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Abstract—An iterative learning controller (ILC) is an online
method which exploits the information of past trials to improve
the performance of the system. For a system controlled by ILC,
the state, error, and ILC time histories for varying operating
conditions can be recorded. This paper proposes an offline
learning method using a neural network which exploits this data-
set to approximate the converged ILC for a nonlinear system.
The proposed method provides an approximate ILC for the first
iteration based on the data collected thereby achieving a faster
convergence. The efficiency of the method is tested for a nonlinear
problem and results are presented.

Index Terms—iterative learning control, neural network, of-
fline learning

I. INTRODUCTION

Iterative learning control (ILC) method is based on the
idea that the performance of a system that executes the same
process multiple times can be improved by learning from the
previous trials [1]. ILC applications are heavily designed for
systems with same operating conditions. For such systems
the tracking error on each trial is the same. ILC controller
exploits the information of tracking error for previous trial to
improve the control for subsequent trials there by improving
the performance of the controller for the system. There are
other learning controllers such as adaptive control, repetitive
control and neural network (NN) control which have been
developed and successfully applied to several systems defining
their efficacy to improve the performance of the system.

In [1], Bristow et al gave an extensive study of iterative
learning control focusing on the analysis and design. The
survey describes the ideas, potential and limitations of ILC
and provides a detailed description of the different design
techniques. Since the development of ILC, it has been applied
to several engineering problems, both linear and nonlinear.
The paper by Liu et al [2], focused on application of ILC to
linear time varying systems with high order internal model
(HOIM). In this case, an ILC controller was designed for
an iteratively varying reference trajectory where the HOIM
was formulated using a polynomial between two consecutive
trials. Another application of ILC for a linear time varying
system was described in [3]. In this paper, the main focus
was on the design of an ILC controller with input-output
constraints. The application of ILC has been abundant in the
area of robots which perform the same task. In the work by

Barton et al [4], a norm optimal approach to time varying ILC
system was detailed. The controller was used to design optimal
learning filters based on design objectives. The efficacy of the
proposed method was shown through its implementation for
a MIMO motion system. ILC control has also been studied
for nonlinear time varying systems. In the work by Chien
[5], for a discrete MIMO nonlinear time varying system with
initial state error, input disturbance, and output measurement
noise, a discrete iterative learning controller was presented.
The learning controller was updated with a higher order feed-
forward learning algorithm.

ILC has been combined with other learning methods like
neural network to update the learning control. In the works
presented in [8] and [9], an online NN control was used
to predict the learning control for the subsequent operating
cycle. In [8] Chien et al, proposed a feed-forward neural
network with sigmoid hidden units which was used to design
a NN based ILC for a nonlinear system. The weights of
the neurons were updated during each trial depending on
the desired learning performance. A Lyapunov like analysis
was utilized to determine the adaptive law for weights of
neurons and analysis of learning performance. In the work
presented in [10], [11], and [12], the authors presented a neural
network based iterative learning controller as an alternative to
conventional adaptive and ILC schemes. A neural network is
used to learn the state space model of the unknown plant based
on input/output data collected from closed loop control for
an unstable/poorly damped system. Once a satisfactory neural
model was obtained for the nonlinear process, an ILC update
rule based on data driven neural network was used for the
control synthesis. The resulting method is a learning process
with adaptable training parameters. The authors claimed to
achieve zero error convergence for both P and D type learning
controllers.

In [13], Liu et al presented an adaptive terminal ILC to track
iteration varying target points. This paper proposed a neural
network-based state learning mechanism which relaxes the
strict identical initial condition requirement for terminal ILC
schemes. In addition to relaxed initial condition the desired
terminal point was also assumed to be iteration varying.
The neural network approximates the effect of varying initial
states on the terminal output and the weights of the NN are
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identified iteratively. The learning and adaptation are restricted
by a predefined bound on the tracking error. The authors
claimed that the method was able to track the iteration varying
desired points with specified accuracy. Another neural network
based adaptive learning method was presented in [14]. In
this paper an adaptive ILC method to mitigate the trajectory
tracking errors for robot manipulators with arbitrary initial
errors was proposed. To overcome the nonzero initial errors,
time varying boundary layer are used and an adaptive learning
neural network was used to approximate the uncertain robotic
systems. The scheme used a saturation difference learning
method to estimate the unknown optimal weights for the neural
network and the upper limit of the approximation error. The
paper claimed through results that with the adaptive scheme all
signals of the closed loop system remained bounded and per-
fect tracking performance was achieved. In [15] by Chi et al, a
data driven predictive ILC design is presented. The presented
controller design only depended on the input/output data of
the system eliminating the need for an explicit mathematical
model. The performance of the controller was enhanced by
more prediction information along the iteration axis. The
algorithm is claimed to have achieved desired control effect.

