
Hybrid Evolutionary Framework for Selection of
Genes Predicting Breast Cancer Relapse
Lorenzo Perino

Dipartimento di Elettronica,
Informazione e Bioingegneria

Politecnico di Milano
Milan, Italy

lorenzo.perino@mail.polimi.it

Silvia Cascianelli
Dipartimento di Elettronica,

Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
silvia.cascianelli@polimi.it

Marco Masseroli
Dipartimento di Elettronica,
Informazione e Bioingegneria

Politecnico di Milano
Milan, Italy

marco.masseroli@polimi.it

Abstract—Predicting relapse events is still one of the major
challenges for breast cancer research. Despite gene expression-
based classifiers may tackle this task, working on thousands
of genes and only few samples jeopardizes the performances
of a classifier trained without a proper gene selection. We
propose a novel hybrid evolutionary gene selection framework,
which uses a Multi-Objective Genetic Algorithm (MOGA) to
search a wider range of gene selections and handles MOGA
results in a whole new way, so as to overcome the limit of the
non-easy interpretability of the MOGA broad set of solutions.
To a classifier our framework provides a gene signature not
only bringing the best cross-validation result, but also having
noteworthy and robust performances when tested on unseen
samples of an hold-out set. The robustness in hold-out showed
the strength of our innovative key element: the final module
of the framework, which fully exploits the high variability of
MOGA outputs, rather than choosing just one of the solutions,
as commonly done in the literature. It combines all MOGA results
in more robust and compact gene occurrence-based signatures,
under the reasonable assumption that highly recurrent genes have
a more crucial biological role, more suitable clinical application
and good discriminative power between relapsed and relapse-free
patients, as confirmed by the obtained classification results.

Index Terms—Breast cancer relapse; Gene selection; Hybrid
feature selection; Multi-Objective Genetic Algorithm

I. INTRODUCTION

Advances in screening and treatment for Breast Cancer
(BRCA) have dramatically improved survival rates over the
last decades. Nonetheless, BRCA is a complex disease whose
risk of recurrence varies greatly from case to case depending
on molecular traits, stage at diagnosis and treatments [1]–
[3]. Genomic investigation can shed some light to distinguish
favourable from risky long-term clinical outcomes, and help
physicians in deciding whether or not a patient should be
treated with chemotherapy after surgery. Using genomic data
to predict relapse events for BRCA patients after primary
tumor removal is an important and challenging goal, still to be
reached despite being addressed by multiple research groups
over the last decades [4]–[6]; they focused primarily on inves-
tigating gene expression data, i.e., quantitative measurements
of gene activity in specific samples and conditions.

This work was supported by the ERC Advanced Grant 693174 “Data-Driven
Genomic Computing (GeCo)”.

Microarray technology is widely used to provide gene
expression data. Collected datasets are typically characterized
by a relatively small number of samples, but a huge number of
features, i.e., the thousands of profiled genes. Thus, a proper
gene selection phase is crucial to identify significant genes
for a predictive task, while discarding irrelevant, redundant
or noisy genes. This allows facing both the overfitting risk –
i.e., avoiding to learn the noise within the data and to lose
generalization capabilities – and the curse of dimensionality
– i.e., preventing the predictive power of the learned model
trained on a fixed number of samples from decreasing due to
the huge and heavily unbalanced feature size.

Feature selection methods typically belong to three general
categories: filters, embedded regularizations and wrapper tech-
niques. For intrinsically complex, high and heavily unbalanced
dimensionalities, as in gene expression datasets, a fourth cate-
gory has been emerging: hybrid methods; they combine several
feature selection and optimization approaches to speed up and
improve gene selection. In this trend, genetic algorithms (GA)
have become very popular optimization techniques dealing
with gene expression data (e.g., see [7], [8]), particularly
Multi-Objective Genetic Algorithms (MOGA) [9]–[13], which
can simultaneously optimize conflicting objectives and find a
set of relevant solutions. This enables comparing more and
different solutions from a wider range of evaluations, without
severely impact the computational costs.

