
Semantic Hierarchy-based Convolutional Neural
Networks for Image Classification

Matheus Inoue‡∗, Carlos Henrique Forster∗, Antonio Carlos dos Santos†
‡Polytechnic School, University of São Paulo, São Paulo, Brazil

∗Computer Science Division, Aeronautics Institute of Technology, São José dos Campos, Brazil
†Data Science Team, Itaú-Unibanco, São Paulo, Brazil

minoue@usp.br forster@ita.br antoniocarlos.santos@itau-unibanco.com.br

Abstract—In this work, three variations of hierarchical topolo-
gies of Convolutional Neural Networks (CNNs), two of which
being original proposals introduced by this work, were tested
to assess their impact on image classification problems. The
hierarchical structure groups the images based on the semantic
meaning of the classes, from the coarsest classes to the finest
classes, forming hierarchical levels. The hierarchical models
made were compared to a baseline regular CNN on benchmark
image classification datasets, the Fashion-MNIST and CIFAR-
100 datasets. Another contribution of this work is a new training
strategy for hierarchical CNNs, that aims to be simple to imple-
ment and to produce a smooth loss during training, increasing
stability, while maintaining characteristics like the transitioning
from coarse-to-fine level emphasis during training, learning first
high-level details and then specific details that differentiate the
fine level classes. The hierarchical models produce outputs for
each hierarchical level, which can lead to more interpretable
results. Results suggest that providing semantic hierarchies can
improve fine level accuracy on CNNs, while bringing relevant
hierarchical information from their other coarser level outputs.

Index Terms—Convolutional Neural Networks, Hierarchical
Image classification, Deep Learning, Computer Vision

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged as a
tool to solve Computer Vision problems, in particular, Image
Classification, improving the best results obtained by former
Image Processing methods [1]. Research shows that CNNs
can detect semantic parts on pictures [2], such as wheels on
images of cars and trucks, or horns on pictures of moose and
cattle, and this semantic detection is used to extract relevant
features for image classification.

The use of hierarchical classification on images derives from
the idea that humans identify objects based on the context of an
image semantic hierarchy, and not by only by its most specific
semantic label. For example, certain humans can identify
different breeds of cats and correctly label them, like animal
→ cat → Siamese cat, while other humans cannot discern
between cat breeds, but still make decent predictions, although
not as specific, like animal→ cat. If it is required to choose a
fine class, the breed name, this human can make a mistake for
not knowing the correct cat breed, but he will choose a random

Any options, findings, and conclusions expressed in this manuscript are
those of the authors and do not necessarily reflect the views, official policy
or position of the Itaú-Unibanco.

cat breed, and not a breed that represents other animals, like
for example, German shepherd, a dog breed.

However, most image classification CNNs do not consider
the possible hierarchical sub-divisions that can be made from
the images. For example, the process of distinguishing “dog”
from “train” treats them as two totally distinct classes, in
the same way as distinguishing “dog” from “wolf”, classes
that may share some common features. Notice that these
CNNs do not include any hierarchical topology and usually
use one-hot encoding for labeling, meaning that all labels
initially are treated as unrelated to the other classes, and any
relationship discovered by the network is due to the data
used in the training process. Considering this, one idea to
improve the accuracy of image classification CNNs and to
extract deeper meaning of the classification is to implement
some pre-knowledge to the CNN, such as semantic hierarchies.

A semantic hierarchy categorizes images into fine to coarse
classes, resulting in a hierarchy tree. The tree starts at the
coarser level nodes, and each child of these nodes represents
finer level nodes, until the final level of nodes of the tree, that
represents the fine classes of a dataset, for example, Fig. 1
shows an example of a hierarchy tree where each fine class,
in red, is grouped on coarse green classes and each coarse class
in grouped on two coarser classes in blue. This hierarchy tree
forms semantic paths, that demonstrate how a fine class can
be grouped with other classes based on proximity of semantic
meaning. For Fig. 1, valid semantic paths include:

• Animal → Mammals → Tapir
• Man made → Furniture → Chair
• Animal → Insects → Beetle