So far, the applications of learning controllers have been
fairly focused on their ability to learn online. ILC controller
design is based on the past error information available on
hand, to improve the system performance online. The main
motivation of this paper is the utilisation of all the stored
information based on which an ILC scheme is operated. This
paper therefore focuses on predicting the end control of an ILC
algorithm based on the data available for a particular system
for all the operating conditions such that the computational
effort is reduced. Based on the extensive data collected for
a system that performs the particular task, an offline NN
can be trained using carefully selected inputs against the
desired control to predict the control requirement with minimal
tracking error for a new operating condition for the same
system. The proposed scheme is implemented and tested for
its effectiveness and the results are presented.

Rest of the paper is constructed as follows. Section II gives
a brief description of the nonlinear system dynamics. Section
III describes the feedback and ILC controller design. Section
IV focuses on the learning method for predicting the end
controller input for the same system based on the data available
followed by Section V in which the comparison study of
the effectiveness of the proposed method is presented. The
conclusion of the paper is given in section VI.

II. PROBLEM FORMULATION

A. Dynamics of Earth Orbiter

The trajectory of an Earth orbiter in low altitude is signif-
icantly affected by the J2 perturbation which arises due to
the oblateness of the Earth. The effect of this equatorial bulge
is significant when analyzing Earth’s gravitational potential
function [6].
The dynamics of a low altitude Earth orbiter can be modelled

using the two body gravitational model including the J2 effect
as

r̈ = −µr
r3

+ J2,pert (1)

where r =
[
x y z

]T
and r =

√
x2 + y2 + z2. The second

term J2,pert in equation (1) represents the perturbation due
to the equatorial bulge and is a highly nonlinear function
defined by J2,pert = ( 3µRe

2(5z2−r2)J2
2r7 )r. The dynamics can

be rewritten in the state space representation with a state
vector defined as x =

[
x1 x2 x3 x4 x5 x6

]T
=[

x y z ẋ ẏ ż
]T

. The equations of motion of the Earth
orbiter is then represented in terms of x as

ẋ = f(x) +Bf̃(x) +Bu
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C
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where f̃(x) represents the J2,pert in terms of x, µ is the
gravitational constant of the Earth (3.986 ×105 km3/s2), Re
is the radius of the Earth(6378.14km) and J2 = 0.0010826.

III. CONTROLLER DESIGN

The controller given in equation (2) has two components.
One is the baseline feedback controller ufb and the other is the
ILC controller uilc [7]. It should be noted that since the orbiter
revolves in the particular low altitude orbit it is launched to, an
ILC scheme is an adequate control method that can be applied
to this problem, as the trajectory remains the same. Because
the orbiter and Earth rotate in the inertial frame the time period
of the launched orbit is taken as the ILC operating cycle. It
should also be noted that in each cycle the J2 perturbation
effect is the same which satisfies the repetitive disturbance in
the system for an ILC problem. The desired trajectory for this
problem is assumed to be the trajectory of an orbiter in the
absence of the J2 perturbation.

A. Feedback Control Design

The feedback controller is designed to track the desired
orbit and is based on the tracking error. The tracking error
in position vector is defined as e =

[
e1 e2 e3

]T
where

ei = xi − xi,d for i = 1 : 3 and velocity vector as
ė =

[
e4 e5 e6

]T
where ei = xi − xi,d for i = 4 : 6.

The feedback controller is designed such that the closed
loop system is Hurwitz stable. The input/output feedback
linearization method is used for feedback control design which



states that, if the error dynamics of the system is Hurwitz
stable, the tracking error should go to zero asymptotically [16].