In this work, we developed a hybrid feature selection
framework, combining proven and innovative elements, in
order to select gene signatures able to improve the discriminant
power between cancer-relapsed and relapse-free patients of
binary classifiers working on microarray gene expression data.
Notably, we propose a tripartite framework integrating 1) a
filter method based on a Signal-to-Noise Ratio (SNR) metric,
2) a wrapper method using a MOGA and a regularized clas-
sifier to minimize both gene signature size and classification
error, and 3) a gene occurrence-based selection method; this
latter one is thought to cope with the high output variability
of the previous layer, by progressively grouping genes of final
MOGA populations in signatures, from the most occurred ones
until the union of all selected genes. It also merges results from
multiple MOGA runs to improve robustness of the solutions,
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and provides a clear interpretation of the best found signature.
The rest of this paper is organized as follows. Section II is

devoted to related works, while Section III to materials and
methods. Section IV describes the proposed hybrid framework.
In Section V we analyze and discuss the results of our frame-
work and the improvements in predicting BRCA relapses when
using the emerged gene signatures. Eventually, conclusions
and future developments are reported in Section VI.

II. RELATED WORKS

Dealing with gene expression data, different feature se-
lection approaches have been proposed to select task-related
gene signatures for further sample classification. Used ap-
proaches range from fast filterings, as in [14], [15], to hy-
brid approaches, usually combining a filter and a wrapper
method. Wrapper methods require suitable strategies to ease
their search process without heavily penalizing the overall
investigation. To this end, greedy heuristics have been used,
such as the sequential forward selection, as in [16], or the
recursive backward elimination, as in [17]. However, forward
selection often converges fast to non-robust results, while
backward elimination requires a high computational time for
wide gene sets. Both need multiple runs with gene shuffling
to face the limit of their sequential scrolling.

Alternatively, some hybrid approaches include genetic al-
gorithms to limit the computational costs while evaluating a
broader space of possible solutions, as in [7], [8]. Particularly,
MOGA approaches have recently raised an increasing interest
in gene expression-based classification or clustering tasks
[10]–[13], since gene selection problems can be approached
from a multi-objective perspective, typically maximizing a
performance measure while minimizing the amount of genes
retained. Most recent MOGA related works (e.g., [11]–[13])
are inspired by the so called second generation of MOGA
[18], which introduced the concept of elitism. Elitism allows
to retain nondominated individuals over generations, so as
to assure convergence towards optimality. Among the second
generation of MOGA, three algorithms are the most rep-
resentative: Strength Pareto Evolutionary Algorithm (SPEA)
[19], Pareto Archived Evolution Strategy (PAES) [20], and
Nondominated Sorting Genetic Algorithm II (NSGA-II) [21].
The two contributions most relevantly related to our work are
discussed below.

In 2008 Mohamad et al. [10] introduced a MOGA approach
based on Support Vector Machines (MOGASVM) to tackle
gene selection. They aimed at minimizing the cardinality of
the selected gene subset while improving the classification
accuracy on validation data. Yet, contrarily to Pareto-based
approaches, they weighted the two objective functions, to tune
their relative importance, and linearly combined them, so as
to obtain a single objective function. Clearly, the downside
of this approach lies in returning a single optimal solution
rather than a variety of nondominated solutions, as in Pareto-
based approaches. Furthermore, assigning weights to objective
functions is contradictory to the concept of Pareto-optimality,
where same priority is given to all objectives.

In 2016 Hasnat and Molla proposed an hybrid method com-
bining a Correlation Coefficient-based filtering and NSGA-II
[12] to select a minimal set of non-redundant genes with the
highest classification accuracy from three well-known cancer
datasets (about Leukemia, Lymphoma, and Colon cancer). The
authors employed a k-nearest neighbors (k-NN) classifier with
a leave-one-out cross-validation (LOOCV) scheme. Although
obtaining remarkably high classification accuracy, only the
highest-accuracy signature is retained from the whole set
of MOGA nondominated solutions, without fully exploiting
the advantage of a Pareto-based approach such as NSGA-II.
Moreover, as pointed out by the authors themselves, using a
parametric classifier, like SVM, can be a future enhancement.

In conclusion, there are many examples of using hybrid
approaches with MOGA for gene selection in the literature.
Nonetheless, to the best of our knowledge, most share two
common drawbacks: 1) using classification performance met-
rics that are not equally sensitive to all types of classification
errors, and 2) selecting one best solution out of the nondom-
inated set rather than strive to comprehensively exploit all
retrieved solutions to produce more robust results.

III. MATERIALS AND METHODS

A. Dataset used

We used the public dataset, available at NCBI/Genbank
GEO database (series entry GSE2034), first employed in Wang
et al [6]. It includes the expression profiles of 22,283 genes
in 286 samples, annotated with relapse events, of patients
with lymph-node-negative primary BRCA who did not receive
neoadjuvant or adjuvant therapy. These patients were observed
for a 5-year post-operative follow-up period to assess their
clinical outcome as cancer-relapsed or relapse-free patients.

