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Abstract—Smart meters enable remote and automatic electric-
ity, water and gas consumption reading and are being widely
deployed in developed countries. Nonetheless, there is still a
huge number of non-smart meters in operation. Image-based
Automatic Meter Reading (AMR) focuses on dealing with this
type of meter readings. We estimate that the Energy Company of
Paraná (Copel), in Brazil, performs more than 850,000 readings
of dial meters per month. Those meters are the focus of this
work. Our main contributions are: (i) a public real-world dial
meter dataset (shared upon request) called UFPR-ADMR; (ii) a
deep learning-based recognition baseline on the proposed dataset;
and (iii) a detailed error analysis of the main issues present
in AMR for dial meters. To the best of our knowledge, this is
the first work to introduce deep learning approaches to multi-
dial meter reading, and perform experiments on unconstrained
images. We achieved a 100.0% F1-score on the dial detection
stage with both Faster R-CNN and YOLO, while the recognition
rates reached 93.6% for dials and 75.25% for meters using Faster
R-CNN (ResNeXt-101).

Index Terms—automatic meter reading, dial meters, pointer-
type meters, deep learning, public dataset

I. INTRODUCTION

Measuring residential energy consumption is known to be a
laborious task [1]–[3]. Although smart meters are gradually
replacing old meters, there are still many old mechanical
meters in operation around the world since their replacement
is time-consuming and costly. In many regions, such as remote
areas and developing nations, manual on-site readings are still
prevalent [4]. Even in developed countries, replacements are
still far for complete. For example, in the end of 2018, there
were still more than 26 million non-automatic meters in the
United States [5].

In the literature, Automatic Meter Reading (AMR) is usually
associated with digital and smart meters [6]. In this work,
we use this designation exclusively for image-based automatic
readings. AMR allows the employees of the service company
(electricity/gas/water) or, preferably, the consumers themselves
to capture meter images using a mobile device, which is
cheaper and more feasible than manual on-site reading, and
easier to deploy – in the short/medium term – than the
replacement of old meters.

There are two main categories of residential energy me-
ters [7], [8]: (i) analog (with cyclometer and dial displays) and
(ii) digital (with electronic display and smart meters), as shown
in Fig. 1. This work focuses on dial meters since, although
there are numerous dial meters in operation, there are still
many open challenges in this context (as detailed further).

(a) cyclometer display (b) dial display

(c) electronic display (d) smart meter

Fig. 1. The most common types of energy meters.

The Energy Company of Paraná (Copel) [9] measures elec-
tricity consumption in more than 4 million consuming units
(i.e., meters) per month in the Brazilian state of Paraná. From
the images they provided us (see Section III), we estimate that
21% of those devices are dial meters, resulting in more than
840,000 dial meter readings carried out every month.

Most of the dial meter recognition literature is focused
on industrial applications, e.g., pressure meters [10]–[12],
voltmeter [13] and ammeter [14]. As the meters are generally
fixed and indoors, the image quality is strictly controlled.

Although in some cases the conditions are indeed realistic,
they are not as unconstrained as in images obtained in out-
door environments, with challenging conditions, e.g., severe
lighting conditions (low light, glares, uneven illumination,
reflections, etc.), dirt in the region of interest, and taken
at a distance. In addition, most approaches are based on
handcrafted features [11], [15], and were evaluated exclusively
on private datasets [10], [11], [14]–[16]. To the best of our
knowledge, there are no public datasets containing dial meter
images in the literature.

Taking into account the above discussions, we introduce a
real-world fully-labeled dataset (shared upon request) contain-
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ing 2,000 meter images, acquired in unconstrained scenarios
by Copel employees, with 9,097 individual dials and a well-
defined evaluation protocol to assist the development and
assessment of new approaches for this task1 In addition, we
conducted experiments using deep learning models in our
dataset images to serve as baselines for future work, inves-
tigating problems related to dial meter reading and providing
guidance for further research through a detailed quantitative
and qualitative error analysis.

The remainder of this work is organized as follows. In
Section II, we discuss approaches designed for AMR as well
as deep learning techniques. The proposed dataset is described
in Section III. Section IV presents the evaluated deep learning-
based approaches for automatic reading of dial meters, while
the results (with a detailed error analysis) are reported in
Section V. Lastly, in Section VI, we state the conclusions.