Another reasoning behind using hierarchical CNNs is that
during training, some weighting for the different hierarchical
levels can be set, to give more focus on a certain hierarchical
level during some part of the model training. And this weight-
ing process can mimic how humans learn specific topics, for
example, an entomologist at the start of his studies probably
can identify the different kinds of insects, but can’t identify
specific species of a given kind of insect, but as he progresses
his studies, he will be able to identify the different species
of beetles, butterflies etc. Similarly, a hierarchical CNN can
start the training trying to classify images between the coarser
levels, and as the training progresses, give more focus on the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



All classes 

Insects

Furniture

Animal

Man-made

Cat

Tapir

Transport

Mammals

Beetle

Train

Car

Chair

Fig. 1. Example of hierarchical label tree.

fine class classification.
This work contributes to investigate whether the inclusion of

a semantic hierarchy of the class labels as input can improve
image classification performance. Three different hierarchical
topologies were trained from scratch using a semantic hi-
erarchy crafted by the authors of this work on benchmark
datasets for image classification, the Fashion-MNIST and
CIFAR-100 datasets, and the results were compared to a non-
hierarchical baseline CNN. This work also investigates two
different methods for training hierarchical CNNs.

In summary, this paper has the following contributions:
• Two new hierarchical topologies for CNNs were proposed

(Concat-net and Add-net), to evaluate how hierarchical
CNNs trained from scratch perform on image classifica-
tion tasks when compared to a baseline non hierarchical
model.

• A new hierarchical training strategy is proposed, the
Adaptive training strategy, that aims to improve current
training strategies used in being simple to set and that
doesn’t lead to sudden spikes on the loss function during
training, providing a more stable loss.

II. RELATED WORK

The use of hierarchical structures to improve the results
of CNNs for image classification have two main approaches:
(1) The works where the hierarchy of classes are predefined
by humans, like this work, that can infer semantic level
hierarchy to the CNNs, which can be used when the fine
level classification is indecisive [3]; (2) and works where the
hierarchical trees were constructed based on grouping similar
images, using techniques like clustering [4], [5], that can lead
to models with improved results over the baseline, but the
hierarchy trees may not have any semantic meaning.

One work that represents the state-of-art of hierarchical
CNNs is the HD-CNN (Hierarchical Deep CNNs) proposed by

Yan et al [6], that is composed by coarse component networks
trained over all classes and fine component networks trained
on the hierarchical fine classes. One downside of this topology
is the general complexity of the network, and the need to pre-
train the components of the HD-CNN.

In some literature, Recurrent Neural Networks (RNNs) are
employed to implement hierarchical classification [3], [7]. In
such works, the recurrent aspect is the hierarchical levels of
the images, rather than any time or order based relation, as it
is usual when RNNs are used.

Other works use the structure of hierarchical CNNs to
produce interpretable models, such as for medical image clas-
sification [8], that classifies and detects multiple features from
images that lead to a more precise result, or complementary
feature detection [9], where the output of feature detection
networks are combined to produce a finer detail output.

Other interesting approaches are the bio-inspired works, like
[10], that proposed a image classification model based on the
two parallel procedures that the brain uses to process visual
information, the ventral flow that is responsible for object
recognition, and the dorsal flow, that is responsible for spatial
information. Both processes were made using CNNs running
in parallel.

III. MODELS

This work tests three different architectures for hierarchical
classification, all of them built using regular layers commonly
used on CNNs, like convolutional and dense layers. The
models are built to have multiple outputs, one for each hi-
erarchical level. The models are trained from scratch, without
pre-training on any layer. Fig. 2 shows the basic topology of
each model.

A. Branch-net

The Branch-net, proposed by Zhu and Bain [11] is a
hierarchical architecture that can be seen as a regular CNN,
that have ramifications on some layers, the coarse branches,
that are responsible to classify the high-level hierarchies of
the classification problem, as seen on Fig. 2a. Each branch is
a sub-network of the main CNN, that classifies the image on
its hierarchy level, for example, the first branch will classify
the image in the coarser level considered.

The main idea of this topology is to prevent the vanish-
ing gradient problem by having the branches occurring at
shallower layers than the main network, and by updating the
weights of the shared layers based on the hierarchical features
of the images.

