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Abstract—It has become increasingly common in academic and
industrial environments the necessity to process huge amounts of
seismic signals. Several researchers have been seeking for ways to
improve and optimize the processing of these enormous amounts
of data that are related to routine demands of geophysicists.
One of these demands is the classification of distinct seismic
regions captured by the same seismograph, a task that could
take up to months of manual data processing. In this paper, we
propose the usage of machine learning techniques to the task of
the classification of seismic regions, in order to achieve accurate
results with better performance and speed. The algorithms K-
NN, MLP, Naive Bayes and Decision Tree were used for tests
as base classifiers and also combined on ensemble methods. We
also employed Deep Learning techniques, namely, a pure RNN
network, and a variation of RNN called LSTM. The best results
were achieved when using heterogeneous classifiers, showing
accuracy rates of up to 98.52%. The results show that one can
build an efficient seismic region classification system even when
few classified data are already available for a specific seismograph
setting.

Index Terms—Seismc Signals, Seismic Processing, Machine
Learning

I. INTRODUCTION

Seismic events can be found in the world since its origin
and have been studied on a large scale by several researchers
for several centuries. These events carry information about
specific characteristics such as differences in their size and
nature. Passive seismics techniques consider these diverse
types of events, trying to understand more about them. A
prevalent task in passive seismics [1] is the classification and
cataloguing of these events, with the aim of maintaining an
extensive catalog for reference and research. One of the main
steps of this cataloguing is finding out the exact region where
the seismic events occurred.

A single seismograph can record several distinct seismic
regions, making it difficult to distinguish the event’s origin.
This analysis is usually carried out by several researchers
observing only the format of the amplitude of the signal
captured by the seismographs, since each region has different
features in their waveforms. The position of the seismograph
in relation to the seismic regions is important, as it interferes
with the acquired signals.

Such a work can take hours or even days since all the
analysis are usually performed manually. In this paper, we
propose the usage of several machine learning techniques to
the classification of different seismic regions captured by a
single seismograph.

The data used in this research were obtained from a regional
seismograph in the state of Rio Grande do Norte, Brazil. Geo-
physical analysts took about 3 months to classify 3 different
regions read by the seismograph. Our goal is to maintain a very
low misclassification rate while reducing the classification time
as much as possible.

This paper is organized as follows: Section II talks about
related works while Section III presents the problem and
gives a description of the database used. Section IV details
the experiments performed and presents the results and a
discussion of them. Finally, Section V presents our conclusions
and future work related to this task.

II. RELATED WORKS

There are several studies in literature that employ machine
learning tools to process seismic signals. We now briefly
describe some of them.

The work of Zhang et al. [2] introduces a tool for seismic
velocity model building (VMB), whose purpose is to assist
the interpreters during the initial stages of the VMB, when
no seismic data has been migrated. Their method employs
machine learning techniques and can automatically identify
and localize faults from seismic data that have not been
migrated. They targeted the fault localization problem, but
most of the results are obtained using processed seismic data
or images as input. Results show that a fully automated VMB
was not achieved because the human knowledge was difficult
to formalize in a way that could be systematically applied.
However, if the framework is extended to other seismic events
or attributes, it might become a powerful tool to alleviate the
interpreters’ work.

Ramirez Jr and Meyer [3] consider the supervised learning
problem of seismic phase classification. It was proposed for the
classification of seismic phases in three-channel seismic data
collected within a network of regional recording stations. Their
method improves on current techniques, inserting concepts
from machine learning, seeking to learn the characteristics
associated with different data patterns, by first using a multi-
scale feature extraction technique for clustering seismic data
on low-dimensional manifolds. Also, they designed an in-
formation theoretic measure used to merge regression scores
across the multi-scale feature manifolds. This technique is
applied to a set of seismic data from several US states collected
during 2005 and 2006. Through cross-validation the method
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Fig. 1. Examples of instances of Region 1 (a), Region 2 (b) and Region 3 (c).

achieved a 74.6% average correct classification rate when
compared to analyst classifications.

Li et. al [4] propose to use a generative adversarial network
(GAN) to learn the characteristics of first-arrival earthquake
P waves, using 300,000 waveforms recorded in southern
California and Japan. The GAN was used as an automatic
feature extractor, and a Random Forest classifier was trained
with about 700,000 earthquake and noise waveforms. It shows
that the discriminator can recognize 99.2% of the earthquake P

waves and 98.4% of the noise signals. This study demonstrates
that GANs can discover a compact and effective representation
of seismic waves and has the potential for broad applications
in seismology.