II. RELATED WORK

There are many works in the literature that dealt with AMR.
Most of them focus on the recognition of cyclometers and
digital meters using Optical Character Recognition (OCR)
methods. Recently, deep learning approaches have received
great attention in this context [4], [10], [12], [17]–[19]. Dial
meter recognition research, on the other hand, is more scarce.
Most methods focus on gauges for industrial application [10]–
[14], [20], [21]. Although gauges may look similar to energy
dial meters, they usually only contain a single dial and one
type of dial template, and the image conditions tend to be
much more controlled in terms of lighting, dirt, and image
quality. In this section, we describe some relevant works on
AMR as well as state-of-the-art deep learning approaches for
object detection and recognition [22]–[26].

A. Digit-based Meter Reading

Gallo et. al. [2] proposed a method that uses Multilayer
Perceptron (MLP) to locate the Region of Interest (ROI) of
the meters (also denoted as counter region [1], [2], [4]), Max-
imally Stable Extremal Regions (MSER) to segment the digits,
Histogram of Oriented Gradients (HOG) for feature extraction,
and Support Vector Machine (SVM) for digit recognition.

Nodari and Gallo [27] proposed a method named MultiNOD
for gas cyclometers reading. It consists of a neural network
tree, sharing and resizing features to perform counter detec-
tion and digit segmentation. The digit recognition stage was
handled using Tesseract. This approach was later improved
in [1], with the addition of a Fourier analysis applied to the
segmented image, in order to avoid false positives. Finally,
SVM was employed for digit classification.

Tsai et. al. [18] employed Single Shot MultiBox Detec-
tor (SSD) [28], a deep learning object detector, to locate
the counter region in energy meters. The authors reported
an accuracy rate of 100% on their experiments, but did not
address the recognition stage.

1The UFPR-ADMR dataset is publicly available (but upon request) to the
research community at http://web.inf.ufpr.br/vri/databases/ufpr-admr/.

Yang et. al. [19] proposed a Fully Convolutional Se-
quence Recognition Network (FCSRN) for water meter analog
digit reading, with a novel loss function entitled Augmented
Loss (AugLoss). AugLoss addresses the “middle-state” that
can occur when the digit accumulator is changing from
one display digit to the next one, usually outputting the
old displayed digit. Their approach outperformed Recurrent
Neural Networks (RNN) and attention-based models on the
task of sequence recognition, but the experiments were made
in controlled images, with cropped and aligned meters.

Gómez et. al. [17] introduced a segmentation-free approach
to perform meter reading. They trained a Convolutional Neural
Network (CNN) to yield readings directly from the input
images, without the need to detect the counter region. Al-
though their approach has achieved promising results, the
authors used a private dataset in the experiments, and only
compared their method with traditional algorithms that rely on
handcrafted features, which are easily affected by noise and
may not be robust to images acquired in adverse conditions [4].

Laroca et. al. [4] designed a two-stage approach for AMR.
The Fast-YOLOv2 model [29] was employed for counter
detection and three CNN-based models were evaluated in the
counter recognition stage. The authors considerably improved
their recognition results when balancing the training set in
terms of digit classes through data augmentation techniques.

B. Dial Meter Reading

Tang et. al. [15] proposed a complete framework for dial
energy meter reading based on binarization, line intersection,
and morphological operations. Despite being an interesting ap-
proach, the dataset used in the experiments was not published,
and the images were obtained in a controlled environment.

In [16], the authors also employed handcrafted features
for dial recognition. In addition to binarization and line
intersection, the counter region was detected using Scale-
Invariant Feature Transform (SIFT) features. Their method
was evaluated on a private dataset containing only 141 images
taken in a controlled environment.

The following approaches dealt only with single-dial meters
(commonly known as gauges) and not with energy meters.
Although the problems are similar, there is a fundamental
difference: a small error in a multi-dial meter can result in a
completely wrong measurement (especially if the error occurs
in recognizing the most significant dials). Such a fact needs to
be taken into account when evaluating recognition methods.