The system dynamics defined by (2) and (3), in the absence
of perturbation effect can be rewritten as

ż1 = z2
ż2 = f(z) + ufb

(4)

y = z1 (5)

Where z1 =
[
x1 x2 x3

]T
, z2 =

[
x4 x5 x6

]T
and

f(z) = − µ
r3 z1. The i/o feedback linearization technique for

class of nonlinear problems is utilised to define the feedback
control ufb as follows [16]:

A linear system representation can be obtained by redefining
the input as

v = f(z) + ufb (6)

so that,
ufb = −f(z) + v (7)

giving,

ż1 = z2
ż2 = v

(8)

which is equivalent to
ÿ = v (9)

For the above feedback linearized system, a PD tracking
controller can be designed as,

v = ÿd −A1ė−A2e (10)

where e is the position tracking error and e = y − yd. Note
that, y = z1 =

[
x1 x2 x3

]T
. Substituting this control v

into (9) yields the closed loop system,

ë +A1ė +A2e = 0 (11)

which is equivalent in state space form as,

d

dt

[
e
ė

]
=

[
03×3 I3×3

−A2 −A1

]
︸ ︷︷ ︸

Ã

[
e
ė

]
(12)

The tracking error convergence can be ensured by carefully
choosing the feedback gains A1 and A2. Thus the final
feedback control expression obtained from this method is,

ufb = −f(z) + ÿd −A1ė−A2e (13)

The equivalent feedback control for the earth orbiter in (2)
and (3), in terms of x is then given by,

ufb = −

−µx1

r3

−µx2

r3

−µx3

r3

+ ÿd −A1ė−A2e (14)

B. Iterative Learning Control Design

The feedback control stabilises the system with respect to
J2 [7]. The contribution of ILC controller is to cancel the
periodic perturbation effect caused by the oblateness of the

Earth. The ILC controller is only needed once the orbiter is
stabilised in the desired trajectory and revolves around the
Earth. The ILC controller uses the control and tracking error
from the previous cycle. It reduces the tracking error from
the feedback controller and drives the error to zero. The ILC
controller expression is given as,

uilc,j(i) = uj−1(i) + Lqej−1(i+ 1) (15)

where i denotes the time-step and j denotes the operating cycle
and Lq is the learning gain for the tracking error. Thus, the
total controller expression for the above problem is,

uj = ufb,j + uilc,j (16)

Note that for the first operating cycle, there exists only the
feedback controller which stabilizes the closed loop system
and the ILC is introduced to correct the tracking error after
the feedback controller, due to the J2 perturbation effect.
Consider the system defined as,

xj(i+ 1) = Axj(i) +Buj(i) (17)

yj(i) = Cxj(i) + d(i) (18)

where j is the iteration number, i is the time-step, q is the
time shift operator and d is the repetitive disturbance in the
system response. From (17) and (18), yj(i) can be rewritten
in the following form

yj(i) = C(qI −A)−1B︸ ︷︷ ︸
P(q)

uj(i) + d(i) (19)

The ILC controller for the above system is given by

uj = uj−1 + Lqej−1 (20)

Then the error convergence for the above ILC controller can
be proved as follows:
Consider the system dynamics in iteration domain given by
(19). Let r be the reference trajectory. Then the tracking error
ej can be obtained as

ej = r − yj (21)

Substituting (19) in (21) we get,

ej = r − Puj − d (22)

Rearranging the terms in (22) the controller expression can be
obtained for the jth iteration as

uj = P−1(r − ej + d) (23)

and for the j − 1th iteration, it can be given as

uj−1 = P−1(r − ej−1 + d) (24)

substituting uj and uj−1 in (20) and rearranging,

ej = (I − PLq)ej−1 (25)

The above equation defines the closed loop error dynamics in
the iteration domain. For such a system the asymptotic stability
is defined in [1] by the following theorem.



Theorem 1: For a system defined in (25) the asymptotic
stability exists if and only if

ρ(I − PLq) < 1 (26)

where the ρ(A) = maxi|λi(A)| is the spectral radius of the
matrix A and λi(A) is the ith eigenvalue of A. The learning
gain Lq is designed such that the above theorem is satisfied.
The ILC scheme for the Earth orbiter problem is depicted in
Figure 1.