The work proposed by Titos et. al [5] used recurrent
neural networks (RNN), long short-term memory (LSTM) and
gated recurrent units (GRU) to detect and classify continuous
sequences of volcano-seismic events at the Deception Island
Volcano, in Antarctica. The data are formed by a representa-



tive set of volcano-tectonic earthquakes, long-period events,
volcanic tremors, and hybrid events and was used to train
these models. Experimental results show that RNN, LSTM,
and GRU can exploit temporal and frequency information
from continuous seismic data, attaining close to 90%, 94%,
and 92% events correctly detected and classified. Despite the
variations in the geophysical properties of the seismic events
within the volcano across eruptive periods, results provide
good generalization accuracy.

Different from other works, our paper approaches seismic
regions classification on seismograms that are captured by
the same seismograph. We test several machine learning
algorithms to cope with the challenge of finding the best results
for this problem.

III. PROBLEM DESCRIPTION AND DATABASE

The problem addressed here is the classification of seismic
regions that are monitored by the same seismograph. The
signals originated from these regions may concentrate in the
same reading area of a particular seismograph, hindering their
exact identification, except by the manual work of an analyst.
This paper proposes to identify these different seismic regions
through the waveform and its amplitude signal. Figures 1a, 1b
and 1c show seismograms with events happening in the three
different seismic regions addressed in our problem.

The data used was provided by the Department of Geo-
physics of UFRN (Federal University of Rio Grande do Norte)
with a pre-processing performed through the SAC software
that is used by geophysicists for analysis. The data is stored in
the SAC [6] file format and unable to be worked on except in
the software itself, so they were converted to the ASCII format
using the Spyder tool [7]. Each file has 360,000 different
amplitude signals, i.e., samples. By varying these values every
0.01 seconds, we averaged every 100 signals, transforming
them into attributes, thus, giving us a signal value for every
second, totaling 3,600 attributes. In all, we get 54 different
files, counting 54 instances and three different regions. In all
these instances, a bandpass filter was applied, removing any
amplitude signal that was outside the range [5, 25] Hz, thus
creating the database.

It is important to note that such a system for seismic region
classification has to be trained using data acquired on the same
location, since the positioning of the seismographs interfere
with the acquired signal. A reasonable goal then would be
to build an efficient (fast and accurate) classification system
for seismic regions using as little labelled (classified) data as
possible.

IV. EXPERIMENTAL RESULTS

This section presents the different experiments done with
different machine learning algorithms on supervised, ensem-
bles of classifiers, and deep learning approaches. This section
is then divided into four subsections, where the first three
show tables with comparative results and the last performs
an analysis of the results.

A. Supervised Classifiers

For these experiments, four types of classifiers are used
in order to compare them and to find the classifier and
configuration most suitable for this database. The classifiers
were chosen for their differences, performances, and for being
widely used in the academic community. The supervised
methods used in this work are the K-NN [8], Decision Tree
[9], Naive Bayes [10], and MLP [11] with backpropagation.
The tests were executed on the Weka tool [12] and Scikit-
Learn [13].

With the K-NN, twelve experiments were performed with
the standard and staggered values (the values were selected
on a scale between 0 and 1) changing the K value, and for
each value was applied or not weights. The best K value
found was 2, for both staggered and weighted approaches. The
Decision Tree algorithm used was the J48 present in WEKA,
and the attributes converted from numerical to nominal. Two
parameters were considered for the tree, pruned and unpruned.
Since the values obtained were the same for both approaches,
we selected the pruned option for the remaining experiments
in this paper.