Gene expression had been measured with Affymetrix
oligonucleotide microarray U133a GeneChip. Genes with av-
erage expression intensity less than 40 units, or background
signal more than 100 units, were excluded. For chip normali-
sation, probe sets were scaled to a target intensity of 600 units.
For our work, gene expression values in the dataset were pre-
liminarily log2-scaled, upper quartile normalized (by sample)
and standardized as z-scores. Then, samples were randomly
split into training (228 samples) and hold-out (58 samples)
sets, with sample allocation stratified by class (relapsed or
relapse-free patients) to ensure the same class proportion as
in the whole dataset (37% and 63%, respectively).

B. Feature selection methods

We used a cascade of three feature selection methods, to
exploit all their advantages and overcome their individual
limits, still avoiding unaffordable computational costs.

We adopted an initial filter method, since filtering is a
computationally effective pre-processing step that easily scales
to high-dimensional datasets. Specifically, genes are ranked
according to a statistical scoring function known as Signal-



to-Noise Ratio (SNR). In our relapse (r) and relapse-free (f )
two-class context, it gives the following value to each gene g:

PSNR(g) =

∣∣∣∣∣∣∣∣µr(g)− µf (g)

σr(g) + σf (g)

∣∣∣∣∣∣∣∣ (1)

where µr and σr are the mean and standard deviation of the
expression values of gene g for samples belonging to the class
r, while µf and σf refer to samples of class f . High ranked
genes are then kept as feature space of interest, regardless of
the model chosen to perform the predictive task and without
considering any relationships among features. Hence, selecting
the SNR-based top ranked genes helps in preserving the genes
with the highest expression variability between the two classes
of interest and with the minimal expression variation within
each class, while not assuming equality of standard deviations.

Additionally, embedded regularizations are used in each
assessed classifier, to learn which genes best contribute to its
performance while it is being fitted. Given a parametric model
m having θ as parameter vector and Lm(θ) as loss function,
an embedded regularization introduces an additional term Lreg

weighted by its hyperparameter(s) γ, such that the total loss
function to be minimized takes the form:

L(θ) = Lm(θ) + γLreg(θ) (2)

Notably, we added the L2-regularization term, λ2||θ||2; this
shrinks parameter values to decay towards zero, although none
is nullified nor the corresponding feature discarded. Differently
from L1-regularization (λ1||θ||1) or Elastic Net (which com-
bines both L1 and L2 regularizers), L2-regularization cannot
induce sparsity in a model; thus, we chose this regularizer
only to allow even more complex models to be trained over
our limited sample size, but high gene dimensionality, without
severe overfitting. Setting properly the hyperparameter λ2 is
crucial for the good training of each model; yet, this tuning is
worth to improve generalization capabilities.

Lastly, we used a wrapper method, where different gene
combinations are generated and compared based on the perfor-
mances reached by the classifier under evaluation. Specifically,
we used a MOGA, rather than a greedy algorithm, to lead a
search process where both gene signature sizes and learner
performances are optimized over time. In wrapper methods,
selected genes are tailored for the considered learner, but
computational costs often become prohibitive, since the search
space grows exponentially with the number of starting fea-
tures. Conversely, our MOGA considers a fixed, but reasonably
wide and varied, amount of combinations in the search space,
overcoming this issue.

C. Classification models

We explored two traditional supervised learning approaches
to achieve our binary classification task, while showing the
predictive performance improvements provided by the pro-
posed feature selection framework: Logistic Regression (LR)
and Support Vector Machines (SVM). Both have been exten-
sively used for the classification of gene expression data (e.g.
in [15], [17]); as any parametric supervised model, they learn

their parameters based on training sample-class pairs, as to
capture relationship functions from known examples.

Logistic Regression is a classification method that uses
the logistic sigmoid function σ on a linear combination of
features, weighted by the parameter vector, to estimate the
posterior probability of a sample to belong to a class. This
simple approach is thought for binary classification, where
the alternative class probability is just the complement of the
found probability. Specifically, LR minimizes the following
loss function:

L(θ) = −
n∑

i=1

y(i) log σ
(
θ>x(i)

)
+

+
(

1− y(i)
)

log
[
1− σ

(
θ>x(i)

)] (3)

where σ is the sigmoid function, n is the number of samples, θ
is the parameter vector and y(i), x(i) are the class and feature
vectors of the ith sample, respectively.