Several approaches explored handcrafted features, such as
Hough Transform (HT), in order to locate the dials [11],
[13], [20]. The steps in such works are very similar: image
binarization on the preprocessing stage, Hough Circle Trans-
form (HCT) for dial location, and pointer angle detection
using Hough Line Transform (HLT) or similar methods. These
approaches generally work well in constrained environments,
but may not be suitable for real-world outdoor scenarios with
uneven lighting and the presence of noise.

Mask R-CNN was proposed for pointer recognition in [14],
[21]. Fang et. al. [14] used it to find reference key points



and the pointer in a gauge scale marks, while He et. al. [21]
focused on segmenting the meter dial and pointer. In both
works, the angle between the pointer and the dial was explored
to retrieve the reading. The datasets used in the experiments
were not provided in both works.

Region-based Fully Convolutional Networks (R-FCNs)
were used for meter detection [12]. Although the authors used
deep learning for detection, the meter reading was performed
with handcrafted methods such as binarization, line detection,
and skeleton extraction. Liu et. al. [10] evaluated Fast R-
CNN, Faster R-CNN, YOLO and SSD for meter detection
and concluded that even though Faster R-CNN outperforms
the others, YOLO is the fastest. Nevertheless, the recognition
was performed by a handcrafted method (i.e., HT) and the
images used have not been made publicly available.

C. Deep Learning Methods

ResNet [22] is one of the recent breakthroughs in deep
networks. The introduction of residual blocks enabled deeper
network architectures while having fewer parameters than
shallower networks, such as VGG19 [23]. ResNet also per-
forms better and converges faster. The residual learning pro-
cess introduces lower level features directly to higher abstrac-
tion layers, preserving information. ResNet was later upgraded
to ResNeXt [30]. The main difference between them is the
concept of “cardinality”; instead of going deeper, ResNeXt
uses a multi-branch architecture (cardinality refers to the
number of branches used) to increase the transformations and
achieve a higher representation power. ResNet and ResNeXt
can be employed for recognition (classification) problems.

In order to detect the dials on each image, object detection
deep networks will be explored. Faster R-CNN [24] is a state-
of-the-art approach that uses attention mechanisms and the
sharing of convolutional features between the Region Proposal
Network (RPN) and the detection network (originally VGG16)
to enhance speed and accuracy. First, the RPN generates region
proposals that may contain known objects; then, the detection
network evaluates the boundaries and classifies the objects.

Redmon et al. [25] proposed YOLO (You Only Look Once),
an object detector that focuses on an extreme speed/accuracy
trade-off by dividing the input image into regions and pre-
dicting bounding boxes and probabilities for each region.
YOLOv2 [29], an improved version of YOLO, adopts a series
of concepts (e.g., anchor boxes, batch normalization, etc.)
from existing works along with novel concepts to improve
YOLO’s accuracy while making it faster [31]. Similarly, Red-
mon and Farhadi [26] introduced YOLOv3 (the latest version
of YOLO), which uses various tricks to improve training
and increase performance, such as residual blocks, shortcut
connections, and upsampling. YOLO-based models have been
successfully applied in several research areas [4], [32], [33].

D. Datasets

Most of the referred works do not provide a public dataset
to enable a fair comparison of results. There are a few publicly
available meter datasets [4], [19], [27], however, none of them

have images containing pointer-type meters, only digit-based
ones. As far as we know, there is no publicly available dataset
containing images of dial meters.

III. THE UFPR-ADMR DATASET

We acquired the meter images from Copel, a company of
the Brazilian electricity sector that serves more than 4 million
consuming units per month [4], [9]. The images of the meters
were obtained at the consuming units by Copel employees
using cell phone cameras (note that cell phones of many brands
and models were used). All images had already been resized
and compressed for storage, resulting in images of 640× 480
or 480 × 640 pixels (depending on the orientation in which
the image was taken). To create the UFPR-ADMR dataset,
we selected 2,000 images where it was possible for a human
to recognize the correct reading of the meter, as the images
were acquired in uncontrolled environments and it would not
be possible to label the correct reading in many cases.

In each image, we manually labeled the position (x, y)
of each corner of an irregular quadrilateral that contains all
the dials. These corner annotations can be used to rectify
the image patch containing the dials. Fig. 2 shows some
images selected for the dataset as well as illustrations of
the annotations.