Figure 1. ILC scheme

IV. NEURAL NETWORK AUGMENTED INTELLIGENT
ITERATIVE LEARNING CONTROL

Figure 2. Neural Network scheme

This section defines how a learning mechanism like NN
can be used to get an approximation of the controller for
a system based on the data available for different operating
conditions. For example, for the Earth orbiter problem defined
in Section II, the ILC defined in Section III can be utilized to
negate the error in tracking caused due to the J2 perturbation.
The performance of designed ILC is measured based on the
decreasing norm of the tracking error with iterations. For the
Earth orbiter problem the same control scheme can be used for
controlling orbiters at different lower earth orbits. This implies
that once the orbiter has been stabilised in each orbit the ILC
will negate the effects of J2 perturbation with required number
of iterations to satisfy the specified convergence criteria.

The proposed scheme given in Figure 2, attempts to exploit the
data collected for a system controlled by the ILC scheme with
varying operating conditions. For the orbiter problem defined
above, this data consists of the converged position history and
the converged ILC history corresponding to a range of low
earth orbits. An offline NN is used to learn the correlation
between the converged position and the converged ILC. In the
above case, a two layer NN which consists of 3 inputs, 30
neurons in the hidden layer, and 3 neurons in the output layer
was implemented. The activation function used for the hidden
layer is tangent sigmoid and the activation function used for
the output layer is linear. The Bayesian regularization-based
back-propagation algorithm is used to train the NN [17], [18].
The data-set used to train and validate the NN is randomised
in order to improve the training of the NN. The NN is trained
by using 70 percent of the data collected, and validated using
the remaining 30 percent data.

This NN approximation based on available data can provide
an approximate control effort at each time instant for the
ILC to control the orbiter in a new orbit within the range
of data collected. The performance of the proposed method
is illustrated with simulation results in Section V. This NN
augmented ILC technique can be applied to other systems
for which there exist a relevant data-set. With the proposed
method, in the first iteration itself, in addition to feedback
control the NN provides an ILC control input. Thus faster
convergence is achieved in terms of iterations, due to this
additional control from NN.

V. SIMULATION RESULTS

The ILC control method with a stabilising feedback control
is designed by the procedure presented in section III for the
Earth orbiter problem defined in section II. For this study
circular polar orbits are considered. For the desired trajectory
the orbiter is assumed to begin orbiting at 45° latitude and 45°
longitude . For the simulation study a range of altitudes from
100 − 1000 km are considered. For the actual system with
perturbation, the orbiter is assumed to begin orbiting at 30°
latitude ,60° longitude, and the altitude is set 100 km higher
than the desired orbit. The tuning parameters for this example
are selected as,

Ã =

[
03×3 I3×3

−3× 10−3I3×3 −3× 10−1I3×3

]
and learning gain Lq of

Lq =
[
−9× 10−12I3×3 −9× 10−9I3×3

]
The convergence criterion for the ILC method is designed
such that the norm of the error of the state vector is less than
a specified threshold. In this example the threshold is set at
||E|| < 10−2and ||Ė|| < 5×10−5, where E =

[
ex ey ez

]T
is the position error vector and Ė =

[
ėx ėy ėz

]T
is the

velocity error vector. The results for the ILC method for orbit
at 200 km altitude are given below.



Figure 3. Position history vs time

Figure 4. Velocity history vs time

Figure 5. Total control history vs time for last iteration

Figure 6. Feedback control history vs time for last iteration

Figure 7. Learning control history vs time for last iteration

Figure 8. J2 perturbation history vs time

Figure 9. Error between final control and perturbation

From Figures 3 and 4, it can be seen that the actual
states are following the desired states. Comparing the errors
in position and velocity for the first and the last iterations,
although the feedback control reduces the error to an order of
10−3, with more iterations the ILC control drives it to zero.
This trend implies the asymptotic stability of tracking errors
due to disturbances in the iteration domain. This shows the
effectiveness of the selected learning gain Lq . From Figures
5-8, it can be seen that in the last iteration, the contribution
to total control is dominated by the ILC control component
and it can be seen to be almost equal in magnitude to the
perturbation in x, y&z. Figure 9, shows how accurately the
ILC control compensates for the perturbation in the system.
The values of ||E|| and ||Ė|| for each iteration are given in



Table I. From this data it can be seen that the norm value of
state errors decreases with increasing iterations.