SVM is originally designed for binary classification tasks
on linearly separable data; among the infinite hyperplanes, i.e.,
the possible linear boundaries able to separate the data, SVM
finds the optimal hyperplane that maximizes the margin from
the nearest points of each class. In broader terms, SVM can
use a kernel function K to non-linearly transform the data
into a higher dimensional space in which data are separable.
Nevertheless, not every dataset is separable, even after kernel
transformation, and consequently SVM can be reformulated to
classify also a complex and noisy dataset by defining a non-
perfectly separating hyperplane that anyway minimizes also
the classification error.

When true class labels are represented as target values y(i)

in the {-1,1} set and S is the set of the indexes of the support
vectors xs with their associated parameters αs and bias b, the
class prediction ŷ for an unseen sample x(u) is computed as:

ŷ
(
x(u)

)
= sign

(∑
s∈S

αsy
(s)K

(
x(u), x(s)

)
+ b

)
(4)

Selecting the best kernel function K alongside with all the
hyperparameters can be challenging during the model selection
phase. Notwithstanding, to provide a broader investigation we
assessed the performances of all the following kernels: linear,
radial basis function (RBF), sigmoid, and polynomial with
degrees from 2 to 5. For each of the corresponding SVM
models, we used the hinge loss, i.e., L(ŷ) = max (0, 1− ŷy),
as function to be minimized. Notably, for the SVM with linear
kernel we considered also the squared hinge loss, where larger
errors are punished more significantly than with the traditional
hinge function, whereas smaller errors are punished slightly
less due to the square of the output of the hinge. Eventually,
for all the considered LR and SVM classifiers we used the
L2-regularized models implemented in the scikit-learn Python
package [22], as to limiting overfitting risk.

D. Performance metrics

Each classifier was evaluated based on the following perfor-
mance metrics computed after the model training process, i.e.,



Matthews Correlation Coefficient (MCC), Balanced Accuracy
(ACCb) and F1-score:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

ACCb =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(6)

F1−score =
2 · Precision ·Recall
Precision+Recall

(7)

where TP, TN, FP and FN are true positive, true negative, false
positive and false negative values, respectively, while, for the
positive class, Precision is TP

TP+FP and Recall is TP
TP+FN .

Notably, MCC was used also to compute the classification
error within the MOGA of our wrapper method (it is one of the
fitness functions to be minimized). MCC is indeed a reliable
and symmetrical statistical rate for binary classifications [23];
it gives a high positive score only if the prediction has good
results in all four confusion matrix categories (TP, TN, FP and
FN), despite the possibly unbalanced sizes of the two classes.

E. Multi-objective optimization using genetic algorithms

Gene selection can be modelled as a multi-objective prob-
lem (MOP), given the contrasting objectives involved. On one
hand, the cardinality of the subset of selected genes should be
minimized in order to ease the assessment of the functional
interdependence between genes, and to remove redundant and
noisy ones. On the other hand, excessive cardinality reduction
leads to a deterioration in classification performance, which is
rather to be maximized.

Formally, MOPs with k objective functions can be formu-
lated as finding a candidate solution vector of decision vari-
ables x̄∗ = [x∗1, x

∗
2, ..., x

∗
n]T satisfying m inequality constraints

gi(x̄) ≥ 0, i = 1, 2, ...,m (8)

and p equality constraints

hi(x̄) = 0, i = 1, 2, ..., p (9)

and optimizes the vector function

f̄(x̄) = [f1(x̄), f2(x̄), ..., fk(x̄)]T (10)

where the constraints given in (8) and (9) define the feasible
region F that contains all admissible solutions.

Hence, a MOP admits multiple solutions representing the
best possible trade-offs between the objectives to be optimized;
yet, as mentioned, the objectives are often intrinsically con-
flicting, which poses the issue of how the trade-off among
them should be assessed. In the literature, three alternative
types of approaches have been reported, i.e., aggregation-
based approaches, non-Pareto approaches (such as the lexi-
cographical one), and Pareto-based approaches. The first two
types are conceptually straightforward and remarkably easy-
to-use; yet, they share the main drawback of returning a single
optimal solution, obtained by optimizing a scalar function that
linearly combines the objectives. By contrast, although at cost

of higher computational complexity, Pareto-based approaches
assign equal priority to all objectives involved, keeping the
variety of trade-off solutions intact, as to offer the possibility to
explore the nondominated solutions and their interdependence.
Thus, Pareto-based approaches look more suitable to high
dimensional problems such as gene selection, due to their
broader exploration of the search space.

