+n. This is the
first class in which we search for new predictors superior to
one-step TD and Monte-Carlo.

One can further generalize by considering the average of
n-step returns as the target. One such weighted average of
all n-step returns leads to the TD(λ) bag of predictors [16].
Specifically, each n-step return is weighted proportional to
λn−1, where λ ∈ [0, 1]. This variation in λ is what leads
to a continuous range of predictors. The associated return is
defined as follows.

Gλt = (1− λ)

∞∑
n=1

λn−1Gt:t+n (7)

For an episodic MRP the above equation can be simplified as
follows.

Gλt = (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt (8)

From the above equation, it is easy to observe that when λ = 1,
Gλt = Gt, namely the Monte-Carlo return is given by Eqn. 4.
While λ = 0, Gλt = Gt:t+1, the one-step TD return. Hence
Monte-Carlo and one-step TD are at the two extremes of the
λ-return based predictors.

The above λ-version based predictors need to be imple-
mented offline only at the end of an episode. In our case,
since we are learning from historical data the above offline
version can also be used. In this paper, we explore its online
version namely the TD(λ) algorithm.

It involves the following steps at each iteration.

z−1 = 0 (9)

zt = λzt−1 +∇V̂ (st,wt), 0 ≤ t ≤ T. (10)
wt+1 = wt + αδtzt. (11)

where δt is the one-step TD-error at st, i.e. (Ut− V̂ (st,wt)),
where Ut comes from Eqn. 5.

In general, λ OR n control the bias-variance trade off and
an intermediate value of n OR λ are known to work best
[24] in terms of prediction performance (mean square error
for instance).



C. Improving predictions

Towards improving the predictive model, we enlarge the
state definition by adding additional features. In particular, the
complete set of input features are indicated in Figure 2. The
extra features include (i)Tpv - the time to reach destination
section from the current position based on currently plying
most recent previous buses which traversed the subsequent
sections. The point to note is that the most recent bus might
not have crossed the destination section in real-time. In which
case, we resort to the next previous bus’s section travel
time information to compute the destination time based on
real-time information of the previous buses. The other time
feature (ii)Tpw, we have used is based on a (closest) historical
trip that happened in the previous week, same weekday.
The connotation of ‘closest’ here is with respect to the trip
start times. The current time OR the time of day is also
an input. However, its encoded as a categorical feature of
up to 4-5 levels which capture periods like morning peak,
morning off-peak, evening peak and evening off-peak hours.
The last additional feature includes the week of day which
distinguishes between Monday, Friday, Saturday and the rest
of the week days (Tue-Thu).

Fig. 2. Value Function Approximation

D. Feature Construction

In our search for the right n or the optimal λ, we need
to perform a grid search over the step-size α for each n
and λ. Performing this search with full non-linear function
approximation can lead to large learning times and possibly
unstable learning. To address this issue, we propose a heuristic
to fix or choose the non-linear features. The chosen non-linear
features can now be used with linear function approximation
while searching for the optimal n or λ. TD with linear function
approximation (in-spite of complicated features) will be faster
as the gradient computation is simple and hence doesn’t need
back-propagation and is generally more stable. To choose these

Fig. 3. Feature Extraction

Algorithm 1: Overall Method
I/P : Travel times across all sections (Nsec of them),

across all trips and days, K (chosen as 15 here)
O/P: M - set of all predictive models (For each

destination section j, at most Nsec/K models.
Together one can predict from any section
preceding j.)

Initialize M = φ;1

for every destination section j = 1, 2, . . . , Nsec do2

if j ≤ K then3

Form one group G of j sections;4

else5

Divide the j sections into partitions of K = 156

consecutive sections (starting from the first
section); .(When j (mod K) 6= 0, then the
last group will have less than K
sections)
Denote by G, the class of dj/ke such partitions;7

for every partition p in G do8

Build a single Markov reward process model with9

j as destination section and with bus starting
positions at the sections constituting p;
Extract non-linear features using Monte-Carlo10

learning as described in Fig. 3;
Build predictive models using n-step TD (for11

each n = 1 to min(K, j)) with above features
(non-linear) using linear approximation (Eqn. 2);
Choose the best n-step model (MAPE sense);12

On above similar lines, build best TD(λ) model;13

Choose best among the optimal n-step and TD(λ)14

models and add to M;



non-linear features, we propose to use TD-1 OR Monte-Carlo
learning with non-linear function approximation. We choose
Monte-Carlo learning towards this as it is essentially standard
ANN-based supervised learning for the prediction problem. We
use a 3-hidden layer feed-forward structure towards this during
learning. The outputs of this learned structure at the penulti-
mate layer denote the final non-linear features of interest. We
essentially freeze the weights learnt in all layers except the
last layer. Figure 3 describes the feature construction idea.