Table I
NORM OF ERROR IN X FOR ORBIT AT 200 KM(ILC)

||E|| ||Ė||
axis iter 1 iter 2 iter 1 iter 2

x 1.0713 0.0063 0.0040 3.98E-05
y 1.0713 0.0063 0.0040 3.98E-05
z 3.7780 0.0095 0.0071 4.96E-05

The control histories and state histories for different al-
titudes of low Earth orbits were collected. The designed
NN is trained using the position time histories against the
converged ILC for each orbit, based on the data. To test the
NN approximation, the trained NN is utilised to calculate the
ILC equivalent control which is applied to the system along
with the stabilizing feedback control, for the same 200 km
orbit, for just one trial. The resulting norm of the state errors
from this simulation are given in Table II.

Table II
NORM OF ERROR IN X FOR ORBIT AT 200 KM(NN)

||E|| ||Ė||
axis iter 1 iter 1

x 0.0034 0.00018
y 0.0034 0.00018
z 0.0057 0.00026

Comparing the norm of error values in Table I and II, it can
be seen that the NN approximation with the state feedback has
considerably better performance. Using the NN approximated
control, it can be seen that the norm of state vector is less than
the defined threshold after the first iteration which proves that
the NN approximation is close to the desired ILC. The results
of the proposed method for a new altitude within the range
of the data collected (115 km) was tested and the results are
depicted below.

Figure 10. Position history vs time

Figure 11. Velocity history vs time

Figure 12. Total control time history for last iteration

Figure 13. Feedback control history vs time for last iteration

Figure 14. Learning control history vs time for last iteration



Figure 15. J2 perturbation history vs time

Figure 16. Error between final control and perturbation

From Figures 10-11, it can be seen that the results of NN
scheme is close to the desired states and the corresponding
results of the last iteration of the ILC method. The error values
of states are also in the same range of order of magnitude, in
both cases. Figures 12-14, show that the approximated control
value from the NN even with only one trial is fairly close to
the equivalent control in the ILC. The corresponding norm of
error values for the ILC method and the NN predicted control
are given in Table III and IV.

Table III
NORM OF ERROR IN X FOR ORBIT AT 115 KM(ILC)

||E|| ||Ė||
axis iter 1 iter 2 iter 3 iter 1 iter 2 iter 3

x 1.1152 0.0068 0.0013 0.0043 4.23E-05 3.22E-05
y 1.1152 0.0068 0.0013 0.0043 4.23E-05 3.22E-05
z 3.9388 0.0103 0.0023 0.0075 5.26E-05 4.71E-05

Table IV
NORM OF ERROR IN X FOR ORBIT AT 115 KM(NN)

||E|| ||Ė||
axis iter 1 iter 1

x 0.0030 1.53E-05
y 0.0030 1.53E-05
z 0.0041 2.17E-05

Figure 17. Variation of ||E|| & ||Ė|| in x axis vs altitude.

Figure 18. Variation of ||E|| & ||Ė|| in y axis vs altitude.

Figure 19. Variation of ||E|| & ||Ė|| in z axis vs altitude

Even for a new altitude, the norm values of the proposed
scheme is less than the values of second iteration in the
traditional ILC and close to the last iteration in the traditional
ILC. From Figures 17-19, it can be seen that for a set of
new altitudes the norm of error value in all three axes are
comparatively less for first iteration for the proposed method
than the traditional ILC. This trend confirms that the NN
approximation is accurate. Thus using the proposed method
the online computational effort for an ILC is reduced as it
gives a faster convergence.



VI. CONCLUSIONS

An ILC improves the system performance based on past
trials. However, even for a fine tuned learning gain the ILC
scheme takes several iterations to converge. The NN based
method presented in this paper provides an effective way to
utilise the data collected for a learning control to be used for
the enhancement of the controller performance. The proposed
scheme thus attempts to give an approximate control for the
first iteration based on the data collected for the system where
an ILC is used. The data for a range of different operating
conditions is embedded in an offline NN and is used for
computing online control. Hence this technique reduces the
computational effort and guarantees a faster convergence com-
pared to the traditional ILC method. From the representative
numerical results the proposed method seems to have a good
potential for online use for typical application where the ILC
is currently used.
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