However, multiple optimal solutions in the sense of Pareto
optimal are admissible in MOPs; they are nondominated solu-
tions, meaning that at least one of their objective function is
optimal as to any other feasible solution. Formally, a candidate
solution x1 is a dominating solution to x2 if:

fi(x1) ≤ fi(x2)∀ i ∈ 1, 2, ..., k ∧
∃i ∈ 1, 2, ..., k : fi(x1) < fi(x2)

(11)

Hence, a feasible solution is a Pareto optimal solution if it is
not dominated by any other feasible solution. When the set
of Pareto optimal solutions are mapped in the objective space
they are collectively known as Pareto Front. Obtaining the True
Pareto Front of a MOP is the ultimate goal of multi-objective
optimization algorithms. However, usually only a sub-optimal
approximation of the True Pareto Front is achievable due to
lacking of a-priori knowledge of the problem.

Likewise, in high dimensional feature spaces, an exhaustive
search of all possible solutions is not feasible. Thus, Multi-
Objective Genetic Algorithms offer an heuristic approach to
perform the search by evolving a population of candidate
solutions in a reasonable computational time. For this study,
we adopted NSGA-II, a well-known Pareto-based MOGA.
NSGA-II makes use of Elitist Selection [12], [21] to prevent
the quality of the obtained solutions from degrading over
generations. This kind of selection, while constructing a new
population, preserves the best individuals from the current gen-
eration to the next generation in unaltered form. Furthermore,
NSGA-II has been proven to converge to the global Pareto
Front while maintaining the diversity of the population, by
means of a measure called crowding distance. For each Pareto
Front solution, the crowding distance operator assigns the
highest value to the boundary solutions, thus favoring isolated
solutions to be retained over generations.

IV. PROPOSED HYBRID EVOLUTIONARY FRAMEWORK

The hybrid evolutionary framework we propose for gene
selection is characterized by the tripartite structure depicted
in Figure 1, whose main components are following described.

A. Preprocessing with filter method

The first component of our framework is a canonical filter
method, thought to reduce efficiently the dimensionality of the
feature space of interest. We chose a filter based on Signal-to-
Noise Ratio, as described in Section III-B, to preserve genes
with greater expression variability between the two considered
classes and with minimal expression variation within each
class, keeping the top 5% genes as filtered gene set of interest.



Fig. 1. Hybrid evolutionary gene selection framework

B. Wrapper method with MOGA

The second component of the proposed selection framework
is a wrapper method using a MOGA as heuristics. Here, we
address the gene selection problem as a MOP, aiming at min-
imizing simultaneously gene signature size and classification
error of the classifier having the signature as the feature space.

We encoded our MOP using fixed-length binary strings x =
{0, 1}n (called individuals) to represent the gene signatures
under evaluation, all of length n. Being n equal to the number
of pre-filtered genes, each string binary cell has a one-to-one
correspondence with a gene. Thus, the value of a cell equal
to zero encodes the absence of the associated gene from the
resulting signature, while if it is equal to one the associated
gene is included. Finally, the two objective functions to be
minimized can be formalized as follows:
f1(x) = count(xi|xi = 1)

f2(x) =

{
1 if MCC(x) ≤ 0

1−MCC(x) if MCC(x) > 0
where f1(x) returns the cardinality of the gene signature x,
while f2(x) is the classification error computed from MCC.
Notably, the MCC(x) error of a single individual comes from
a 5-fold cross-validation procedure; thus, it is computed as the

mean error across five folds.
By means of MOGA, multiple gene signatures are extracted

from the whole set of pre-processed genes. The search process
starts with the initialization of a fixed-size population of indi-
viduals, each of them encoding a gene signature. Individuals
then evolve over generations and only the fittest individuals
are retained by selection.