B. Concat-net

The Concat-net is a proposed variation of the Branch-net,
that have the same overall structure, but for each hierarchical
level, the last dense layer will consider the last dense layer of
the previous branch, if it exists, concatenating the dense layers,
as seen on Fig. 2b. For example, for a three-level Concat-net,
the first branch has 16 neurons on the last dense layer, since
it is the coarser branch, no modifications are made compared



Input Conv2d Conv2d

Dense

... Dense...

coarse1 pred

Dense

coarse2 pred

fine pred

(a) Branch-net

Input Conv2d Conv2d

Dense

... Dense...

coarse1 pred

Dense

coarse2 predConcatenate

Concatenate fine pred

(b) Concat-net

Input Conv2d Conv2d

Dense

... Dense...

coarse1 pred

Dense

coarse2 predAdd

Add fine pred

(c) Add-net

Fig. 2. Hierarchical architectures tested on this work.

to a regular Branch-net, but for the second branch that have
32 neurons on the last dense layer, this layer is concatenated
with the last layer of the first branch, meaning that, the last
dense layer of this branch have a tensor of 16+32, 48 values.
In the same fashion, for the fine classes, the last hierarchical
level, will have its last dense layer concatenated with the last
dense layer of the previous level, adding 48 features.

The main idea of this topology is to keep the qualities of the
Branch-net and use the concatenations on the branches to di-
rectly share relevant features extracted to improve hierarchical
classification.

C. Add-net

The Add-net is another variation on the Branch-net, similar
to the Concat-net model, but instead of concatenating the last
dense layers of each hierarchical levels, it adds the values of
each layer as seen on Fig. 2c. For the addition be possible, all
of the added layers must have the same length.

The idea behind the addition is that each hierarchical level
layer will share information across hierarchical levels based
on the position of the added neurons.

IV. TRAINING STRATEGIES

A. Loss Function and Loss Weights

The natural choice for the loss function to classify images
between different classes is the Categorical Cross-Entropy loss
function (1), since it is desired to work with the maximization
of the probability of the correct label for each class, where C

is the total number of classes, sp is the score for the correct
label and sj is the score for the jth label.

CE = −log

(
esp∑C
j e

sj

)
(1)

Considering that hierarchical classification deals with N
levels of multi-class classifications, one approach is to consider
a loss function that is a weighted sum of N functions, for each
hierarchy level, weighted by a parameter Wn that is the weight
for the nth level (2).

Loss =

N∑
n=1

WnCEn (2)

The values for W1,W2, . . .WN should add to 1, going from
the coarser level to the finest, so for a three-level hierarchy, a
vector of weights [0.8, 0.2, 0] is a valid vector that puts more
emphasis for the highest hierarchical level. It is interesting
to note that if a model is trained with a vector of weights
[0, 0, . . . , 1] the training will be analogous to train a model
considering only the fine class, like a non hierarchical model.

For a model to learn the hierarchy between the classes, two
methods were tested to update the vectors of weights during
the model training, starting with emphasis on the coarser
hierarchies and then focusing on the finest hierarchy as the
training progresses, based on a generalization to specialization
process to infer hierarchical features from the images, the
Stepwise and Adaptive strategies.



Algorithm 1 Callback for Stepwise Strategy with 3 levels of
hierarchy
Input: Initial loss weights (α0, β0, γ0) and list made by tuples

composed by the epoch to update values (ep1, ep2, . . . epN )
and the new loss weights (αi, βi, γi, for a given epoch epi)

Output: Updated loss weights (α, β, γ) for next epoch
Initialization:
α, β, γ ← α0, β0, γ0
list epochs ← ep1, . . . epN
list weights ← (α1, β1, γ1), . . .(αN , βN , γN )
change epoch ← ep1
i ← 1

on epoch end do
epoch ← get last epoch
if (epoch == change epoch) then
α, β, γ ← list weights[i]
i ← i+ 1
change epoch ← list epochs[i]

end if
end on epoch end
return α, β, γ

B. Stepwise Training Strategy

The Stepwise Training strategy is a method where the vector
of weights is updated at fixed given epochs, analogous to the
Branch Training strategy method by Zhu and Bain [11], but in
this work this strategy was used to train different hierarchical
architectures, hence the choice for a different name.