The Naive Bayes method is also used with two different
parameters, the normal and the kernel distribution. The results
of the tests showed that the normal distribution had more
significant values, which allowed us to choose it for the con-
tinuation of this study. Finally, the neural network algorithm
used is the MLP Backpropagation, and with it, 27 different
experiments were performed, varying the learning rate, the
number of neurons in the hidden layer and the number of
iterations of the algorithm. The values chosen for the number
of interactions were: 100, 500, and 1,000, while the values
used for the number of neurons in the hidden layer werre
200, 250, and 300. For the learning rate, the values used were
0.1, 0.01, and 0.001. These values are chosen for analysing
the behavior of the network, and the results obtained so that
the training was not too excessive. The experiments for the
neural network were performed with 2-fold cross-validation.
The best result was the MLP with 1000 interactions with
300 neurons in the hidden layer and a learning rate of 0.01,
and a new experiment was performed with 10-fold cross-
validation. While we used the ADAM activation function in
the experiments with deep learning, we did not use in the MLP
experiments because the Weka tool does not have the ADAM
function.

The results shown in Table I refer to the best values obtained
in the base classifiers.

TABLE I
BASE CLASSIFIERS

Classifier Accuracy
K-NN 57.4074± 18.2614

Decision Tree 37.0370± 18.0484
Naive Bayes 92.5996± 9.7789

MLP 83.3333± 15.9862

We then performed a statistical analysis between the 4



models of classifiers used. We set the rate of significance
for all tests as 0.05 [14]. We ran the Friedman test, and,
since its result reported a p-value < 0.001, another test was
applied to know which samples were statistically different
from each other. Table II presents the Wilcoxon test results
[15] comparing the results from the classifiers.

TABLE II
WILCOXON TEST - CLASSIFIERS

Wilcoxon Test
Classifiers p-Values
K-NN and AD 0.001
K-NN and NB 0.005
K-NN and MLP < 0.001
AD and NB < 0.001
AD and MLP < 0.001
NB and MLP 0.009

The Wilcoxon test reveals that all samples reject the null
hypothesis and have a significant difference. So, we need to
check which classifier is the best, using the accuracy. Naive
Bayes > MLP > K-NN > Decision Tree. In other words, the
NB is the best classifier for this experiment.

B. Ensembles of Classifiers

In a second batch of tests, we used ensembles of classifiers.
The ensembles bundle several classifiers together in order
to achieve greater precision than when using a single base
classifier. The experiments were executed with 10, 15, and 20
classifiers with 10-fold and ten repetitions per experiment. The
settings used in these tests are the same as those used in the
supervised approach.

The experiments use three different homogeneous ensemble
algorithms, Boosting [16], Bagging [17] and Stacking [18].
The ensemble using three Stackings was the one that obtained
the best results. Stacking is also used in its heterogeneous
form. The Tables III and IV show the results of Stacking’s
homogeneous and heterogeneous approaches. We can observe
that the increase in the number of classifiers did not always
translate into better results.

The Friedman test was also performed comparing the two
different Stacking approaches, where the p-value was set to
0.92. Since the p-value is greater than 0.05, no further testing
is required, as the null hypothesis is not rejected.

C. Deep Learning

In the last batch of experiments, we applied two deep learn-
ing techniques, the pure RNN (Recurrent Neural Network)
[19] and LSTM (Long Short-Term Memory) [20], which is a
variation of the RNN. We have chosen these networks because
several studies in the literature show that RNNs are indicated
for processing database temporal series [21]–[24].

The LSTM was trained with several different parameters,
and we retained the one with the best result. In this experiment,
LSTM and Dense layers were created, and the activation
function used was a sigmoid and the optimization function
used was ADAM [25]. The LSTM chosen used 10 epochs

and 200 neurons. For the pure RNN network, the same settings
were used, but we changed the LSTM layer to a SimpleRNN
layer. Table V shows the results of this experiment.

The result of the Friedman test showed a p-value of 0.65,
indicating that the results produced by the two techniques do
not have a significant difference, but observing the standard
deviation we can see that the LSTM obtained a better perfor-
mance.

D. General Analysis

Table VI shows the execution times in seconds, for each
technique used. Since the manual classification took around 3
months, we can see that by using machine learning techniques
we have a huge time saving for the classification and recogni-
tion of the seismic regions. The experiments were performed
on a computer with an AMD A10-9600P Quad-Core processor
with 3.30 GHz and 4 GB of RAM.

Figure 2 shows a comparative graph between all classifiers
showing their associated accuracy and standard deviation.
For the experiments performed with homogeneous and het-
erogeneous stacking due to the use of different amounts
of classifiers, the values with the best accuracy / standard
deviation were chosen to be presented. Below we can observe
this behavior on the chart.