Algorithm 1 explains the overall approach for prediction.

IV. RESULTS

Data: The bus route we tested on was from an Indian city
and of length 28 kms. We segment this route uniformly into
sections of length 400m, which is slightly below the average
distance between two consecutive bus stops. This means the
total number of sections on the route, Nsec = 70 in total.
We test our algorithms on one data set collected over 12
consecutive weeks. The prediction was carried out on the last
week’s data (test period) while the remaining data was used
for training. The prediction accuracy was evaluated in terms
of Mean Absolute Percentage Error (MAPE), which is a scale
independent metric. Percentage error is the Absolute Error
divided by the true prediction expressed in percentage. As the
actual travel time across any section is always strictly positive,
this metric is always well-defined in this application.

In this paper, we benchmark the proposed TD method
against 4 other methods: (1)Historical average (HA) of the
training data which serves as a simple baseline, (2)LSTM
[10], which captures mainly the spatial correlations in the
data, (3)ST [6], a recent spatio-temporal approach for the
same problem, (4)ANN [9], which builds a single model
to predict between any two sections using a feed-forward
structure. This choice of methods enables a computationally
diverse comparison.

A. Plain features vs Nonlinear features

While employing a λ OR n based exploration, for every
model built using linear function approximation based TD
learning, choice of features can happen in multiple ways. A
naive choice would be to use the raw features (described
in Sec. III-C) directly. A more sophisticated choice would
be to employ the non-linear features as described earlier in
Sec. III-D. While depending on the nature of data, there could
exist situations where the naive choice of features could lead to
superior models, for the purpose of experiments in this paper,
we use the non-linear features obtained via our novel feature
construction approach to build all models.

B. Improvements due to search over n and λ

As explained earlier, in a bid to improve predictions over
Monte-Carlo learning, we search over n = 1, 2 . . . and
λ ∈ [0, 1] for various step sizes α. Fig. 4(a) gives the MAPE
obtained for varying n for two random MRP models. The
MAPE indicated for each n is obtained by searching for an
optimal step size, which could be different for different n.
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Fig. 4. MAPE variation over n and λ for two random MRP models.

Figure clearly indicates that the best MAPE is achieved at an
intermediate n which is greater than 1 and something lesser
than T = 15 (which corresponds to Monte-Carlo learning),
the no. of steps (or sections) in the model.

On similar lines, Fig. 4(b) gives MAPE obtained for a range
of λ values varying from 0 (1-step TD learning) to 1 (Monte-
Carlo learning). An intermediate λ seems to do better than
the extreme cases. As before, the MAPE indicated for each
λ is by searching over step-sizes, the best of which could be
different for different λ.

Given the elaborate search over n and λ that needs to be
carried out for each model, we cut down on this search partly
by sticking to the λ search alone in this paper. Hence in all
subsequent experiments, the acronym TD refers to TD(λ) only.

C. Average Comparison across Route Lengths

Models for each destination section j: For a given
destination section j, depending on its distance from the start
of the route, we allow the possibility of building multiple
Markov Reward process (MRP) models to keep the travel-time
target variability per MRP model within limits. A strategy to
construct these models would be to bunch together K con-
secutive sections (chosen to be 15 here) from the start section
and build one MRP model (and the associated value function
learning) for each bunch of K start positions (as described
in Algorithm 1). Each finite horizon MRP model essentially
corresponds to a bunch of potential current positions of the
bus at a group of consecutive sections. For the extreme case
where j = Nsec = 70, our choice of K = 15 leads to
5 models, where the last model covers the last 10 sections.
For a given destination section j, an alternate (non-uniform)



strategy could be to equally divide the j sections into 2 groups
and build a single model based on the first j/2 sections. The
remaining j/2 sections are again split into 2 halves and the
process continues. This way the first partition would include
sections 1 to j/2, the second would constitute j/2 to 3j/4 and
so on, leading to log2(j) models. In this paper, we stick to the
first strategy of uniformly bunching the sections together.
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Fig. 5. MAPE across the entire range of route lengths