One of the main innovation of this study lies in the search
phase, which progressively shrinks the search space from
large to reduced signature sizes (Stepwise Data Reduction),
as to avoid quick convergence and loss of putative important
genes in the initialization. Accordingly, signature size of the
offspring individuals is bounded within a range of max bu and
min bl genes; search is performed over generations within the
same range until an update criterion is met, causing the lower
bound bl to be halved and fixing the upper bound bu equal to
the old lower bound value. The criterion for range updating
is based on the hypervolume, a metric to measure population
convergence towards the optimal objective space region [24].
If the hypervolume ratio between the current generation and
the first generation after each update, defined as HVc

HV0
, is less

than or equal to a preset threshold HVt, or if a preset number
of generations N1 is reached, the current range of interest is
updated. Hence, the search process iterates likewise until the
preset number of split updates S is reached. Notwithstand-
ing, over-sized nondominated individuals are preserved over
generations (in parent populations) due to elitsm.

Following (Focused Search), while keeping a fixed final
range of signature sizes (bfinall , bfinalu ), individuals are im-
proved over generations until the classification performance of
the worst Pareto Front individual reaches a prefixed threshold
Ew, or a preset number of generations N2 is over.

The output of a single run of the MOGA is its final
population, whose complete genetic composition is analysed
in the final step of our framework and possibly merged with
final populations from other runs, as to increase the robustness
of the obtained final gene occurrence-based signatures.

C. Gene occurrence-based selection

This last component of our framework provides a complete
analysis of the genes in final MOGA populations. Given a
set S of signatures si constituting a final MOGA population,
first the whole genetic pool ugenes of S is retrieved as those
genes occurring in at least one signature si. Subsequently,
genes are ranked based on the occurrence occj of each gene
j in the set of final signatures S; then, they are progressively
included in gene occurrence-based signatures (gobs). The
inclusion procedure is such that for each threshold occt, the
correspondent gobs includes all genes whose occurrence occj
is greater than or equal to occt. The threshold value is lowered
unit-by-unit so as to generate gobs for all inclusion levels,
from the ones including only most recurrent genes to the one
including all genes in ugenes. Eventually, from the whole set
of gene occurrence-based signatures, the one bringing the best
classification performances in cross-validation is selected as
feature space to improve the learner under exam.



V. RESULTS AND DISCUSSION

A. Gene filtering

The Signal-to-Noise Ratio-based filtering, applied on the
initial whole dataset of 22,283 genes, returned 1,115 genes
whose expression values are the most differentiated between
the two classes of cancer-relapsed or relapse-free patients.

B. Model selection

During model selection phase, we compared several classi-
fication models with respect to our binary classification task:
a Logistic Regression, a SVM with linear kernel and squared
hinge loss, and other SVMs with hinge loss and alternatively
linear kernel, RBF kernel, sigmoid kernel, or polynomial
kernel. We used the SNR-based filtered set of 1,115 genes
as starting feature space to investigate their performances, and
selected the most promising models as candidates to be further
improved in the additional layers of our framework.

Each model was trained using embedded L2-regularization
to prevent overfitting, without inducing further sparsity beyond
the gene selection provided by our framework. To set all the
hyperparameters of each classifier according to our predictive
task, model selection was performed using hyperparameter
grid search in combination with a stratified 5-fold cross-
validation (CV); the average CV perfomances over the five
folds were computed in terms of MCC for all models and
were responsible for the final choice of the hyperparameters.
Following, the best hyperparameter setting of a model was
used to re-train the same model on the whole training set of
228 samples, before assessing its classification results over the
58 unseen samples of our hold-out (HO) set.

The performances of all models under evaluation are re-
ported in Table I, where LR and SVM with RBF kernel
emerge as the most favourable classifiers. In a supplementary
analysis, we assessed also the average performances (in 10-
fold CV, 5-fold CV and HO) of all considered models while
varying the training and hold-out compositions, but keeping
the same proportion between them and the same stratification
of relapsed and relapse-free patients, as in the entire cohort.
This additional analysis (data not shown) confirmed the good-
ness and robustness of the performances for the previously
emerged LR and SVM with RBF kernel, besides adding
another classifier valuable of further investigations: the linear
SVM with squared hinge loss. These three models (hereafter
called baselines) were hence selected as alternative learner

TABLE I
PERFORMANCES OF THE CLASSIFIERS TRAINED USING THE 1,115 GENES

FROM THE SNR-BASED FILTERING

Assessed Loss 5-f CV HO scores
Model Function MCC MCC ACCb F1

LR Cross-entropy 0.533 0.684 0.852 0.808
SVM (Klinear) Squared Hinge 0.522 0.596 0.807 0.760
SVM (Klinear) Hinge 0.522 0.596 0.807 0.760
SVM (KRBF ) Hinge 0.542 0.704 0.845 0.810
SVM (Kpoly) Hinge 0.311 0.474 0.659 0.483

SVM (Ksigmoid) Hinge 0.524 0.628 0.799 0.750

within our whole framework, with the aim of improving their
classification performances.