For example, for a two-level hierarchy, the training can start
with the vector initiated at [0.9, 0.1], at epoch 25 the vector
is updated to [0.4, 0.6] and at epoch 30 the vector is updated
to [0, 1], starting with more emphasis in the coarse level, and
then changing to emphasize the fine level.

This method is simple to implement, but it has two main
issues: A list of all epochs and their weights for each update is
needed, which can lead to a large number of hyperparameters
to be set, and the update of the weights vector at fixed epochs
can lead to sudden spikes of the loss function, that can impact
the model training. Algorithm 1 shows an implementation of
the Stepwise training strategy, for a three-level model training.

C. Adaptive Training Strategy

The Adaptive Training strategy is an original strategy pro-
posed by this work, that aims to be simple to set and an
effective strategy for hierarchical training, focusing in fixing
the main issues with the Stepwise strategy by updating the loss
weights at every epoch, minimizing possible spikes of the loss
and requiring only one hyperparameter, the decay rate τ .

This method is based on the exponential decay of the
weights, updating the weights on a pairwise fashion, decreas-
ing the coarser weight until a threshold is reached, while
increasing the next hierarchical level weight, and then doing
the same thing for the next pair of weights, for example, for
a weights vector [W1,W2,W3], the first pair is [W1,W2],
reducing W1 while increasing W2, until W1 is below a

Algorithm 2 Callback for Adaptive Strategy with 3 levels of
hierarchy
Input: Initial loss weights (α0, β0, γ0) and decay rate τ
Output: Updated loss weights (α, β, γ) for next epoch

Initialization:
α, β, γ ← α0, β0, γ0
decay rate ← τ
offset ← 0
pr ← [1, 2]

on epoch end do
epoch ← get last epoch
list w ← [α, β, γ]
if (epoch > 1) then

epoch ← get last epoch
loss coarse1 ← get current loss for coarse1 classes
loss coarse2 ← get current loss for coarse2 classes
loss fine ← get current loss for fine classes
losses ← [loss coarse1, loss coarse2, loss fine]
ratio ← losses[pr[1]]

losses[pr[2]]·(epoch+offset)

decaying ← exp(−ratio · epoch · decay/min(pr)2)
increasing ← 1 - decaying
if (1− increasing < 0.1) and pr[2] < 3 then

list w[pr[1]] ← 0
list w[pr[2]] ← 1
pr ← [pr[1] + 1, pr[2] + 1]
offset ← offset + epoch

else
list w[pr[1]] ← decaying
list w[pr[2]] ← increasing

end if
α, β, γ ← list w[1], list w[2], list w[3]

end if
end on epoch end
return α, β, γ

threshold, that will set W1 to 0 and change the update pair to
[W2,W3], and the same process continues.

The exponential decay uses the information of the current
loss for each hierarchical level to calculate the ratio between
the loss values of the current update pair (coarser ÷ finer),
the decay rate hyperparameter that is set by the user and the
value of the current epoch, that acts like an acceleration of the
decay rate as the training progresses. Algorithm 2 shows an
implementation for a three-level model.

Fig. 3 shows the expected behavior of the progression of the
training loss between the two training methods on synthetic
data, showing how the Adaptive method can prevent sudden
spikes.

V. EXPERIMENTS

A. Overview

In this work, the experiments compared the hierarchical
models with a baseline non hierarchical model on two bench-
mark image classification datasets, the Fashion-MNIST [12]



0 5 10 15 20 25 30
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Expected behavior
loss coarse1
loss coarse2
loss fine
stepwise loss
adaptive loss

Fig. 3. Expected behavior for the training strategies.

and CIFAR-100 [13] datasets. A baseline architecture was built
and all hierarchical models were based on this baseline, so all
models have similar sizes. Considering that the Concat-net and
Add-net are built like the Branch-net, meaning that only the
additions made to built the branches of the Branch-net are
reported. Another consideration is that for the Add-net, when
required, the number of neurons for each added layers was
modified to be the same size of the layer that produces the
fine level prediction.

One important observation is that the main objective of this
work is to investigate the performance of hierarchical and non-
hierarchical CNNs with the same overall structure, and not to
build a model to improve the current state of the art on the
datasets, more like a viability check for this strategy.