Fig. 2. Examples of the images chosen for the dataset. In the bottom row,
there are examples of the annotations provided for each image: in green the
irregular surrounding quadrilateral, in blue the bounding boxes around the
dials and in red the maximal ellipse contained in the bounding box. Note that
the customer meter identification is blurred for keeping subject privacy.

All meters have 4 or 5 dials, being 903 meters (45%) with
4 dials and 1,097 meters (55%) with 5. The values pointed
on each dial have an almost uniform distribution of digits,
having slightly more 0s than other digits. Information about
the dimensions of the meters and dials in the dataset are shown
in Table I. Note the great variability in the size of both meters
and dials, for example, the smallest dial (20 × 29 pixels) is
almost 10 times smaller than the largest one (206×201 pixels).



TABLE I
STATISTICS ABOUT THE SIZE OF METERS AND INDIVIDUAL DIALS.

Min (px) Max (px) Mean (px) Mean Area (px2)W × H W × H W × H

Meters 96 × 37 632 × 336 326 × 121 42,296
Dials 20 × 29 206 × 201 88 × 86 8,328

Fig. 3 illustrates the distribution of digits per dial. The most
prominent bar indicates that the most frequent digit in the
first position is 0. Nevertheless, it should be noted that the
distribution is not as unbalanced as datasets with digit-based
meter images, such as the UFPR-AMR dataset [4], in which
the number of 0s in the first position is equal to the sum of
0s in the other positions. This is probably due to the fact that
dial meters stopped being manufactured and deployed decades
ago, which implies that each dial might have completed many
cycles since the installation and may be indicating any value.
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Fig. 3. The distribution of digits according to the dial position on the meter. As
45% of the meters in the proposed dataset do not have a 5th dial, the values of
the 5th dial quantities were interpolated proportionally for better visualization.

Table II shows the frequency of digits in the UFPR-ADMR
dataset. Unlike datasets containing digit-based meters [4],
[19], which were manufactured/deployed more recently, the
distribution of the digits is almost uniform across our dataset.

TABLE II
FREQUENCY DISTRIBUTION OF DIGITS IN THE UFPR-ADMR DATASET.

Frequency / Digit Distribution

0 1 2 3 4 5 6 7 8 9

996 913 899 906 929 936 942 872 818 886

A. Challenges

The main challenge of the proposed dataset is the quality
of the images. Low-end cameras, challenging environmental
conditions and high compression are factors that have a high
impact on the final image quality. The challenging environ-
mental conditions include: reflections, dirt, and broken glass,

and low-quality acquisition may result in: noisy, blurred and
low-contrast images. Fig. 4 illustrates the main image-quality
issues described above.

In addition to the aforementioned quality issues, there are
several types of meter templates and each manufacturer has
its own dial model (with variations on the marks) and pointer
design. This variations combined with the image capture angle
make it difficult to determine the exact pointed value.

Another challenge arises from the presence of clockwise
and counter-clockwise dials – for design purposes, each meter
has alternating clock directions –, and the direction of the dials
may differ depending on the meter model and manufacturer.

B. Evaluation Protocol and Metrics
An evaluation protocol is necessary to enable fair compar-

ison between different approaches. The dataset was randomly
divided in three disjoints subsets: 1200 images for train-
ing (60%), 400 images for validation (20%) and the remaining
400 images for testing (20%). Following recent works in which
datasets were introduced [4], [19], [34], the subsets generated
are explicitly available along with the UFPR-ADMR dataset.

To assess the recognition, three metrics are proposed: (i) dial
recognition rate, (ii) meter recognition rate, and (iii) mean
absolute error. As the main task is to correctly recognize the
meter reading, which is a sequence of digits, the meter recog-
nition rate consists of the comparison between the predicted
sequence (predm) and the ground-truth sequence (gtm), for
each of the N meters:

MRrate =
1

N

N∑
m=1

match(predm, gtm) (1)

match(x, y) =

{
1, if x = y,

0, if x 6= y.

For the dial recognition rate, we employed the Leven-
shtein distance (also known as edit distance), a common
measurement for computing distance between two sequences
of characters. The Levenshtein distance measures the mini-
mum number of edits (addition, removal or replacement of
characters) required to transform one sequence in the other.
Levenshtein distance is suitable for our evaluation since it
can handle small sequence errors in sequences that other
metrics would treat as a big error. For instance, if we have a
ground-truth sequence a = “1234” and a prediction sequence
b = “234”, a per-character evaluation metric would consider
the error equal to 4, while Levenshtein distance is equal to 1,
as the difference between them is a single digit prediction.
The Levenshtein distance between the sequences a and b can
be determined using:

leva,b(i, j) =

{
max(i, j), if min(i, j) = 0,

lev′a,b(i, j) otherwise,

where:

lev′a,b(i, j) = min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj).