We consider testing our proposed approach on routes of
diverse lengths. For testing purposes, we build complete mod-
els for 6 different destination sections, where the destinations
chosen are uniformly placed on the second half of the route.
Specifically, we start with j = 45 and move till section 70
in steps of 5. We separately look at the MAPE comparisons
during morning and evening peak hour traffic. Its during
peak hour traffic that BATP needs to be particularly accurate.
Fig. 5(a) and 5(a) gives the APE averaged (MAPE) across
all morning and evening peak hour test trips respectively,
based on the length of the routes (distance of the current
position (i) of the bus from the destination j). We consider
7 ranges (each range spanning 10 sections OR 4 kms) which
cover routes of all possible lengths. Fig. 5 indicates the
MAPE comparisons against the chosen baselines. The figures
clearly illustrate that the proposed method makes comparable
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Fig. 6. MAPE across six chosen destinations (averaged across medium and
long routes)

OR superior predictions (compared to existing state-of-art)
for route lengths greater than 12 kms (> 30 sections). In
other words, it performs better than existing methods on mid
and long length sub-routes. Within this range, it outperforms
existing methods with an advantage up to 3%, 7.2%, 30%
(some of the long length ST MAPEs have been clipped to
21% for inferrable plots) and 74% over HA, LSTM, ST and
ANN approaches respectively. ANN [9] MAPE during both
morning and evening peak hours is at least 28% across all 7
route length ranges. Hence we haven’t indicated it in Fig. 5.

We further compare the performance in the mid and long
length route ranges by now projecting (or averaging) over all
routes ending at a particular destination section. Fig 6 shows
the comparative MAPEs for morning and evening peak hours
separately across the six destination sections. Overall, the TD
method is either comparable or outperforming the existing
methods. In particular, the approach outperforms existing
methods with an advantage of up to 4.5%, 10.2% and 4.4%
over HA, LSTM and ST approaches respectively. ANN [9]
MAPE in this case, during both morning and evening peak
hours is very poor as before and is at least 26% across all 7
route-length ranges. Hence we haven’t indicated it in Fig. 6.



D. Best Case improvements

We next explore best case improvements of the proposed
method in comparison to each of the baseline methods for
different sub-route length ranges. We restrict ourselves to
mid and long route-length ranges over which the proposed
TD approach has been shown to perform the best in an
average MAPE sense. Table I indicates the top-5 best case
improvements in MAPE. The top-5 best case improvements
are at least 17% across the 4 methods against which we bench-
marked our method in detail.

TABLE I
BEST-CASE MAPE IMPROVEMENTS (TOP-5) OF PROPOSED TD SCHEME

HA LSTM ST ANN
31-40 96,94,94,90,90 34,32,32,31,31 92,89,89,89,87 >100
41-50 82,81,81,80,79 27,27,26,25,24 73,64,59,59,58 >149
51-60 80,79,79,79,78 29,28,28,27,27 61,60,59,57,57 >171
61-70 32,32,31,30,29 21,21,19,17,17 55,54,54,54,51 >187

V. CONCLUSIONS

We proposed a temporal-difference learning based data-
driven approach for BATP. The method intelligently reposes
the BATP problem as a value function estimation under a
suitable Markov reward process (MRP). We strengthened the
state definition by including relevant features to the MRP
towards enhanced prediction. We used Monte-Carlo learning
in this setting to construct non-linear features from the raw
(plain) features. These non-linear features were subsequently
used for a linear function approximation of the value function.
The novel MRP recast and (non-linear) feature construction
then enabled us an extensive search over the family of n-
step and TD(λ) bag of predictors in an efficient fashion.
Recall the gradient computation under linear function ap-
proximation is readily feasible in closed form (which makes
learning substantially faster) while the weight learning is also
relatively stable. The exhaustive n and λ search (we perform)
is hence made possible by this novel feature construction and
subsequent linear function approximation. Our experimental
results indicate the superior performance of our method over a
spectrum of existing methods on mid and long length routes.
We demonstrated the efficacy of our approach on real field
data from complex Indian traffic conditions. As future work,
we intend to explore more recent TD approaches like True
online TD(λ) [25] for potential performance enhancements.
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