The hierarchical structure made was based on the semantic
meaning of the images labels of each dataset tested, and was
manually made by the authors of this work.

The datasets were divided into three distinct sets, the
training set to train the model, the validation set to fine tune
the model during training and the test set that was used only
for benchmark purposes.

All the models were trained using Python with the func-
tional Deep Learning API Keras [14], using TensorFlow [15]
as the backend, running on the Google Colab1 cloud infras-
tructure GPUs, that provide GPU computing free-of-charge,
fully configured for deep learning applications [16].

All models were made using regular convolutional and
dense layers, using ReLU as the activation function, and for
the convolutional layers the filter size 3 × 3 was used at all
times. The models also used max pooling layers to reduce
the dimensionality of the images, Dropout [17] layers for
regularization and Batch Normalization [18] layers to improve
the performance and increase the stability of the network. The

1https://colab.research.google.com/

models were set to train for 100 epochs, with Early Stopping
set to finish the model training when the loss on the validation
set don’t improve for 15 epochs. The models used Stochastic
Gradient Descent (SGD) as the optimization method, with the
initial learning rate set to 0.001 and Nesterov momentum of
0.9.

All hierarchical architectures were trained twice for each
dataset, one time using the Stepwise training strategy and
another using the Adaptive strategy. For the Stepwise strategy,
for a given dataset, the update schedule of the weights was
the same for all models, while for the Adaptive strategy some
models had different values for the decay rate τ , based on how
the architecture performed on pre-testing.

B. Fashion-MNIST

The Fashion-MNIST dataset [12] is composed by 70, 000
28 × 28 gray-scale images of 10 different classes, divided in
60, 000 training samples and 10, 000 test samples, based on
the structure of the MNIST dataset [19]. The training set used
was further divided in 80% for training samples and 20% for
validation samples.

The 10 classes of the dataset are clothing items, including
shirts, sneakers and dresses, that were manually divided in 5
coarse classes, in a two-level hierarchy, as seen on Table I.

TABLE I
HIERARCHY PROPOSED FOR THE FASHION-MNIST DATASET

Coarse classes Fine classes

Top

T-shirt
Pullover

Coat
Shirt

Bottom Trouser
Body Dress

Footwear
Sandal
Sneaker

Ankle Boot
Accessory Bag

The baseline model used two convolutional layers, with
32 and 64 neurons respectively, each one followed by a
maxpooling layer, one dense layer with 128 neurons and
the output layer with 10 neurons for classification. For the
hierarchical models the Branch-net added one branch after the
first max pooling layer, with a dense layer of 64 neurons and
the output layer for the coarse level classes.

For the hierarchical models trained with the Stepwise
training strategy, the loss weights [α, β] were initiated at
[0.95, 0.05], and updated at epoch 8 to [0.6, 0.4], at epoch 12
to [0.2, 0.8] and at epoch 22 to [0, 1]. For the Adaptive method,
different values for the decay rate hyperparameter τ were used
for each model, 0.3 for Branch-net, 0.4 the Concat-net and 0.4
for the Add-net.

The results obtained are on Table II. The hierarchical
models presented similar results on the accuracy of the fine
class compared to the baseline, probably due to the shallow
hierarchy made for just 10 fine classes, or the overall small
network tested.

https://colab.research.google.com/


TABLE II
FASHION-MNIST RESULTS

Model Method Test Accuracy(%) Coarse Accuracy(%) ∆ Test Accuracy(%)
Baseline - 90.74 - -

Branch-net Stepwise 90.81 96.43 0.07
Adaptive (τ = 0.3) 90.89 96.75 0.15

Concat-net Stepwise 91.14 94.19 0.4
Adaptive (τ = 0.4) 91.22 95.14 0.48

Add-net Stepwise 91.57 93.48 0.83
Adaptive (τ = 0.4) 91.91 93.4 1.17

C. CIFAR-100

The CIFAR-100 dataset [13] is composed of 60, 000 32 ×
32 color images divided on 100 different classes, divided in
50, 000 training samples and 10, 000 test samples, totalizing
500 training samples per fine class. For this dataset the training
set used was divided in 90% for training samples and 10% for
validation samples.