(a) uneven lighting (b) blur (c) distant capture (d) reflections

(e) dirt (f) glare (g) broken glass

Fig. 4. Samples of the challenging scenarios present on the provided images. We selected for the UFPR-ADMR dataset 2,000 images in which it was possible
for a human to recognize the correct reading of the meter. We blurred the region containing the consumer unit number in each image due to privacy constraints.

The Levenshtein distance between the prediction and the
ground truth is computed and then divided by the longest se-
quence size between them. This gives us the error. Subtracting
the error from 1 gives us the dial recognition rate for each
meter. Finally, the mean of all recognition rates yields the
total dial recognition error:

DRrate =
1

N

N∑
m=1

(
1−

lev(predm,gtm)(|predm|, |gtm|)
max(|predm|, |gtm|)

)
(2)

Considering that the sequence of digits that composes
the meter reading is, in fact, a number (integer), correctly
predicting the last digit in the sequence is not as important
as correctly predicting the first one (i.e., the most significant
digit). In order to differentiate and penalize errors in the
most significant digits, the mean absolute error is simple yet
effective. After converting the sequences to integers (predm
and gtm become the integers pm and gm, respectively), the
mean absolute error can be obtained using:

MAerror =
1

N

N∑
m=1

|pm − gm| (3)

IV. EVALUATED APPROACH

We chose two deep networks to evaluate: Faster R-CNN and
YOLO. The reason for treating dial meter reading as a detec-
tion problem arises from the previous successful approaches
to AMR using detection networks [4], [14]. Faster R-CNN
presented accurate results in several detection and recognition

problems in the literature, while YOLO achieved reasonable
results with a high rate of frames per second (FPS), improving
the viability of mobile applications. As illustrated in Fig. 5,
the proposed pipeline consists of (i) image acquisition, (ii) dial
detection and recognition, and (iii) final reading.

Detection Network

Image
Acquisition

Dial
Detection

Dial
Recognition

Final
Reading

Fig. 5. The main steps to perform dial meter reading.

A. Dial Detection

We perform dial detection directly in the input images,
that is, without first detecting the ROI. According to our
experiments, presented in section V, this approach achieves
the highest F-score value. In other words, our recognition
results are not significantly influenced by minor errors on the
detection stage, making ROI detection avoidable.

B. Dial Recognition

Faster R-CNN is evaluated with the following residual
networks as backbones replacing VGG [23]: ResNet-50 [22]
(with 50 convolutional layers), ResNet-101 [22] (with 101 con-
volutional layers) and ResNeXt-101 [30]. According to [22],
ResNets outperform VGG and other several networks in clas-
sification tasks; therefore, they are used in our experiments.



For the YOLO-based models, we use the classifiers pro-
posed along with the networks in [26], [29]. YOLOv2 uses the
Darknet-19 model as its backbone, which has 19 convolutional
layers (hence the name) and 5 max-pooling layers. YOLOv3,
on the other hand, uses a network called Darknet-53 (with
53 convolutional layers) for feature extraction; Darknet-53
can be seen as a hybrid approach between Darknet-19 and
residual networks [26]. We employed both YOLOv2 and
YOLOv3 models in our experiments in order to assess their
speed/accuracy trade-off for this task.

C. Final Reading

The final reading is generated according to the position
of the detected dial on the image (from leftmost to the
rightmost dial). Non-maximum suppression is performed using
the Intersection over Union (IoU) metric (IoU > 0.5) and
considering a maximum of 5 dials per image, keeping only
the dials predicted with higher confidence in order to avoid
false positives.