After all the experiments and statistical tests we can see
that the results of the ensembles were usually better than the
results of the individually based classifiers. The heterogeneous
stacking technique composed by using 15 Naive Bayes and
MLP classifiers achieved the best results for the all classifiers,
obtaining an accuracy of 98.52%.

Even when compared to the results produced by deep learn-
ing techniques for time series, the Heterogeneous Stacking
achieved better results. We believe that this advantage in
comparison to the use of RNN and LSTM is due to the low
number of instances in our base, and that, given a substantial
amount of data, these later techniques would also achieve
excellent accuracy scores.

When compared to the results of [5], which also makes use
of an RNN, LSTM and GRU (Gated Recurrent Unit) tech-
niques for detecting and classifying volcano-seismic events,
we were able to obtain better results. Their results achieved
successful classification rates close to 90%, 94% and 92%. In
our experiments using RNN and LSTM, we achieved accuracy
rates of 92.98% and 93.38% respectively, which are results
very close to those was reported in [5], but when we compare
it with our approach using Heterogeneous Stacking, mixing
Naive Bayes and MLP with the result of 98.52%, we can see
that our approach stands out for this particular classification
of seismic data.

We believe that the big difference between the classifiers
is due to the fact that the data are from time series and have
values that are very close, which made it difficult to use the
K-NN and the decision trees. As there were few instances in
the database, MLP also did not perform well, making Naive
have the best values of the supervised classification.



TABLE III
HOMOGENEOUS STACKING

Accuracy
Classifier 10 15 20
K-NN 53.1666± 18.1734 53.1666± 18.1734 53.1666± 18.1734

DT 38.2333± 17.5199 38.2333± 17.5199 38.2333± 17.5199
NB 93.2626± 10.4695 93.2626± 10.4695 93.2626± 10.4695

MLP 85.0000± 14.5578 84.7500± 16.2862 80.0000± 16.3299

TABLE IV
HETEROGENEOUS STACKING

Accuracy
Classifier 10 15 20
NB/MLP 88.7000± 12.0128 98.5200± 5.6445 72.3400± 10.3203

NB/K-NN 91.5000± 12.0266 92.2000± 11.2637 90.6060± 14.0393
MLP/K-NN 64.5667± 18.9876 64.5600± 8.6123 72.4540± 15.2387

NB/MLP/K-NN 78.4500± 10.3267 70.3400± 26.5312 84.4540± 13.5502

Fig. 2. Accuracy of the analyzed classifiers.

TABLE V
DEEP LEARNING

Classifier Accuracy
RNN 92.9836± 1.9288

LSTM 93.3836± 1.8735

Given the small number of samples we have available, it is
understandable that the deep learning techniques tested did not
produce results with accuracies as high as the Heterogeneous
Stacking. We are currently in the process of acquiring and
classifying more data. However, the results presented here
point out to the usage of heterogenous ensembles for clas-

sifying seismic regions from seismographs when few data are
available.

V. CONCLUSION AND FUTURE WORK

This work proposes the use of several machine learning
techniques for seismic region classification, seeking to find
approaches that can facilitate the work of analysts. As we
mentioned before, it is important to point out that this is a
task that is very time consuming and that the patterns that
characterize the signals belonging to the different regions are
dependent on the position of the seismograph in relation to
them.



TABLE VI
RUNTIME

Classifier Runtime (s)
K-NN 73
Decision Tree 65
Naive Bayes 50
MLP 122
Stacking K-NN 90
Stacking DT 87
Stacking NB 76
Stacking MLP 187
NB/MLP 278
NB/K-NN 180
MLP/K-NN 230
NB/MLP/K-NN 343
RNN 480
LSTM 440

The main goal of this work was to show that it is possible
to build a classification system for this task by using a reason-
ably low number of labelled samples. Among the techniques
used, the Stacking Heterogeneous approach was the one that
obtained the best accuracy values, reaching an accuracy of
98.52%. The individual base classifiers that achieved the in
our experiments were the Naive Bayes and MLP, according to
the supervised experiments. Thus, as expected, when we use
Stacking with MLP and Naive Bayes as the base classifiers,
the best accuracy values were obtained.

As future directions, we intend to increase the number of
instances to be automatically classified by the system and
confirmed by the analysts. By doing so, we can produce a
larger amount of labelled samples and build a high accuracy
RNN.
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