This dataset is interesting for this experiment because it
possess a large amount of different classes, that can be grouped
on several hierarchical levels, making a good test to check
if using hierarchical models can lead to improvement over
regular models.

The authors of the dataset grouped the 100 fine classes
in 20 coarse categories2 that were used by this work with
two modifications: The proposed coarse classes vehicles1 and
vehicles2 were merged in one coarse class vehicles, and the
fine classes beaver, otter and seal were moved from the
Aquatic mammals coarse class to the coarse class Medium-
sized mammals. This means the 100 fine classes were grouped
in 19 coarse classes, and these 19 coarse classes (Coarse2)
were further grouped in 9 super-classes (Coarse1), forming a
three-level hierarchy as seen on Table III.

For this dataset the baseline architecture proposed was a
deeper network, with 8 convolutional layers and two dense
layers, to test the capacity of the hierarchical models on deeper
networks. The baseline model starts with two convolutional
layers with 64 neurons followed by a max pooling layer, two
convolutional layers with 128 neurons and a max pooling
layer, two convolutional layers with 256 neurons and a max
pooling layer, two convolutional layers with 512 neurons and
finally two dense layers with 1024 neurons. The first branch
of the Branch-net occurs after the second max pooling layer,
with two dense layers with 256 neurons each, and the second
branch occurs after the third max pooling layer, with two dense
layers with 512 neurons each.

The loss weights [α, β, γ] were initiated at [0.9, 0.1, 0].
The Stepwise strategy updated the weights at epoch 5 to
[0.6, 0.35, 0.05], at epoch 10 to [0, 0.8, 0.2], at epoch 15 to
[0, 0.4, 0.6] and at epoch 22 to [0, 0, 1]. The Adaptive strategy
used different values for the hyperparameter τ , 0.05 for the
Branch-net, 0.025 for Concat-net and 0.025 for the Add-net.

For this experiment, the hierarchical models obtained better
results than the baseline model, as observed on Table IV,

2https://www.cs.toronto.edu/∼kriz/cifar.html

coarse1_pred = plants
coarse2_pred = trees

fine_pred = willow_tree

True label = willow_tree

coarse1_pred = large_scenery
coarse2_pred = large_man-made_outdoor

fine_pred = skyscraper

True label = skyscraper

coarse1_pred = non_human_mammals
coarse2_pred = trees

fine_pred = bridge

True label = bridge

coarse1_pred = plants
coarse2_pred = vegetables

fine_pred = orange

True label = orange

coarse1_pred = non_human_mammals
coarse2_pred = large_carnivores

fine_pred = lion

True label = lion

coarse1_pred = invertebrates
coarse2_pred = insects
fine_pred = cockroach

True label = cockroach

coarse1_pred = plants
coarse2_pred = vegetables

fine_pred = orange

True label = orange

coarse1_pred = non_human_mammals
coarse2_pred = medium_mammals

fine_pred = kangaroo

True label = kangaroo

coarse1_pred = non_human_mammals
coarse2_pred = large_carnivores

fine_pred = wolf

True label = wolf

coarse1_pred = invertebrates
coarse2_pred = insects

fine_pred = spider

True label = spider

coarse1_pred = humans
coarse2_pred = people

fine_pred = snake

True label = snake

coarse1_pred = invertebrates
coarse2_pred = insects

fine_pred = bee

True label = bee

Fig. 4. Sample of the predictions from the Adaptive Add-net model on the
CIFAR-100 dataset.

with a discernible performance gap compared to the previous
experiment, with an improvement of over 5% on most models.
Fig. 4 shows an example of the output of the hierarchical
models.

D. Analysis

For the Fashion-MNIST dataset, the hierarchical models
had similar performance to the baseline, barely surpassing
1% of accuracy improvement, but the models created with
the CIFAR-100 dataset produced more interesting results, with
over 5% accuracy improvement, hinting that the hierarchical
models work better when deep CNNs are considered, and the
dataset have a large number of distinct classes that can be
grouped on a semantic hierarchy with more than one level.