V. EXPERIMENTAL RESULTS

We evaluated the performance of the models based on
YOLO and Faster R-CNN to detect and recognize the dials
simultaneously (note that we used pre-trained weights when
fine-tuning both networks). We performed our experiments
on a CPU with a Quad-Core AMD Opteron 8387 2.8GHz
processor, 64GB of RAM and an NVIDIA Titan Xp GPU. In
order to stop the training process and select the best model
for testing, we chose the mean Average Precision (mAP)
evaluation metric, which has been commonly employed on
object detection tasks [24]–[26]. The mAP can be calculated
as follows:

mAP =
1

c

c∑
i=1

APi , (4)

where APi stands for the average precision value (for recall
values from 0 to 1) of the i-th class.

A. Data Augmentation

We generated new images by creating small variations to
the training images to increase the generalization power of
the networks. Based on preliminary experiments carried out
on the validation set, we generated seven times the number
of training images (the combined number of original and
augmented images was 9,600). The following transforma-
tions were randomly chosen for each image: random scaling
[−20%, 20%], random translation [−20%, 20%], random
rotation [−15◦, 15◦] and random shear [−12%, 12%]. The
values, which are relative to the original size and position of
the images, were chosen randomly within the defined intervals.

B. Evaluation

First, we investigate the performance of the models in the
dial detection task. The results are listed in Table III. For
comparison, a common method proposed in the literature
was evaluated: HCT [11], [20]. F-score was chosen as the
evaluation metric, as it is often used to assess detection tasks.

As expected, deep learning-based methods (i.e., YOLO and
Faster R-CNN) outperformed HCT, reaching very high F-score
values. HCT did not cope well with the large variations on
lighting, contrast and perspective found in our dataset images.

TABLE III
DIAL DETECTION RESULTS ACHIEVED ON THE UFPR-ADMR DATASET.

Detection Model Backbone (%)
Prec. Recall F-score

Hough Circle Transform - 53.27 55.28 54.25
Fast-YOLOv3 Darknet 99.94 100.0 99.97

YOLOv3 Darknet-53 100.0 100.0 100.0
Faster R-CNN ResNet-50 100.0 99.94 99.97
Faster R-CNN ResNet-101 100.0 100.0 100.0
Faster R-CNN ResNeXt-101 100.0 100.0 100.0

We performed the recognition (reading) by combining the
recognized digits (from the leftmost to the rightmost) and
comparing them with the pointed values, using the metrics
described in Section III. The recognition results, as well as
the FPS rates obtained, are displayed in Table IV.

TABLE IV
RECOGNITION RATE RESULTS OBTAINED ON THE UFPR-ADMR DATASET.

Method Input Size FPS Recognition (%) Mean Abs.
Dial Meter Error

Fast-YOLOv2 416× 416 244 79.61 42.25 5382.06
Fast-YOLOv2 608× 608 145 85.24 51.75 3810.34

Fast-YOLOv3 416× 416 220 83.27 47.75 6098.27
Fast-YOLOv3 608× 608 120 86.60 54.25 5183.82

YOLOv2 416× 416 67 91.42 68.00 2615.23
YOLOv2 608× 608 40 92.51 71.25 1924.98

YOLOv3 416× 416 35 93.00 73.75 1685.98
YOLOv3 608× 608 20 93.38 74.75 1591.16

FR-CNN R-50 800× 800 13 92.56 72.25 1451.81
FR-CNN R-101 800× 800 11 92.62 71.75 1343.29
FR-CNN X-101 800× 800 6 93.60 75.25 1591.77

The best performing method was Faster R-CNN (ResNeXt-
101) followed by YOLOv3. Faster R-CNN obtained a 75.25%
recognition rate per meter and 93.60% per dial, using
800× 800-pixel images. After YOLOv3, Faster R-CNN with
ResNet-101 performed better than ResNet-50 considering the
recognition rate per dial. Interestingly, ResNet-101 presented a
lower hit rate considering the recognition at meter level. The
lower hit rate is caused by the fact that ResNet-101 errors
were better distributed across the images, while ResNet-50
concentrated the errors on fewer images.

The faster method was Fast-YOLOv2, using 416 × 416
images, achieving 244 FPS. Although YOLOv3 did not sur-
pass Faster R-CNN (ResNeXt-101) in recognition rates, the
FPS rates obtained were three times higher (20 FPS and
6 FPS, respectively). Considering that the recognition rates
achieved by YOLOv3 were not far behind, this model showed
a promising trade-off between accuracy and speed.