C. MOGA and gene occurrence-based selection

The SNR-based filtered dataset fed to our proposed MOGA
contained 228 samples and 1,115 genes. Twenty different runs
for each of the 3 classifiers emerged from model selection were
performed, taking each time a population of 100 individuals
with length = 1,115, uniform crossover probability = 0.9,
and bit-wise mutation probability = 1

1,115 . In the Stepwise
Data Reduction phase, the range of admissible values for the
signature size was updated four times (S = 4). The lower
bl and upper bu boundaries were sequentially updated as
follows: [1, 115, 557], [557, 278], [278, 139] and [139, 69]. The
threshold for the hypervolume ratio HVt was set to 0.5, while
the maximum number of generations N1 within each subset
size range was set to 100. As for the Focused Search phase,
the fixed range of admissible subset sizes was set to [69, 34].
For the two stopping criteria, the worst error threshold of the
Pareto Front Et was set to 0.4, while the maximum number
of generations N2 to 200. All these values were heuristically
chosen while balancing computational time and search width.

As a common trend among all MOGA runs, the MOGA
population was able to half the initial hypervolume HV0
within the maximum number of generations allowed for each
subset size range explored, confirming the high convergence
rate characteristic of NSGA-II. Equal behavior appeared in the
Focused Search phase, where, regardless of the classifier, all
runs satisfied the stopping criterion on the worst error thresh-
old Et before reaching the maximum number of generations

Fig. 2. A final MOGA population with its Pareto Front in the objective space

Figure 2 exemplifies the final population obtained after
a single run of MOGA, with its Pareto Front highlighted.
Notably, signatures of the final population may not fall in
the last subset size range [69, 34], since final individuals are
the result of the Elitist Selection across all explored ranges.
Nonetheless, the Pareto Front shows higher density of non-
dominated solutions in the aforementioned last range, being
the final search process focused in that region.

For each classifier of interest, the last layer of our frame-
work merges the final populations from twenty MOGA runs,
each with a different random initialization, into a unique
population, denoted hereafter as U20 (population size = 2,000



gene signatures). Then, it retrieves the genetic pool across
all signatures in U20, i.e., the union of the genes occurring
in at least one signature in U20, hereafter named as ugenes.
Eventually, the genes in ugenes are sorted in descending order
based on their occurrences in U20, and gene occurrence-based
signatures are composed as described in Section IV-C.

Assessment of fitness for the gene occurrence-based sig-
natures was performed as for the MOGA populations, by
computing their size and MCC error in 5-fold cross valida-
tion. Moreover, these signatures were adopted as feature space
to re-train the corresponding classifier on the whole training
set, with the best hyperparametrization emerged from cross-
validation. Each classifier was then used to predict the unseen
samples of the hold-out set, to test its generalization property.
As an example, results of linear SVM are shown in Figure 3.

Fig. 3. Gene occurrence-based signatures of linear SVM, in cross-validation
(above) and hold-out (below) objective spaces

Gene occurrence-based signatures with a reduced size (i.e.,
including only highly occurred genes) do not achieve good
classification performances neither in CV or HO; same trend
is observed for large-sized signatures including also rarely
occurred genes. However, signatures with low classification
error in CV are able to replicate overall good performances
when predicting HO unseen samples, suggesting that they
include discriminative genes across the CV and HO sets.

Lastly, for each of the three classifiers, the gene occurrence-
based signatures with the best CV performances were ex-
tracted and their HO prediction results compared to the ab-
solute best results reached in HO, as reported in Table II.
Overall, best CV signatures perform closely in HO to the best
results experienced in HO, as their difference (∆MCC) stays
restrained. Furthermore, their performances in HO are much
better than the ones reached with the best CV signatures found
with MOGA (data not shown); indeed, the innovative last

TABLE II
GENE OCCURRENCE-BASED SIGNATURES RESULTING FROM THE UNION

OF 20 MOGA RUNS FOR THE 3 CLASSIFIERS SELECTED

Assessed Signature 5-f CV HO Scores
Classifier size size% occt% MCC MCC ∆MCC

LR 151 13.93 ≥ 2.65 0.973 0.611 0.208
196 18.08 ≥ 1.9 0.973 0.746 0.073
228 21.03 ≥ 1.6 0.973 0.674 0.145
246 22.69 ≥ 1.4 0.973 0.707 0.112

SVM (Klinear) 233 21.24 ≥ 2.05 0.982 0.674 0.112
SVM (KRBF ) 69 6.28 ≥ 9.4 0.963 0.741 0.076

71 6.47 ≥ 8.55 0.963 0.705 0.113

module of our framework brings a remarkable improvement
of MCC (up to 0.150).