Considering the models created for the CIFAR-100, on Fig.
5 it is possible to check how the loss on the validation set pro-
gressed during training, and, although slower, all hierarchical
models were able to get a smaller loss value than the baseline
model on the later epochs of training. This slow start is caused
by the hierarchical training strategy, that start focusing on

https://www.cs.toronto.edu/~kriz/cifar.html


TABLE III
HIERARCHY PROPOSED FOR THE CIFAR-100 DATASET

Coarse1 classes Coarse2 classes Fine classes

Aquatic animals Aquatic mammals dolphin, whale
Fish aquarium fish, flatfish, ray, shark, trout

Invertebrates Insects bee, beetle, butterfly, caterpillar, cockroach
Non insect invertebrates crab, lobster, snail, spider, worm

Non human mammals

Large carnivores bear, leopard, lion, tiger, wolf
Large herbivores camel, cattle, chimpanzee, elephant, kangaroo

Medium-sized mammals fox, porcupine, possum, raccoon, skunk (+ beaver, otter and seal)
Small mammals hamster, mouse, rabbit, shrew, squirrel

Humans People baby, boy, girl, man, woman
Sauropsida Reptiles crocodile, dinosaur, lizard, snake, turtle

Plants
Flowers orchids, poppies, roses, sunflowers, tulips

Fruits and vegetables apples, mushrooms, oranges, pears, sweet peppers
Trees maple, oak, palm, pine, willow

Man-made objects
Food containers bottles, bowls, cans, cups, plates

Household devices clock, computer keyboard, lamp, telephone, television
Household furniture bed, chair, couch, table, wardrobe

Large objects/scenery Large man-made things bridge, castle, house, road, skyscraper
Large natural scenes cloud, forest, mountain, plain, sea

Transport Vehicles bicycle, bus, motorcycle, pickup truck, train,
lawn-mower, rocket, streetcar, tank, tractor

TABLE IV
CIFAR-100 RESULTS

Model Method Test Accuracy(%) Coarse1 Accuracy(%) Coarse2 Accuracy(%) ∆ Test Accuracy(%)
Baseline - 47.02 - - -

Branch-net Stepwise 51.82 62.03 55.39 4.8
Adaptive (τ = 0.05) 52.3 60.27 57.16 5.28

Concat-net Stepwise 52.14 62.72 56.3 5.12
Adaptive (τ = 0.025) 52.32 63.86 59.9 5.3

Add-net Stepwise 51.77 63.25 55.95 4.75
Adaptive (τ = 0.025) 52.69 64.53 59.64 5.67

0 10 20 30 40 50 60 70
Epochs

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

Validation Loss
baseline
branch-net
add-net
concat-net

Fig. 5. Validation loss on the validation set for the CIFAR-100 dataset,
Adaptive training strategy.

the coarse-level classification, giving a higher value of the
loss weight for the coarser level, and progressing to give
more focus to the fine level classification. This hints that the
hierarchical models training were able to better optimize on
the loss function with the coarse-to-fine approach proposed.

The Stepwise and Adaptive training strategies attained

similar overall results, with the Adaptive models producing
the better models when comparing to its Stepwise model
counterpart, on both the fine and coarse level classification.
An interesting analysis can be made when we compare how
the loss function progresses during training for each strategy,
and the influence of how the updates on the loss weights vector
are made, presented on Fig. 6 for the Branch-net models,
showing a similar result to the expected behavior of the
strategies as foreseen on Fig. 3. For each time the Stepwise
strategy updated its loss weights, sudden spikes on the loss
function occurred, while the Adaptive method, updating the
loss weights continuously at every epoch, produced a smoother
loss, which leads to a more stable training.

VI. CONCLUSIONS

This work tested three different topologies for hierarchical
CNNs, to check if providing semantic hierarchies for the
images labels could lead to improvement on the results of
image classification problems, and also compared two methods
of how to train these hierarchical models.

The results obtained by the experiments suggest that the
hierarchical topologies proposed can lead to an improvement
of results on image classification tasks. Having a dataset with a
large number of classes and that can be hierarchically grouped
on several levels, like the CIFAR-100 dataset, seems to be



0 10 20 30 40 50
Epochs

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training Loss
adaptive branch
step branch

Fig. 6. Comparison of the training loss between training strategies, Branch-net
model.

a good indicator of when to try to implement a hierarchical
model.