The best method regarding mean absolute error was Faster
R-CNN (ResNet-101) with an error of 1343.29. This means
that the method’s errors occurred less frequently (or were



smaller) on the most significant digits. Table V confirms this
statement, as Faster R-CNN (ResNet-101) had fewer errors in
the most significant dial (the leftmost).

TABLE V
DISTRIBUTION OF ERRORS BY DIAL POSITION

Dial Position Frequency (%)
1 2 3 4 5

YOLOv3 25.84 15.44 16.94 25.99 15.79
FR-CNN (R-101) 20.70 18.66 23.91 19.83 16.91
FR-CNN (X-101) 23.50 18.55 22.25 18.04 17.66

Fig. 6 presents some correct prediction results. Note that
the Levenshtein distance between every correct prediction and
its respective ground-truth annotation always equals 0.

87843
87843	(lev=0)a)

1158
1158	(lev=0)c)

37839
37839	(lev=0)b)

9540
9540	(lev=0)d)

Fig. 6. Ground-truth and prediction examples of correctly recognized meters,
with their respective Levenshtein distance.

C. Error Analysis

The most common errors in the presented approach are
caused by:
• Symmetry: as there are clockwise and counterclockwise

dials, when the digits are blurred, the method can not dif-
ferentiate the direction and thus may output the mirrored
value of the real prediction.

• Neighbor value: the most common error. Variables such
as angle, lighting, shadows and occlusion (when the
pointer is in front of the dial scale mark) can hinder the
reading of a dial. Even between the authors, there were
some disagreements regarding the correct pointed value
in such situations.

• Severe lighting conditions/Dirt: shadows, glares, reflec-
tions and dirt may confuse the networks, especially in
low-contrast images, where those artifacts may emerge
more than the pointer, fooling the network to think that
it is a pointer border, resulting in an incorrect prediction.

• Rotation: rotated images are harder to predict, as the
pointed value is not in the usual position. The predictions
may be assigned to neighbor digits that would be in the
current angle of the pointer if the image was not rotated.

To illustrate all of the aforementioned causes of errors, some
samples are presented in Fig. 7. Table VI summarizes the
errors and their frequency on the best two methods: YOLOv3
and Faster R-CNN (ResNeXt-101). Note that most errors are
caused by the neighbor values issue, when the pointer is in
front of the mark, making it hard to determine if the pointed
value is the one after or before the mark.

4395
5495	(lev=2)c)

2140
3050	(lev=3)d)

4062
3061	(lev=2)a)

01669
_1669	(lev=1)b)

Fig. 7. Ground-truth and prediction examples with their respective Leven-
shtein distance. The errors are marked in red and include: a) neighbor values,
b) severe lighting conditions, c) neighbor value (second dial) and symmetry
(first dial); and d) rotation.

TABLE VI
TYPE AND FREQUENCY OF ERRORS OBTAINED ON EVALUATION.

Type of Error Frequency
YOLOv3 FR-CNN (X-101)

Symmetry 2% 3%
Neighbor value 82% 85%

Lighting conditions / Dirt 14% 9%
Rotation 2% 3%

VI. CONCLUSIONS

Imaged-based AMR is a faster and less laborious solution
than manual on-site reading, and easier to deploy than the
replacement of old meters. In this work, we presented the
issues and challenges regarding the automatic reading of dial
meters since there are many open challenges in this context.

We introduced a public real-world dataset (shared upon re-
quest), called UFPR-ADMR, for automatic dial meter reading,
that includes 2,000 fully annotated images acquired on site by
employees of one of the largest companies of the Brazilian
electricity sector [9]. As far as we know, this is the first
public dataset containing images of dial meters. The proposed
dataset contains a well-defined evaluation protocol, which
enables a fair comparison of different methods in future works.
Considering that the image scenario is challenging in most
cases, the deep networks Faster R-CNN and YOLO achieved
promising results. This straightforward approach, without ROI



detection or image preprocessing, simplified the traditional
AMR pipeline [1], [2], [4], reducing the number of steps
required to obtain the dial meter readings.

There is a lot of room for improvement, such as new
methods to address the boundaries issues between the markers,
which should solve most of the errors. In addition, a new loss
function that penalizes errors on the leftmost dials should help
to reduce the absolute error (minimizing the absolute error is
of paramount importance to the service company).
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