Intriguingly, for Logistic Regression, signatures different
in size (and size[%], as percentage of ugenes included) and
gene occurrence threshold (expressed in occt[%] as percentage
of total MOGA signatures found) share the same optimal
classification performance in 5-fold CV. Conversely, their HO
performances are largely different from one another (HO
Scores - MCC column in Table II), suggesting the need for
LR of further MOGA runs to achieve more robust results.

D. Comparative evaluation

Classification results of each baseline were compared with
the ones of the same classifier when trained with only the
signature emerged from our gene selection framework. When
multiple gene occurrence-based signatures resulted optimal in
CV, we selected the largest signature in size as comparison
term for each classifier. This is a conservative choice due
to the supposedly higher generalization capability of a more
inclusive signature, yet not observed in this study. Performance
in predicting the HO set were compared not only on the
basis of the resulting MCC, but also adopting three more
metrics: balanced accuracy (ACCb) and F1-score assessing
either relapsed or relapse-free predictions (named F1+ and
F1−, respectively), as illustrated in Table III.

Our proposed gene selection framework was able to improve
the baseline score of all considered classifiers, with a notewor-
thy enhancement for Logistic Regression and SVM (Klinear),
the former one resulting the best overall. Although per-
formances for the SVM (KRBF ) classifier remained almost
unchanged, the gene occurrence-based signature eventually
selected shows a robust performance in HO (MCC = 0.705),
while being remarkably reduced in size (71). This latter
achievement in particular makes the signature more suitable

TABLE III
PERFORMANCE EVALUATION BEFORE AND AFTER OUR GENE SELECTION

Assessed Genes of HO Scores
Classifier Interest MCC ACCb F1+ F1−

LR 1,115 0.684 0.852 0.808 0.844
246 0.707 0.854 0.818 0.889

SVM (KRBF ) 1,115 0.704 0.845 0.810 0.892
71 0.705 0.845 0.811 0.890

SVM (Klinear) 1,115 0.596 0.807 0.760 0.819
233 0.674 0.840 0.800 0.873



to clinical application, as opposed to the baseline gene set
(1,115). Lastly, as expected, both baseline and best gene
occurrence-based signatures showed better performances when
predicting non-relapsed patients (F1−) as compared to re-
lapsed ones (F1+), being the former one the most represented
class in the training set.

VI. CONCLUSIONS

To effectively distinguish BRCA relapsed from relapse-free
patients, in this work we proposed a hybrid gene selection
framework able to find a suitable gene signature for each
classifier to accomplish the task. The framework joins proven
approaches and innovative elements in a tripartite structure: a
filter method based on Signal-to-Noise Ratio (SNR) metric, a
wrapper method using a NSGA-II-based customized MOGA
together with a regularized classifier (LR or SVM), and a
novel gene occurrence-based selection method. Notably, the
implemented MOGA minimizes both the gene signature size
and the classification error, based, as never before, on the
Matthews Correlation Coefficient, an highly reliable metric
in binary classification contexts, particularly when classes are
unbalanced. A further innovation lies in the adopted search
technique, since the search space is spanned by iteratively
halving the size of the signatures under exam, as to prevent
quick convergence and random initialization from causing the
loss of putative task-related genes. However, the last module
of our framework is the major strength, since, rather than
choosing a single optimal MOGA solution, it fully exploits the
high variability of MOGA outputs with meaningful improve-
ments over mere MOGA results. Particularly, it combines all
genes emerged from MOGA solutions in more robust, com-
pact gene occurrence-based signatures, easier to interpret and
having higher discriminative capabilities. When tested on the
unseen samples of the hold-out set, our best classifiers retain
robust and valuable performances, in line or even considerably
improved compared to the same learner trained over the 1,115
SNR-based filtered genes, with the additional gain of dealing
with more compact and easy to interpret signatures. Finally,
the biological interpretation from enrichment analysis of the
best gobs sees a significant over-representation of biological
processes impacting on immune response and cell cycle.
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