Of all topologies tested, the Add-net, an original topology
proposed by this work, obtained the better results overall, per-
forming well across all hierarchical levels. The performance
improvement suggests that the hierarchical models ramifica-
tions can help to mitigate the vanishing gradient problem of
deep CNNs.

The Adaptive training method proposed by this work got the
better results when compared to the Stepwise strategy, on the
fine and coarse level classification, while being easier to set,
requiring only one hyperparameter, showing promising results
for future implementations. One observation of the training
methods tested, is that since both of them are based on a
coarse-to-fine focus, the models require more epochs to reach
a similar performance than its non hierarchical counterpart,
but the models can get to a smaller loss value.

VII. FURTHER WORK

As future work, we plan to implement methods for fine
tuning the model, that can work with early stopping methods
to build production-ready hierarchical models, like the usage
of a method to fine tune the learning rate, like a Cyclical
learning rate [20] with regards to hierarchy levels.

Considering production-ready models, another future work
is investigate how the hierarchical topologies work when using
pre-trained networks, to check the viability of using transfer
learning.

The Adaptive training strategy used in this work produced
interesting results, but other methods can be tested, like a
method that uses more than one decay rate for all hierarchy
levels, or a method that updates all loss weights at the same
time, not doing in a pairwise fashion as proposed.

From an investigative point of view, it should be interesting
to further study some of the details of this work, like the
performance of the Stepwise training strategy varying the
number of updates of the loss weights, or the influence of
misclassification on any of the hierarchical levels.

ACKNOWLEDGMENT

The authors of this paper would like to thank the Aeronau-
tics Institute of Technology (ITA) and Itaú-Unibanco for the
Specialization in Data Science course, and for all the support
given for the realization of this work.

REFERENCES

[1] W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural computation, vol. 29,
no. 9, pp. 2352–2449, 2017.

[2] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari, “Do semantic parts
emerge in convolutional neural networks?” International Journal of
Computer Vision, vol. 126, no. 5, pp. 476–494, 2018.

[3] L. Wang and A. Sohmshetty, “Learning image representations to un-
derstand and predict semantic hierarchies,” representation Learning in
Computer Vision project report.

[4] S. Jiang, T. Xu, J. Guo, and J. Zhang, “Tree-cnn: from generalization
to specialization,” EURASIP Journal on Wireless Communications and
Networking, vol. 2018, no. 1, p. 216, 2018.

[5] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A deep convolutional neural
network for lifelong learning,” arXiv preprint arXiv:1802.05800, 2018.

[6] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di,
and Y. Yu, “Hd-cnn: hierarchical deep convolutional neural networks for
large scale visual recognition,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 2740–2748.

[7] Y. Guo, Y. Liu, E. M. Bakker, Y. Guo, and M. S. Lew, “Cnn-rnn:
a large-scale hierarchical image classification framework,” Multimedia
Tools and Applications, pp. 1–21, 2018.

[8] S. Shen, S. X. Han, D. R. Aberle, A. A. Bui, and W. Hsu,
“An interpretable deep hierarchical semantic convolutional neural
network for lung nodule malignancy classification,” arXiv preprint
arXiv:1806.00712, 2018.

[9] S. Hou, X. Liu, and Z. Wang, “Dualnet: Learn complementary features
for image recognition,” in Computer Vision (ICCV), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 502–510.

[10] Y. Yu, K. Hao, and Y. Ding, “A new image classification model based
on brain parallel interaction mechanism,” Neurocomputing, vol. 315, pp.
190–197, 2018.

[11] X. Zhu and M. Bain, “B-cnn: Branch convolutional neural network for
hierarchical classification,” arXiv preprint arXiv:1709.09890, 2017.

[12] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[14] F. Chollet et al., “Keras,” 2015.
[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[16] T. Carneiro, R. V. M. da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C.
de Albuquerque, and P. P. Rebouças Filho, “Performance analysis of
google colaboratory as a tool for accelerating deep learning applica-
tions,” IEEE Access, 2018.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[19] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[20] L. N. Smith, “Cyclical learning rates for training neural networks,” in
Applications of Computer Vision (WACV), 2017 IEEE Winter Conference
on. IEEE, 2017, pp. 464–472.




